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Abstract 
This paper introduces the Virtual Systems Interface 

(VSI) as a potential enhancement of the FMI interface 

or as a separate open source interface. The VSI interface 

is intended to simplify model exchange and dynamic 

model coupling of continuous time systems with 

discontinuities while ensuring fast, accurate and low-

cost simulations. The VSI interface uses a single 

interface for the coupling of both continuous time and 

discrete time systems. It is designed for variable time 

step integration with proper discontinuity handling and 

convergence checking. It requires no run-time licenses 

for any model packaged using the interface. 

Keywords: virtual systems interface, dynamic coupling, 

controls integration, functional mock-up interface 

1 Introduction 

Automotive and other industries are relying on the use 

of simulation models to reduce product development 

time and cost. This has generated a need for the dynamic 

coupling of both physical system models (called plant 

models in this paper) and electronic controller models. 

Furthermore, many systems are composed of 

subsystems and components produced by different 

companies so the exchange of models and their 

integration into simulation packages is required. This 

has led to the development of the Functional Mock-up 

Interface (FMI). The Function Mock-up Interface is an 

open specification which allows import and export of 

both plant and controller models into and out of any 

simulation packages that support the specification. 

There are two types FMI interfaces: model exchange 

and co-simulation. The model exchange interface is 

intended for use with models that are described by 

differential, algebraic and discrete equations with or 

without discontinuities, and the system equations are 

solved simultaneously. The co-simulation interface is 

intended for use with models where each subsystem is 

solved independently, and data is exchanged between 

subsystems only at discrete communication points. In 

general, the co-simulation interface gives accurate 

results only for systems that physically exchange 

information at discrete communication points (i.e. 

digital controllers) or have low degrees of dynamic 

coupling so that the destabilizing effect of the discrete 

communication can be made negligible by selecting a 

small enough communication interval. 

This paper focuses on the model exchange interface 

and how it can be used effectively for the dynamic 

coupling of continuous time systems with 

discontinuities. First, two example usages of the FMI 

1.0 model exchange interface are presented, and the 

issues encountered are explained. Next, some 

background for effective usage of a model exchange 

type interface is presented. Finally, a new interface is 

introduced which is intended to ensure fast, accurate and 

low cost means for dynamic coupling of continuous 

time systems with discontinuities. 

2 FMI 1.0 Model Exchange Interface 

Examples and Issues 

Two examples are presented using the FMI 1.0 model 

exchange interface. The first example is an automotive 

driveline as an example of a continuous time plant 

model with discontinuities. The second example is an 

engine dynamic model as an example of a continuous 

time behavioral controls model with discontinuities. The 

results and the issues encountered are explained. 

2.1 Example 1: Automotive Driveline 

The first example is an automotive driveline torsional 

model. This model is incorporated into several vehicle 

systems models for the evaluation of both the vehicle 

hardware and control system designs. The automotive 

driveline model contains simple torsional elements 

(springs, dampers, inertias, clutches, planetary gear sets, 

etc.). The model is run in fixed gear with the torque 

convertor open, so there are no active controls. The 

automotive driveline model is a continuous time system 

with discontinuities. The discontinuities occur due to the 

inclusion of backlash elements in the model. The 

automotive driveline model is shown in Figure 1. 

The automotive driveline model is implemented in 

Simcenter Amesim version 15.1 using Microsoft Visual 

Studio 2010 64 bit as the compiler. The Simcenter 

Amesim FMU generation tool was used to export the 

model to FMI 1.0 model exchange format and then it 

was imported back into Simcenter Amesim as an FMU 

to verify that it runs correctly. 
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The automotive driveline FMU is integrated into a 

vehicle system model as shown in Figure 2.  The 

simulation was run using the Simcenter Amesim 

standard integrator and a 1 ms print interval. The results 

for the system simulation with the automotive driveline 

included as native elements and as an FMU is shown in 

Figure 3 (results are the same and show up as one trace). 

 The FMU produced accurate results but was 10.3 

times slower than the native Simcenter Amsim model 

(24.7 seconds vs. 2.4 seconds). The slow simulation was 

determined to be caused by the generation of an implicit 

variable when connecting the FMU. This artificial 

algebraic loop can be avoided by a better handling of the 

model’s input-output dependencies when exporting the 

FMU. It should be noted that improving the 

management of these artificial algebraic loops was one 

of the motivations behind FMI 2.0. 

2.2 Example 2: Engine Dynamic Model 

The second example is an automotive gasoline engine 

dynamic model. This model is incorporated into several 

vehicle systems models for the evaluation of both the 

vehicle hardware and control system designs. The 

engine dynamic model was built in Simulink and a 3rd 

party commercial FMI generation tool was used to 

export it to FMI format so that it could be used in other 

simulation packages. The engine dynamic model is a 

continuous time system with discontinuities. The 

discontinuities occur due to the inclusion of continuous 

time rate limiter elements in the model. The engine 

dynamic model is shown in Figure 4. 

The model is implemented in Simulink version 2014a 

(64 bit). FMUs were generated using Modelon software 

version 2.6.1 and then imported into Simcenter Amesim 

version 14.2 using Microsoft Visual Studio 2010 64 bit 

as the compiler for system simulation. Even though the 

Model Exchange interface was used, it was found that 

the exported model was different depending on which 

Simulink solver was specified at the time of export. 

When a fixed time step solver (ODE4 with 1 ms time 

step) was specified the exported FMU was generated 

with each time step being a discontinuity (call this the 

Figure 1. Automotive Driveline Torsional Model (Simcenter Amesim model) 

 

Figure 3. Results for Native Simcenter Amesim Model vs. Simcenter Amesim Model with FMU  

Figure 2. Automotive Driveline FMU integrated into a Vehicle System Model (Simcenter Amesim model)  
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FMU with time-based discontinuities). When a variable 

time step solver (ODE45 using a relative tolerance of 

1e-3) was specified the exported FMU was generated 

without each time step being a discontinuity but 

including event-based discontinuities (call this the FMU 

with event-based discontinuities). For comparison, a 

Simcenter Amesim equivalent model was created so the 

results could be compared. The results are shown in 

Figure 5. 

The simulation was run using the Simcenter Amesim 

standard integrator and a 1 ms print interval. The FMU 

with time-based discontinuities produced accurate 

results while the FMU with event-based discontinuities 

did not. The FMU with time-based discontinuities was 

65 times slower than the native Simcenter Amesim 

model (1733 seconds vs. 26 seconds). The FMU with 

event-based discontinuities was 1.3 times slower than 

the native Simcenter Amesim model (33 seconds vs. 26 

seconds). The slow simulation speed of the FMU with 

time-based discontinuities was due to the creation of 

discontinuities at each time point corresponding to the 

Simulink model’s originally specified integration time 

step (1 ms). The inaccuracy of the FMU with event-

based discontinuities was due to incorrect handing of the 

model’s real discontinuity points.  

2.3 FMI Model Exchange 1.0 Interface 

Issues 

The learnings from the two examples was that the FMI 

1.0 Model Exchange interface does not contain enough 

information on how the internal equations, discontinuity 

handling, and solution algorithms should be 

implemented in order to ensure that fast and accurate 

FMUs are generated. 

This paper proposes a new (extended) interface 

intended to address these issues. The new interface 

combines Virtual Systems in-the-Loop (VSiL) 

technology developed jointly by General Motors with 

the support of LMS (now Siemens Digital Industries 

Software) and Autonomie technology developed by 

Argonne National Labs. These two technologies are 

described next. 

3 Virtual Systems in-the-Loop (VSiL) 

Virtual Systems in-the-Loop (VSiL) has been used at 

General Motors since 2005 (Glaue, 2006). This 

Figure 4. Engine Dynamic Model (Simulink Model) 
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methodology allows electronic control units (ECUs) to 

be integrated with Simcenter Amesim plant models and 

run as a single executable. The Simcenter Amesim plant 

model is modeled using standard and custom sub models 

based on Bond Graph (powerflow) methodology 

(Rosenberg and Karnopp, 1983). This approach defines 

causality between the powerflow variables which 

determines how the equations are assembled and solved. 

The controller model is built using the actual software 

source code corresponding to the application layer. The 

application layer includes all the control algorithms and 

calibrations which are independent of the actual 

controller hardware. A hardware input/output (HWIO) 

layer is built to replace the actual controller hardware 

specific software which includes all other software code 

needed to run the ECU, but which is not included in the 

application software code (i.e. the hardware input and 

output drivers, task scheduler (RTOS), CAN messaging, 

etc.). The application code is compiled into an 

executable file which connects to the plant model thru 

the glue layer. The glue layer includes method 

declarations for all the external methods and variables 

referenced by the application code and any default 

definitions used when only partial ECU functionality is 

being analyzed. A set of Simcenter Amesim custom 

submodels is created to implement the sensors, 

actuators, scheduler, CAN messaging and peek-inside-

ECU functionality. An example engine camshaft phaser 

VSiL controller model is shown in Figure 6.  

Sensors read continuous time signals in engineering 

units from the plant model and convert these into 

controller variables defined by the HWIO interfaces. 

Actuators take controller variables defined by the 

HWIO interfaces and convert them into continuous time 

signals in engineering units which are sent to the plant 

model. The scheduler determines when controller 

methods are executed including controller initialization 

and the updating of a limited set of calibrations. The 

CAN messaging sub models handle inter-controller 

communication signals. The peek-inside-ECU sub 

models expose a limited set of internal ECU variables 

for printing and plotting. 

Figure 6. Engine camshaft phaser VSiL controller 

(Simcenter Amesim model) 

Figure 5. Results for the Engine Dynamic Model Represented Using FMI 1.0 Model Exchange 
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VSiL is intended for hardware focused analyses 

where the controls are treated as a black-box with only 

a limited number of controller functionalities (rings), 

calibrations and internal variables are of interest. Other 

approaches are used for fully functional software in-the-

Loop (SIL) models where all functionality of the 

controller is of interest. 

4 Autonomie 

Autonomie is a software package primarily used to 

analyze vehicle performance and fuel economy 

(Halbach et al, 2010). Autonomie is based on Bond 

Graph methodology (powerflow) concepts but is 

implemented using a signal flow approach. This makes 

it easy to connect plant models to controller models 

which are also generally implemented using a signal 

flow approach. Autonomie uses MATLAB/Simulink as 

the master simulator and any external systems can be 

integrated as S-functions. The S-Function interface has 

both a standard (model exchange) and co-simulation 

interface type. The system level interface used in 

Autonomie is shown in Figure 7. 

The key feature of the Autonomie interface is that it 

separates the power flow variables from the non-

powerflow variables. This concept will be used in the 

VSI Interface and its importance will be explained later 

in this paper. 

5 Fundamental Problem with Co-

simulation Type Interfaces 

Before introducing the new interface, we will explain 

the fundamental problem with co-simulation type 

interfaces which led to the development of the Virtual 

Systems Interface. First, consider the operation of a real 

electronic control unit (ECU) and how data is logged. 

This is illustrated in Figure 8. 

The current time stamp is used for all variables 

updated during the execution of controller code that is 

run as a result of a task initiator. This makes it look like 

these variables are updated at the same time. In reality, 

there is a time delay between the task initiator and the 

updated variables. 

For the co-simulation interface (parallel execution 

and fixed time step communication) the execution is 

done as shown in Figure 9. 

The inputs at the previous time step (tn-1) are used to 

calculate the outputs at the current time step (tn). Then, 

the inputs at the current time step (tn) are updated. We 

will call this Execution Order 1: 

Step Forward > Update Outputs > Update Inputs 

A different execution order can also be used which 

updates the inputs at the current time step (tn) first and 

then calculates the outputs at the current time step (tn). 

We will call this Execution Order 0: 

Update Inputs > Step Forward > Update Outputs 

Execution order 0 requires sequential (serial) 

execution of the co-simulating models. During testing of 

a two-model co-simulation system (one plant and one 

controller model), it was found that to match the closed 

loop simulation results, execution order 1 was needed 

and to match open loop simulation results, execution 

order 0 was needed. This was a surprising result which 

Figure 7. System Level Interface used in Autonomie 

Figure 8. ECU data logging schematic 
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led to an extensive investigation into co-simulation data 

exchange and discontinuity handling. The result of this 

investigation was that to accurately predict the dynamics 

of coupled systems (at all coupling strengths and at all 

time steps) a simultaneous solution of the equations of 

motion is needed with proper discontinuity handling. 

The lack of this feature is the fundamental problem with 

co-simulation type interfaces and was the motivation for 

the development of the Virtual Systems Interface.  

6 Virtual Systems Interface 

Execution Schematic 

The VSI interface has simultaneous solution of the 

equations of motion and proper discontinuity handling. 

This is shown in Figure 10. 

Discrete systems (like ECUs) are treated as 

continuous time systems with discontinuities. The VSI 

interface does not have the sensing and controls delays 

that are present in actual ECUs (compare Figure 8 and 

Figure 10). These delays are either neglected or can be 

added to the sensing and/or actuation part of the plant 

model (i.e. as continuous time delays or first order lags). 

These delays are often tuned using current or voltage 

signals measured directly on the physical wiring of the 

ECU (not using the ECU recorded variables which do 

not contain these delays – see Figure 8). The VSI 

interface is functionally equivalent to the VSiL 

approach previously described.  

7 Virtual Systems Interface 

Description 

The Virtual Systems Interface (VSI) is being introduced 

as a potential enhancement of the FMI interface or as a 

separate open source interface intended to simplify 

model exchange and dynamic model coupling while 

ensuring fast, accurate and low-cost simulations. The 

enablers for these features are: 

1. Single interface for coupling both continuous time 

and discrete time systems (for simplicity) 

2. Designed for variable time step integration with 

proper discontinuity handling and convergence 

checking (for fast and accurate results) 

3. Requires no run-time licenses for any model 

packaged using the interface (for low cost) 

The proposed Virtual Systems Interface (VSI) is 

shown in Figure 11. 

 

Figure 11. VSI interface Format 

Figure 10. VSI interface execution schematic 

Figure 9. Co-simulation execution schematic  
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The VSI interface is similar to the Autonomie 

interface except that the location of the power flow ports 

is revised to have the I/O relative to the previous system 

and the I/O relative to the next system to be on the same 

sides. This is done to allow a more direct connection 

between upstream and downstream models and easier 

identification of the power flow signal pairs and 

corresponding causality. The non-powerflow variables 

are located above the VSI Model Name and the 

powerflow variables are located below the VSI Model 

Name. The inputs and outputs are numbered top to 

bottom as shown. 

To simplify the connection to other models, all of the 

I/O signals are double precision continuous time 

variables. Any conversion to discrete time variables is 

done internal to the interface. 

The I/O signals in section 1 and 4 of the interface are 

used for non-powerflow variables. Both the inputs and 

outputs are piecewise continuous, and the interface 

includes a mechanism to report the location of 

discontinuities so that these are handled correctly. There 

can be state variables that are integrated internally 

and/or state variables that are sent to the external 

integrator for integration. 

The I/O signals in section 2, 3, 5 and 6 of the interface 

are used for the physical coupling of the models using 

the power flow concept from Bond Graph methodology. 

The power flow approach requires that all signals be 

done in pairs where one signal is an effort type variable 

(force, torque, voltage, pressure, thermodynamic 

temperature, etc.) and the other signal is a flow type 

variable (linear velocity, angular velocity, current, 

volume flow rate, entropy flow rate, etc.). The 

multiplication of the two paired signals give the input or 

output power. The power flow signals from Section 2 

and 3 of the interface define the input power to the 

model. The power flow signals from Section 5 and 6 of 

the interface define the output power from the model. 

The sign convention for the power flow signals is 

defined as shown below: 

Output Power = Input Power + Internal Power 

Generation 

Internal power generation is negative for internal 

power loss. Since Bond Graph methodology is used, 

these signals produce ordinary differential equations 

(ODEs) with explicit state variables only. The interface 

includes a mechanism to report the location of 

discontinuities to the external integrator so that these are 

handled correctly. 

Both continuous time and discrete time systems can 

be modeled using the VSI interface. A discrete time 

system is defined as any system that includes one or 

more discrete time components. 

8 Master Algorithm 

The VSI interface tries to re-use as much of the FMI 

nomenclature and programming specifications as 

possible. When a model is compiled using the VSI 

interface it is called a VSU (Virtual Systems Unit). The 

VSI interface is designed to use a single master 

algorithm that implements variable time step 

communication and/or integration. The master solver 

high level flow chart is shown in Figure 12. 

A variable time step master algorithm was selected to 

ensure the fast and accurate solution of the system 

equations. The VSI interface is not intended for use with 

fixed time step communication/integration algorithms 

as these do not handle discontinuities properly. 

The VSI interface requires that all components of the 

system (including each VSU) be continuous time 

systems with or without discontinuities. Any discrete 

time elements must be encapsulated inside the VSI 

interface along with their corresponding analog-to-

digital and digital-to-analog convertors. This approach 

is specifically done so that digital controllers can be 

Figure 12. VSI Interface Master Solver High Level Flow Chart 
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packaged into VSUs and coupled to continuously time 

plant models using physical signals corresponding to 

force, torque, voltage, pressure, thermodynamic 

temperature, linear velocity, angular velocity, current, 

volume flow rate, entropy flow rate etc. as opposed to 

the sensed electrical versions of these signals. This 

approach allows the HWIO layer of the digital controller 

to be implemented in varying levels of fidelity inside the 

VSU without having to change the plant model 

interface. Low fidelity HWIO layers would be typical of 

ideal sensing (no errors). Medium fidelity HWIO layers 

would be typical of sensing with empirical models of the 

sensing errors (bias errors, random errors, first order 

delays and lags, etc.). High fidelity HWIO layers would 

be typical of physics-based models of the actual sensors 

and actuators with state variables that are either solved 

internally or externally (or combination of both). 

To be considered compliant with the VSI 

specification, the master solver must implement the 

flow chart shown in Figure 12 and provide a PECE 

integrator based on Heun’s method (Dobrushkin, 2014) 

as a user selectable option. Having a common integrator 

option is done to provide a means to validate and 

compare different venders’ master solvers. It is allowed 

and encouraged that each venders’ simulators contain 

more advanced integration options. It is expected that 

some systems will not be able to be solved with some 

integrator types so having either a manual or automatic 

selection of the integrator is desired. This will 

automatically encourage venders to create and optimize 

their master solvers so they can effectively handle a 

wide variety of equations types. Since the master solvers 

are expected to contain proprietary implementations, 

licensing of the master simulator is allowed. 

The VSI interface is designed to produce the same set 

of ODEs regardless of which external integrator (and 

simulation environment) is used. It is also expected that 

the same results will be generated regardless of which 

external integrator (and simulation environment) is used 

(provided convergence at each time step). This was not 

the case with FMI 1.0 model exchange interface. 

The required features of the VSI interface are shown 

in Table 1 along with a comparison to FMI 2.0. 

Table 1. Required Features of VSI 

 
The FMI 2.0 specification already contains some of 

the VSI interface features required. Thus, the VSI 

interface can be thought of as an abstract super-class 

(objective oriented programming terminology) of the 

FMI interface. 

9 VSI Interface Examples 

Five examples are presented to illustrate typical use case 

types for the VSI interface. These examples are described 

in Table 2. 

9.1 Example 1: Translational Mass 

The first example is a one degree of freedom 

translational mass with power flow connections on both 

sides. This shows how simple components can be 

implement using the VSI interface. The free-body 

diagram of the translational mass is shown in Figure 13. 

The representation using the VSI interface is shown in 

Figure 14.  

 

Figure 13. Free Body Diagram of a 1- DOF 

Translational Mass 

Figure 14. 1-DOF Translational Mass VSI Interface 

block 

The state variable V is integrated using the external 

integrator using the supplied initial condition and state 

variable derivative value. Causality of the signals is 

clearly shown by the I/O nature of the signals. Forces 

are imposed on the mass and velocities are returned. 

Input power is F1 times V1 and output power is F2 times 

V2. Acceleration of the mass was implemented as an 

output signal, but it could have been kept as an internal 

variable used for printing purposes only. 

9.2 Example 2: Dynamic Rate Limiter 

The second example is a dynamic rate limiter. This is an 

example of a continuous time system with 

discontinuities in the state variable derivative and no 

power flow signals. The functional description of the 

dynamic rate limiter is shown in Figure 15. The 

Table 2. VSI Interface Examples 

Introducing the Virtual Systems Interface for Dynamic Coupling of Continuous Time Systems with
Discontinuities

20 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp2017413



 

 

representation using the VSI interface is shown in 

Figure 16.  

 

Figure 15. Functional Description of the Dynamic Rate 

Limiter 

 

Figure 16. Dynamic Rate Limiter VSI Interface Block 

The state variable Out is integrated using the external 

integrator using the supplied initial condition and state 

variable derivative value. A discontinuity is reported to 

the external integrator whenever the state variable 

derivative is discontinuous, and the external integrator 

takes the proper action. The numerical method used to 

identify the discontinuity point (time) can be any 

suitable type but the time corresponding to the 

discontinuity point must be between the last converged 

time step and the time step which identified the 

discontinuity. One approach of discontinuity handling is 

to linearly extrapolate the discontinuous equation and 

interpolate the time corresponding to the discontinuity 

as shown in Figure 17 for the dynamic rate limiter. The 

FMU must report only real discontinuities to ensure fast 

execution.  

 

Figure 17. Discontinuity Handling Example 

9.3 Example 3: Automotive Driveline 

The third example is an automotive driveline torsional 

model. This is an example of a continuous time system 

with discontinuities and power flow signals. The 

automotive driveline torsional model was previously 

shown in Figure 1. The representation using the VSI 

interface is shown in Figure 18. 

 

Figure 18. Automotive Driveline VSI Interface Block 

The state variables are integrated using the external 

integrator using the supplied initial conditions and state 

variable derivative values. Causality of the signals is 

clearly shown by the I/O nature of the signals. The 

automotive driveline is modeled in a fixed gear state so 

there are no control signals sent to or from the model.  

9.4 Example 4: Engine Dynamic Model 

The forth example is an engine dynamic model. This is 

an example of a continuous time system with 

discontinuities and no power flow signals. The engine 

dynamic model was shown previously in Figure 4. The 

representation using the VSI interface is shown in 

Figure 19. 

 

Figure 19. Engine Dynamic Model VSI Interface 

Block 

The engine dynamic model does not have any power 

flow signal pairs identified in the interface (no signals 

below the VSI Interface name), but this does not mean 

there is no power flow. Any system with inputs and 

outputs can produce power flow bonds either 

intentionally or unintentionally. The engine dynamic 

model is intended to provide engine dynamic torque to 

a downstream system with the downstream system 

providing the engine speed as feedback. Thus, there is a 

hidden power flow in this interface. This occurs because 

of the implementation is done using a signal flow model 

and not a power flow model. Generally, the same 

physics can be represented in either a signal flow model 

or a power flow model and the VSI interface can handle 

either model type and get the same results provided that 

all the state variables in the non-power flow part of the 

interface are exposed to the external integrator. This is 

the case for the Engine Dynamic Model shown in this 

section.  

9.5 Example 5: Engine Camshaft Phaser 

VSiL Controller 

The fifth example is an engine camshaft phaser VSiL 

controller. This is an example of a discrete time system 

with no power flow signals. The VSiL controller model 

was previously shown in Figure 6. The representation 

using the VSI interface is shown in Figure 20. 
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Figure 20. Engine Camshaft Phaser VSIL controller 

VSI interface block 

There are no external or internal state variables to 

integrate. The camshaft phaser VSIL controller reads the 

input signals and calculates the output signals whenever 

the controller detects a time based or event-based task 

initiator (trigger). The external integrator is notified of 

each task initiator as a discontinuity point and takes the 

proper action. The camshaft phaser controller ring does 

not use any signals from other controllers so no CAN 

(Controller Area Network) communication signals are 

included in the VSiL controller.  

10 Connecting VSI Interface Models 

VSI interface models can be connected to other signal 

flow models simply by connecting the input and output 

signals. VSI interface models can be connected to power 

flow models using ether sensor/actuator pairs or signals 

to power flow elements as shown in Figure 21. 

 

Figure 21. Connection of VSI interface Models 

11 Algebraic Loops and Implicit State 

Variables 

The VSI interface is intended to produce the same set of 

equations as the source models, thus if the source model 

when combined into a feedback system produces 

algebraic loops or implicit state variables, the VSU 

model will likewise produce algebraic loops or implicit 

state variables. Conversely, if the source model when 

combined into a feedback system does not produce 

algebraic loops or implicit state variables, the VSU 

model will likewise not produce algebraic loops or 

implicit state variables. 

The VSI interface will not solve systems containing 

algebraic loops or implicit state variables. The VSI 

interface is designed to handle systems with ODEs (and 

possibly DAEs in the future).  

12 Why the VSI interface Requires No 

Run-Time Licenses 

The reason why the VSI Interface requires no run-time 

licenses for any model packaged using the interface is 

so that system simulation cost will be comparable to 

single component and/or sub-system simulation cost. 

This also ensures that all models packaged with the VSI 

interface will run in any simulation package that 

implements the interface. Software venders can and do 

charge extra for the FMU generation feature and this is 

still allowed in the VSI specification.  

13 Application Areas for VSI Interface 

The intended application areas for the VSI interface are 

shown in Table 3.  

Table 3. VSI Intended Application Areas 

 

14 Conclusions 

The VSI interface is presented in this paper as a high-

level overview and will require additional work to 

formalize its content into a usable specification. Future 

development of the VSI interface will be dependent on 

the feedback from the FMI developers and the model 

coupling and co-simulation user community as to 

whether these types of enhancements are of significant 

value for the type of simulations being done for product 

development in their specific industries. 
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