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Abstract
The Distributed Co-Simulation Protocol (DCP) is a
platform and communication system independent ap-
plication level communication protocol. It is designed
to integrate models or real-time systems into simula-
tion environments. The specification document de-
fines the structure and behaviour of slaves. It is ad-
vantageous to verify and validate a slave before inte-
grating it into a larger co-simulation scenario. This
is especially true if tests are performed on large rigs,
where availability and time are typically limited. Un-
til now, no systematic procedure for design, verifica-
tion and validation of slaves is available.

In this paper, we introduce a process for design,
verification and validation of DCP slaves. The pro-
cess is used to systematically encapsulate models or
real-time systems into slaves. For verification, the
DCP state machine and protocol definitions are used
to derive sequences of protocol data units (PDU) from
any given DCP slave description. To demonstrate the
feasibility of our approach, we show a use case from
the automotive engineering domain. It includes a
slave representing an engine, which is embedded using
the Functional Mock-Up Interface (FMI). We also in-
troduce the DCP test generator and DCP tester tools
to automate the verification steps. With these contri-
butions, slaves can be developed systematically and
more efficiently. The introduced software is available
under an open-source license.
Keywords: co-simulation, simulation, test, real-time,
distributed

1 Introduction
Co-simulation-based methodologies have evolved sig-
nificantly during the last decade. Nowadays co-
simulation is a major enabler for holistic cross-domain
or system simulations. It allows integration of simula-
tion models, tools, and solvers from different sources.

The functional mock-up interface
(FMI) (Blochwitz et al., 2011) represents an
important software standard for co-simulation in
several industry sectors. It was proposed to solve
the need for interoperability between models, solvers
and tools. FMI was developed in the MODELISAR

project, starting in 2008. The FMI specification
is standardized as a Modelica Association Project
(MAP). Its most recent specification version is 2.0.1
which was released in 2019. The FMI specification
document defines an interface for model exchange
and co-simulation. Today more than 100 software
tools support the FMI1. For distributed simulation
environments, network communication technologies
are frequently used in practice. However, "the
definition of this communication layer is not part
of the FMI standard" (Modelisar Consortium and
Modelica Association Project "FMI", 2019, p.95).

The Distributed Co-Simulation Protocol (DCP)
fills this technology gap. It was developed in the
ACOSAR project (Krammer et al., 2016). The DCP
is an application-level communication protocol de-
signed to integrate models or real-time systems into
simulation environments. It enables exchange of sim-
ulation related configuration information and data by
use of an underlying transport protocol (such as UDP,
TCP, or CAN). At the same time, the DCP supports
the integration of tools and real-time systems from
different vendors. The DCP is intended to make sim-
ulation based workflows more efficient and reduce the
overall system integration effort. It was designed with
FMI compatibility in mind, i.e., it follows a master-
slave communication principle, uses an aligned state
machine implementing an initialization mechanism,
and defines an overall integration process which is
driven by standardized XML file formats. Version 1.0
of the DCP specification document was released as an
open-access Modelica standard in early 2019 (Kram-
mer et al., 2018a, 2019).

2 Motivation
The DCP specification document describes the design
of a slave only. A master is required to control a co-
simulation scenario, which includes at least one slave.
A slave encapsulates a model or real-time system. It
therefore represents a simulation subsystem provid-
ing standardized access capabilities. The subsequent
paragraphs motivate testing for slaves.

1http://fmi-standard.org/tools/
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Development Support The initial need to au-
tomate protocol-based verification emerged out of
the ACOSAR project. The specification docu-
ment was engineered using a requirements-based ap-
proach (Krammer et al., 2018b). During develop-
ment of the DCP new sets of technical requirements
led to new specifications, which in turn raised de-
mand for testing. First approaches included a tester
tool able to send and receive predefined sequences
of protocol data units (PDU) to and from a single
slave. This fulfilled initial requirements for simple and
configurable tests. Nevertheless that approach still
demanded manual development of test cases, which
caused high effort while suffering from low test cov-
erage.

Protocol Implementation For full standard com-
patibility, DCP implementations must behave as
specified and meet the standard requirements. The
DCP is a platform and programming language inde-
pendent specification. So it makes sense to test im-
plementations at protocol level.

Application Specific Adaptation If a DCP slave
encapsulates a real-time system, functional integrity
is very important. On one hand, a DCP slave needs to
behave as intended, e.g., connect to specific variables
at the given communication step size. On the other
hand, missing or delayed data packets, broken phys-
ical connections, etc. need to be handled properly if
no other mechanisms are in place to avoid damage to
equipment and operators. To handle these issues, the
DCP features several mechanisms, like separate states
for error handling and recovery. However, the crite-
ria for transitioning to these states are application de-
pendent and must be developed accordingly. Further-
more, all possible real-time system hazards must be
analyzed, and potential safety measures implemented.
Therefore, adaptations and safety measures are sub-
ject to test, in order to assure their functionality dur-
ing operation.

Limited Access Access to industrial models or
real-time systems might be limited, due to high capac-
ity utilization or high rental cost. Typical examples
include physical appliances like various kinds of au-
tomotive test beds, roller rigs, brake dynamometers,
or driving simulators, to name a few. If DCP slaves
encapsulate such systems, or are used in connection
with such systems, it seems reasonable to test the
DCP slave prior to scenario integration, in order to
save time and money.

Economy For aforementioned reasons it seems rea-
sonable to test DCP slaves with the goal to fix as
many defects as early as possible. Delivering a re-
liable DCP slave is not only beneficial for the inte-
grator, but also for the provider. From an economic
perspective the overall number of development cycles
is reduced and time-to-market is improved.

This paper contributes in two ways. Our goal is to
describe a systematic development process for DCP
slaves and how created DCP slaves can be tested prior
to scenario integration. Therefore we introduce (1)
a generic DCP slave development process and (2) a
methodology and two coordinated tools for test of
DCP slaves. Section 3 recapitulates related work.
Section 4 describes the process main phases. Section 5
defines the main concepts of protocol based verifica-
tion. Section 6 introduces the DCP Test Generator
and Tester tools. Section 7 describes a use case from
the automotive domain. Finally, Section 8 concludes
this paper.

3 Related Work
A survey of communication protocol testing is pre-
sented in (Lai, 2002). It focuses on test sequence
generation methods, test coverage, fault models
and prediction, test tools, and experience reports.
(Bochmann and Petrenko, 1994) provide a good
overview of methods and their relevance for software
testing. (Sidhu and Leung, 1989) give four formal
methods for protocol testing by developing test se-
quences. (Linn, 1989) introduces a conformance eval-
uation methodology for protocol testing.

In the context of FMI, many efforts for testing func-
tional mock-up units (FMU) have been made. The
FMI Cross-Check repository2 contains a large num-
ber of test FMUs provided by different vendors. The
repository holds exported FMUs and results for im-
ported FMUs of the tools that take part in this initia-
tive. Therefore the contained FMUs can be used to
test and improve the interoperability of FMI compati-
ble import- and export-capable tools. The FMI Com-
pliance Checker3 is intended for FMU validation. It
checks for FMI 1.0 and 2.0 compliance to the standard
specification. Its basic features include XML model
description checking and validation of binary FMUs.
For the latter, it is able to load a binary module and
check for the availability of all required functions. For
an FMU for model exchange, the checker tool tests
for explicit Euler numeric integration capability. For
an FMU for co-simulation, the checker tool tests for
fixed step-size calculation capability. Furthermore,
the checker tool is able to provide numerical input
data and log computed solution outputs. FMPy4 is
a Python library by Dassault Systèmes to validate
and simulate FMUs. It has a graphical user inter-
face, compiles C code FMUs and generates CMake
projects for debugging.

To our best knowledge, a dedicated DCP test ap-
proach or tool is not available at this point in time.

2https://github.com/modelica/fmi-cross-check
3https://github.com/modelica-

tools/FMUComplianceChecker
4https://github.com/CATIA-Systems/FMPy

A Protocol-Based Verification Approach for Standard-Compliant Distributed Co-Simulation

134 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp20174133



Development of DCP 

specific software design (2)

Generation and validation of 

DCP slave description (6)

Implementation 

of DCP slave (7)

Protocol-based

verification (9)

Functional 

verification (10)

Req. from DCP spec. and 

target environment (1)

Requirements of the 

application (4)

Development of application 

specific DCP design (5)

Implementation

of DCP (3)

Software-based 

verification (8)

Scenario-based 

validation (11)

Design for Standard 

Compliance

Design of Simulation 

Application
Test

IV

III

II

I

Test 

procedure 

extension

Test 

procedure 

template

DCP slave 

description 

(.dcpx)

Test 

procedure

xml

xml

xml

xml

DCP 

Tester

DCP 

slave

Logs,

Report

(1) (2) (3) (4)

Communication system

DCP test generator

Logs,

Report

Figure 1. V-model for development, verification and validation of a DCP slave.

4 DCP Slave Development
Process

4.1 Overview

We propose a V-model for development, verification
and validation of DCP slaves. The classical V-model
describes activities in development projects. It is tra-
versed over time. Activities on the left-hand side are
related to specification and design, whereas activi-
ties on the right-hand side are related to test. Each
specification activity corresponds to one test activ-
ity. Figure 1 shows a V-model for design and test of
a DCP slave. The V-model has four levels, ranging
from requirements engineering and scenario (I), devel-
opment and functions (II), data model and protocol
(III), to implementation and software (IV). Its left
side is split into two branches. Activities (1)-(3) are
related to Design for Standard Compliance. They are
used to implement the DCP according to the spec-
ification document, without any concrete simulation
application. Activities (4)-(7) are related to Design of
Simulation Application. They are used to tailor an ex-
isting DCP implementation according to the required
simulation application. Its right side is dedicated to
Test. Activities (8)-(11) are performed subsequently
after implementation, to verify and validate the re-
sulting slave.

Due to the structure of the V-model, it can be tai-
lored to various needs. It can be used to implement
the protocol first, and add the application specific
parts afterward. The DCPLib represents an example
of this approach. Alternatively, it might be desir-
able to have a monolithic implementation, where the
simulation application directly implements standard-
compliant behaviour. Examples include electronic
control units (ECU) or microcontrollers providing
DCP access. Subsequently, each of the V-model ac-
tivities are described in detail.

4.2 Design for Standard Compliance
4.2.1 Requirements from DCP Specification

and Target Environment
The DCP standard consists of a data model, a finite
state machine, and a communication protocol includ-
ing a set of protocol data units. The specification
document defines how these parts interact with each
other. These requirements are independent from an
actual simulation application, and are mandatory for
implementation. Additionally, requirements of the
target environment will affect subsequent develop-
ment. This includes e.g., the target operating sys-
tem, preferred programming languages, available soft-
ware modules or libraries, communication systems,
and transport protocols.
4.2.2 Development of DCP Specific Software

Design
This activity should clarify how to implement the
DCP. The main result is a software architecture. DCP
PDUs may be implemented using object-oriented con-
cepts of classes and inheritance, in contrast to using
pre-defined arrays. For send and receive functionality,
an external application programming interface might
be used. Depending on the target platform, concur-
rency can be exploited. For example, threads can be
used to send and receive data at regular intervals.
4.2.3 Implementation of DCP
During this activity the DCP is implemented. The
resulting work product of this activity is a compiled
library or software module. It is not able to run on its
own, as simulation application-specific information is
missing.

4.3 Design of Simulation Application
4.3.1 Requirements of the Simulation Appli-

cation
In this activity, the requirements of the simulation
application are determined. This includes the identi-
fication of the simulation model or real-time system
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for encapsulation, and the identification of quantities
for simulation data exchange.

4.3.2 Development of Application Specific
DCP Design

In this activity, several slave internal properties are
defined. First, this includes the definition of variables
and their causality (inputs, outputs, parameters and
tunable parameters), mapping of these variables to
variables of the encapsulated model or real-time sys-
tem, and variable properties, like step size in combi-
nation with the slave’s specified time resolution. Sec-
ond, the finite state machine must be adapted to the
behaviour of the encapsulated model or real-time sys-
tem. Third, according to the specification, each state
of Normal Operation requires a well-defined transi-
tion to the Error Handling state, where appropri-
ate actions for recovery must be defined. Finally, if
the intended slave should support starting simulations
from a non-trivial initial condition, then an initializa-
tion/synchronization strategy must be elaborated.

4.3.3 Generation and Validation of DCPX

The DCP slave description (DCPX) is an XML (Ex-
tensible Markup Language) file which describes one
single DCP slave. It contains all static information
related to one specific DCP slave. Its structure is
defined by a normative XML XSD (XML Schema
Definition) file (Krammer et al., 2019). It not only
defines the required structures of elements and at-
tributes, but also supplementary assertions and con-
straints. Assertions and constraints are well suited
for expressing logical relationships between elements
and attributes.

Assertions are expressed in the xs:assert tag us-
ing the XML Path Language (XPath). They are
a feature of XSD version 1.1. Assertions constrain
the existence and values of related elements and
attributes. Furthermore, xs:unique, xs:key and
xs:keyref tags are used to express constraints. Typ-
ical examples of application include the verification
of uniqueness of names and the verification of cross-
referenced key values.

In the context of the DCP specification, assertions
and constraints provide strong formalisms which can
be used for automated validation, whenever a DCPX
file is generated or imported.

4.3.4 Implementation of DCP Slave

In this activity the slave is implemented. As a typical
resulting work product, an executable is created out
of production code. A DCP slave is defined as either
a simulation model or a real-time system on a ready-
to-run execution platform that is accessible via DCP
over a supported communication medium. Therefore
the slave software might be deployed on its target
platform.

4.4 Test
4.4.1 Software-based Verification
This activity is dedicated to software verification ap-
proaches. Procedures and processes for software ver-
ification are covered in (Rakitin, 2001; Myers et al.,
2011). For example, inspections can be used to mon-
itor the design for standard compliance.
4.4.2 Protocol-based Verification
This activity is situated between software-based and
function-based verification. Details are presented in
Section 5.
4.4.3 Function-based Verification
If protocol-based verification is successfully passed,
testing may continue with function-based verification.
Function-based verification refers to the functionality
of the connection to the underlying model or real-
time system. For that purpose, a dedicated master
shall be able to configure and stimulate a slave’s in-
puts and parameters by sending PDUs. This master
must also observe the slave’s response by monitoring
its outputs. If defined, all variables must be within
their thresholds, like minimum or maximum values.
Furthermore, available dependency information can
be used for testing as well. The outputs of a DCP
slave may depend on its inputs and parameters.
4.4.4 Scenario-based Validation
In this activity, the developed slave is instantiated
and integrated into the overall co-simulation scenario.
A co-simulation scenario is defined as the integration
of multiple DCP slaves to perform a common sim-
ulation task. A capable master is required, to per-
form registration, configuration, initialization, syn-
chronization and the actual simulation.

5 Protocol-based Verification
5.1 Finite State Machine Based Ap-

proach
The main idea of protocol-based verification is to
check if a DCP slave behaves according to the stan-
dard’s specification document. This includes the com-
munication protocol, the state machine and its tran-
sitions, and the slave’s configuration. To check a
slave for protocol compliance, the concept of a tester
was developed. The tester should connect to a slave
and stimulate it by sending PDUs. However, send-
ing plain, pre-defined sequences of PDUs to slaves for
protocol-based verification is not reasonable. A DCP
slave may expose non-deterministic behaviour, due to
e.g., network delay, affecting the protocol and state
machine (Modelica Association Project DCP, 2019, p.
21). Figure 2 shows an example of such a situation.
After a state change request from state CONFIG-
URED to state INITIALIZING, a slave acknowledges
the request and performs the transition (steps 16 to
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19). In INITIALIZING it performs the necessary cal-
culations, performs a self-triggered state transition to
INITIALIZED and sends a notification including the
new current state identifier (step 19 to step 20). An-
other possibility would be that the master decides
to stop during the Initialization superstate. It sends
STC_stop to the slave (step 19 to 21). The slave
may acknowledge this request, and perform the state
transition to STOPPING as requested (steps 21, 22,
23). However, if computation for initialization ends
before STC_stop can be processed, the slave tran-
sitions to INITIALIZED and sends a corresponding
notification. A negative acknowledgment including
an error code follows (steps 21, 24, 25).

s16

s17

Tx: STC_initialize
(state = CONFIGURED)

s18

Rx: RSP_ack

s19

Rx: NTF_state_changed
(state = INITIALIZING)

s20

Rx: NTF_state_changed 
(state = INITIALIZED)

s21

Tx: STC_stop 
(state = INITIALIZING)

s22

Rx: RSP_ack

s24

Rx: NTF_state_changed 
(state = INITIALIZED

s23

Rx: NTF_state_changed 
(state = STOPPING)

s25

Rx: RSP_nack 
(error_code = STATE_DOES_NOT_MATCH)

Figure 2. Example for multiple options to pass through
the DCP state machine.

Protocol-based verification must consider such
cases and react accordingly. That includes scalable
time frames for request and response PDUs.

5.2 DCP Test Procedure
To circumvent the previously explained problem and
to cover all possible situations, a DCP test procedure
is defined. It is based on a finite automaton, which
defines steps for protocol verification. Each step has a
successor step. To proceed from step to step, transi-
tions are defined. A transition can be triggered by ei-

ther sending or receiving a protocol data unit (PDU).
The DCP uses the concept of PDUs which are ex-
changed between DCP slaves and the DCP master.
Since the DCP not only covers the exchange of simula-
tion data (e.g., inputs/outputs, parameters), but also
the set up (e.g., the configuration of inputs/outputs)
and control (e.g., start and stop commands) of a co-
simulation scenario, 34 different PDUs are organized
in PDU families. A taxonomy is shown in (Krammer
et al., 2018a). Certain PDU types are only meant to
be sent one-way, from the sender to the receiver. For
example, PDUs of the configuration family are only
sent from the DCP master to the slave. Other PDU
types may be sent in both directions. For example,
PDUs of the data family may be used to exchange
simulation data between slaves, but also between the
master and a slave. The finite automaton of the DCP
test procedure allows to define arbitrary PDU ex-
changes. Additionally it includes the concept of time
to define a period after which a transition should be
performed. Every finite automaton expressed using
the DCP test procedure has defined steps for entry
and exit. A valid step to exit the finite automaton is
denoted here as an accepting step. A test procedure
is successfully executed if the finite automaton is left
through such an accepting step.

Formally, a DCP test procedure is defined by the
following 6-tuple (MaxStep,F,C,M,δ,λ), where

• MaxStep is the upper bound of steps in the pro-
cedure. The set of steps S is defined as

S = {n | n ∈ N0∧n <MaxStep}

The initial step number equals to zero.

• F is the set of accepting steps. The test proce-
dure is successful if it finalizes in an accepting
step.

• C is a set of time points (unit: seconds) at which
a transition from one step to another is per-
formed.

• M is a set of PDUs according to the DCP specifi-
cation which are sent or received within the test
procedure.

• δ is a transition function between the steps of
the test procedure:

δ ⊆ S×Σ→ S

Σ =({Receive}×M)∪
({Send}× (C ∪{−})×M)

• λ defines whether a transition should be consid-
ered in the statistical evaluation of the proce-
dure:

λ= S×Σ→{true,false}
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5.3 Test Procedure Extension
Generating a generic test procedure is not feasible,
because different slaves have different features which
need to be considered. Furthermore, some parts of
the test procedure will appear repeatedly. A typical
example is to test if a slave correctly repudiates in-
correct requests for state changes, in all of its states.
Therefore extensions to DCP test procedures may be
defined. An extension contains a description on how
to extend a given test procedure, together with the
DCP slave description of the slave under test. The
main idea is to take a basic sequence through the state
machine, modeled as a test procedure, and extend
this sequence with slave specific aspects and repeti-
tive parts. The main control elements to define an
extension are:

• ExtensionSet contains a sequence of operations
which has to be executed on every step which has
transition with an NTF_state_changed PDU as
predecessor, given by a certain state. The emerg-
ing transitions will be put in between the consid-
ered step and its successor. Algorithm 1 shows
how this can be implemented in a generator for
test extensions.

• AddTransition adds a transition between two
steps. The transitions needs to be bound to a
receiving or sending PDU, as well as the informa-
tion that the occurrence of this transition shall
be logged. The fields of the PDU can be specified
by:

– V alue: a specific value for the field.
– Random: a random, invalid value.
– V ariable: the value of the field is read from

a variable.
– Invalid: a invalid value for this field.

• Update overwrites the value of a given field of
the PDU inside a transition. This can be used
to update specific fields, which need to be valid
in a transition. For example, the STC_register
PDU is needed in a basic path through the state
machine. But the UUID of the slave can not
be known upfront. To solve this, Update can be
used.

• UpdateMaxStep Increases the MaxStep at-
tribute by a given value.

• If allows conditional execution of control ele-
ments.

• ForEach loops over a given set of items, like the
states of the DCP protocol.

In addition to these control elements a test proce-
dure extension can also access the DCP slave descrip-
tion to use and check against specific properties of the
tested slave.

5.4 Test Procedure Algorithm
An algorithm to operate on the formal model intro-
duced in Section 5.2 is given in pseudo-code in Algo-
rithm 2. It is defined in two parts, intended to be run
in parallel.

The first part is responsible for receiving PDUs. It
waits for a PDU to arrive. If this PDU represents a
valid transition to the next step of the finite automa-
ton, then this transition is performed. If the next
step is an accepting step, the algorithm successfully
returns. A critical section is defined using the concept
of mutual exclusion, in order to avoid interference be-
tween the sending and receiving parts. If the received
PDU does not represent a valid transition to the next
step, the algorithm aborts.

The second part of the algorithm is responsible for
sending PDUs. If valid transitions to the next step
of the finite automaton exist having a clock time as-
signed, the minimum remaining clock time is selected.
If no clock time is assigned, a transition is selected at
random. After that, the PDU corresponding to the
selected transition is sent. The sending part also con-
tains a critical section protected by mutual exclusion.
If the current step represents an accepting step, the
algorithm returns successfully.

6 Implementation Details
In this section we present two tools and supporting
data formats, to enable protocol-based verification
within the introduced DCP slave development pro-
cess. This entire tool chain supports Transmission
Control Protocol (TCP) and User Datagram Protocol
(UDP), both over Internet Protocol version 4. How-
ever, the introduced finite automaton, test procedure
and data formats may be used in connection with
other DCP-supporting transport protocols in the fu-
ture as well.

6.1 Workflow
Figure 3 shows a workflow for the DCP test gener-
ator and DCP tester tools. The DCP test gener-
ator consumes the test scenario template, the test
scenario extension, and the slave description for the
slave-under-test (1). It produces a test scenario (2),
which is handed over to the DCP tester. The DCP
tester communicates with the slave-under-test by us-
ing a communication system and a chosen transport
protocol. It performs the specified test procedure (3).
The tester logs all transitions together with times-
tamps and corresponding PDUs (4). It generates logs
that may be used for development or statistical eval-
uations. The slave-under-test may also generate a
report.

6.2 Data Structures
To represent a test procedure an XML schema defi-
nition is used. Figure 4 shows a graphical represen-
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input: state: State after which entry the ExtensionSet shall be executed
1 foreach x holds x ∈ S∧x /∈ F ∧∃n ∈ N : (n,(Receive,NTF_state_changed(state)),x) ∈ δ do
2 predX ={t|t ∈ δ∧∃n ∈ N : t.from= n∧ t.to= x∧ t.Σ = (Receive,NTF_state_changed(state))};
3 sucX ={t|t ∈ δ∧∃n ∈ N : t.from= x∧ t.to= n∧ t.Σ = (Receive,NTF_state_changed(state))};
4 entry = MaxStep;
5 <execute sub elements>;
6 foreach t in predX do
7 t.to = entry;
8 end
9 foreach t in sucX do

10 t.from = MaxStep - 1;
11 end
12 end

Algorithm 1: Execution of a ExtensionSet
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Figure 3. Workflow for DCP test generator and DCP tester tools

tation of this schema definition. It implements the
introduced formal model from Section 5.2. A root el-
ement DcpTestProcedure is defined, which includes
the set of sending and receiving Transitions. Fur-
thermore, it also contains information for network
Drivers, i.e., IP and port information for the tester
tool.

6.3 Test Generator and Tester as Open-
Source Software

The DCP test generator is written in Java. It is im-
plemented as a command-line tool. Its main out-
put is the test procedure. The DCP tester is writ-
ten in C++. It is implemented as a command-line
tool. The test generator5 and the tester6 are pro-
vided as open-source software, licensed under a BSD

5https://github.com/modelica/DCPTestGenerator
6https://github.com/modelica/DCPTester

C:\work\spaces\DCPTestGenerator\src\main\resources\xsd\DcpTestProcedure.xsd 23.04.2020 20:08:20

Page 1Registered to Martin Krammer (Virtual Vehicle)

DcpTestProcedure

attributes

version

name

acceptingSteps

TransportProtocols

1 ∞..

Transition

attributes

Sending

Receiving

Figure 4. Test procedure data structure as logical view of
an XML schema definition.

3-clause license. The DCP specification document
is maintained as a Modelica Association7 Project
(MAP). The Modelica Association is a non-profit,
non-governmental organization with members from

7http://www.modelica.org
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1 step=0;
2 lastAction=0;
3 lastCheck=now();
4 foreach clocks for every sending transition with defined times stamp in test procedure do
5 clock(transition.sending) = transition.sending.numerator / transition.sending.denominator;
6 end
7 do in parallel
8 while wait for received PDU AND Receive PDU pdu do
9 lock();

10 if ∃ transition ∈ successor(step): transition.receiving = pdu;
11 then
12 if pdu.log then
13 Add PDU to statistics;
14 end
15 step = transition.to;
16 unlock();
17 if isAccepting(step) then
18 return 0;
19 end
20 else
21 unlock();
22 return 1;
23 end
24 end
25 end
26 do in parallel
27 while !isAccepting(step) do
28 lock();
29 <Update clock time of sending transitions by subtracting time between now and last update>;
30 transition = null;
31 if ∃ transition ∈ successor(step): transition.sending is defined AND

transition.sending.clockTime is defined;
32 then
33 transition = <choose transition with min remaining clock time>;
34 if clock(transition.Sending) < 0 then
35 clock(transition.Sending) = transition.Sending.numerator /

transition.Sending.denominator;
36 else
37 transition = null;
38 end
39 end
40 if transition = null AND ∃ transition ∈ successor(step): transition.sending is defined AND

transition.sending.clockTime is not defined;
41 then
42 transition = <choose transition randomly>;
43 end
44 if transition != null then
45 <send PDU of transition>;
46 step = transition.to;
47 end
48 unlock();
49 end
50 return 0;
51 end

Algorithm 2: DCP tester algorithm
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Case 2: Algebraic loop present and engine cannot calculate y_alpha_init. Set 
target values, entire system uses comparator and tries to comply, when reached, 
start.

Case 1: No algebraic loop. Do one single init
loop, then start. Engine is able to calculate
y_alpha_init, iterates to alpha position.
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Case 3: Algebraic loop present. Independent initialization of both systems via 
master. If steady state between slaves and variable values comply, start. Master 
might use e.g. engine model for that.

Simulation case: Dependencies at run-time

Engine testbed (real-time system)Vehicle and driver (simulation)

Engine testbed (real-time system)Vehicle and driver (simulation)

Engine testbed (real-time system)Vehicle and driver (simulation)

Figure 5. Co-simulation scenario implemented using DCP

Europe, North America, and Asia. Since 1996, its
simulation experts have been working to develop the
open standard Modelica and the open-source Model-
ica Standard Library. Today it aims at coordinated
standardization, development of software technology,
and corresponding methods in the fields of cyber-
physical systems and systems engineering. The DCP
specification is available as an open-access standard8

licensed under a Creative Commons BY-SA 4.0 li-
cense.

7 Industrial Use Case
7.1 Description
In order to demonstrate the methods and algorithms
outlined in this paper, a use case from the automo-
tive domain was used. It consists of a co-simulation
scenario including a vehicle simulation and an engine
on a testbed. Both were implemented as separate
DCP slaves, where the engine model was used as the
slave-under-test. This slave has two input variables.
The first input represents the accelerator pedal an-
gle measured in degrees, the second represents the
shaft speed in revolutions-per-minute. This slave has
one output variable representing the shaft’s torque in
newton metres. It was implemented using standard
compliant DCPLib. The intended co-simulation sce-
nario is shown in Figure 5. Our goal is to perform
a protocol based test of the DCP slave representing
the engine (process level III), before it is functionally
tested (process level II) and actually used in context
of the shown co-simulation scenario (process level I).

7.2 Results
For this evaluation of protocol-based verification we
consider the suggested test procedure template, sev-
eral different test procedure extensions, and the DCP
slave description file of the slave-under-test. First we
executed a basic procedure without any extensions at
all. The generated procedure passes straight through
the different phases of the DCP state machine. Hence,
this test procedure can be applied to any DCP slave.
Second, the base template was extended to include
more protocol tests. The generated procedure tests
the slave’s capability to deal with valid and invalid
values for configuration. Third, a comprehensive ex-
tension set including configurations for data exchange

8http://www.dcp-standard.org

was generated. However, all data PDUs for one
unique data_id are counted only once. This was done
to prevent that the same transition in the procedure
is verified multiple times. Finally, the third proce-
dure was augmented by including the heartbeat fea-
ture (Modelica Association Project DCP, 2019, p.62).

The DCP test generator was used to generate these
procedures. The DCP tester was used to execute the
test procedures. Table 1 shows the results. All test
procedures were successfully evaluated and finalized
in an accepting step. The column δ indicates the num-
ber of transitions contained in the test procedure, and
LoC refers to the lines of code in the generated test
procedure. Furthermore, the numbers of transitions
are divided into numbers of corresponding sent and
received PDUs. Based on the execution of the test
procedures, we analyzed the numbers of actually sent
and received PDUs. The last column shows the test
procedure execution time, measured on a standard
laptop device. All times measured include 4 seconds
of simulation time in soft-real-time (SRT) mode. For
the communication system, a local UDP socket-based
configuration was used.

8 Conclusion
With protocol-based verification we introduce a novel
test methodology for distributed co-simulation ac-
cording to the DCP standard. In the associated DCP
slave development process it fits between software-
and function-based verification. Continuous protocol-
based verification performed on a library designed
for standard compliance, e.g., DCPLib, can poten-
tially improve the quality of code over time. Both
DCP slave providers and integrators can benefit from
protocol-based verification, as they can shift verifi-
cation activities to earlier phases of system develop-
ment. The generation of test procedures using steps
and transitions is advantageous over linear script
based approaches. Extension sets for test procedures
provide a scalable way to include new and more spe-
cific tests. The DCP test generator and the DCP
tester are freely available under open source licenses.

The approach outlined in this paper is not in-
tended as a means for exhaustive testing. A posi-
tive test result of protocol-based verification does not
confirm that a DCP slave is fault-free and will never
violate the specification document. Instead, it pro-
vides confirmation that the DCP slave-under-test is
able to handle the actually executed sequence of sent
and received PDUs. Technology-specific aspects like
scheduling, network delay, jitter, etc. may cause non-
deterministic behaviour during protocol-based verifi-
cation.

Some extensions might also depend on the design
of the DCP slave-under-test, indicated by e.g., capa-
bility flags. So a more modular approach for selection
of extension sets could be desirable.
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PDUs sent PDUs received
Test Procedure δ LoC Specified Actual Ratio Specified Actual Ratio Time [s]

Basic (no extensions) 62 325 16 15 0.94 46 37 0.80 10.19
Configuration (no data) 1925 11173 813 673 0.83 1112 695 0.63 10.30
Configuration (including data) 2369 13201 897 722 0.80 1472 747 0.51 12.70
Heartbeat (including data) 9053 49700 2764 742 0.27 6289 773 0.12 14.63

Table 1. Test procedures, their characteristics, and application results.
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