

Introducing the Virtual Systems Interface for Dynamic Coupling of

Continuous Time Systems with Discontinuities

Jeffrey Morgan1 Bruno Loyer2
1General Motors, United States of America, jeff.morgan@gm.com

2Siemens Digital Industries Software, France, bruno.loyer@siemens.com

Abstract
This paper introduces the Virtual Systems Interface

(VSI) as a potential enhancement of the FMI interface

or as a separate open source interface. The VSI interface

is intended to simplify model exchange and dynamic

model coupling of continuous time systems with

discontinuities while ensuring fast, accurate and low-

cost simulations. The VSI interface uses a single

interface for the coupling of both continuous time and

discrete time systems. It is designed for variable time

step integration with proper discontinuity handling and

convergence checking. It requires no run-time licenses

for any model packaged using the interface.

Keywords: virtual systems interface, dynamic coupling,

controls integration, functional mock-up interface

1 Introduction

Automotive and other industries are relying on the use

of simulation models to reduce product development

time and cost. This has generated a need for the dynamic

coupling of both physical system models (called plant

models in this paper) and electronic controller models.

Furthermore, many systems are composed of

subsystems and components produced by different

companies so the exchange of models and their

integration into simulation packages is required. This

has led to the development of the Functional Mock-up

Interface (FMI). The Function Mock-up Interface is an

open specification which allows import and export of

both plant and controller models into and out of any

simulation packages that support the specification.

There are two types FMI interfaces: model exchange

and co-simulation. The model exchange interface is

intended for use with models that are described by

differential, algebraic and discrete equations with or

without discontinuities, and the system equations are

solved simultaneously. The co-simulation interface is

intended for use with models where each subsystem is

solved independently, and data is exchanged between

subsystems only at discrete communication points. In

general, the co-simulation interface gives accurate

results only for systems that physically exchange

information at discrete communication points (i.e.

digital controllers) or have low degrees of dynamic

coupling so that the destabilizing effect of the discrete

communication can be made negligible by selecting a

small enough communication interval.

This paper focuses on the model exchange interface

and how it can be used effectively for the dynamic

coupling of continuous time systems with

discontinuities. First, two example usages of the FMI

1.0 model exchange interface are presented, and the

issues encountered are explained. Next, some

background for effective usage of a model exchange

type interface is presented. Finally, a new interface is

introduced which is intended to ensure fast, accurate and

low cost means for dynamic coupling of continuous

time systems with discontinuities.

2 FMI 1.0 Model Exchange Interface

Examples and Issues

Two examples are presented using the FMI 1.0 model

exchange interface. The first example is an automotive

driveline as an example of a continuous time plant

model with discontinuities. The second example is an

engine dynamic model as an example of a continuous

time behavioral controls model with discontinuities. The

results and the issues encountered are explained.

2.1 Example 1: Automotive Driveline

The first example is an automotive driveline torsional

model. This model is incorporated into several vehicle

systems models for the evaluation of both the vehicle

hardware and control system designs. The automotive

driveline model contains simple torsional elements

(springs, dampers, inertias, clutches, planetary gear sets,

etc.). The model is run in fixed gear with the torque

convertor open, so there are no active controls. The

automotive driveline model is a continuous time system

with discontinuities. The discontinuities occur due to the

inclusion of backlash elements in the model. The

automotive driveline model is shown in Figure 1.

The automotive driveline model is implemented in

Simcenter Amesim version 15.1 using Microsoft Visual

Studio 2010 64 bit as the compiler. The Simcenter

Amesim FMU generation tool was used to export the

model to FMI 1.0 model exchange format and then it

was imported back into Simcenter Amesim as an FMU

to verify that it runs correctly.

DOI
10.3384/ecp2017413

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

13

The automotive driveline FMU is integrated into a

vehicle system model as shown in Figure 2. The

simulation was run using the Simcenter Amesim

standard integrator and a 1 ms print interval. The results

for the system simulation with the automotive driveline

included as native elements and as an FMU is shown in

Figure 3 (results are the same and show up as one trace).

 The FMU produced accurate results but was 10.3

times slower than the native Simcenter Amsim model

(24.7 seconds vs. 2.4 seconds). The slow simulation was

determined to be caused by the generation of an implicit

variable when connecting the FMU. This artificial

algebraic loop can be avoided by a better handling of the

model’s input-output dependencies when exporting the

FMU. It should be noted that improving the

management of these artificial algebraic loops was one

of the motivations behind FMI 2.0.

2.2 Example 2: Engine Dynamic Model

The second example is an automotive gasoline engine

dynamic model. This model is incorporated into several

vehicle systems models for the evaluation of both the

vehicle hardware and control system designs. The

engine dynamic model was built in Simulink and a 3rd

party commercial FMI generation tool was used to

export it to FMI format so that it could be used in other

simulation packages. The engine dynamic model is a

continuous time system with discontinuities. The

discontinuities occur due to the inclusion of continuous

time rate limiter elements in the model. The engine

dynamic model is shown in Figure 4.

The model is implemented in Simulink version 2014a

(64 bit). FMUs were generated using Modelon software

version 2.6.1 and then imported into Simcenter Amesim

version 14.2 using Microsoft Visual Studio 2010 64 bit

as the compiler for system simulation. Even though the

Model Exchange interface was used, it was found that

the exported model was different depending on which

Simulink solver was specified at the time of export.

When a fixed time step solver (ODE4 with 1 ms time

step) was specified the exported FMU was generated

with each time step being a discontinuity (call this the

Figure 1. Automotive Driveline Torsional Model (Simcenter Amesim model)

Figure 3. Results for Native Simcenter Amesim Model vs. Simcenter Amesim Model with FMU

Figure 2. Automotive Driveline FMU integrated into a Vehicle System Model (Simcenter Amesim model)

Introducing the Virtual Systems Interface for Dynamic Coupling of Continuous Time Systems with
Discontinuities

14 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp2017413

FMU with time-based discontinuities). When a variable

time step solver (ODE45 using a relative tolerance of

1e-3) was specified the exported FMU was generated

without each time step being a discontinuity but

including event-based discontinuities (call this the FMU

with event-based discontinuities). For comparison, a

Simcenter Amesim equivalent model was created so the

results could be compared. The results are shown in

Figure 5.

The simulation was run using the Simcenter Amesim

standard integrator and a 1 ms print interval. The FMU

with time-based discontinuities produced accurate

results while the FMU with event-based discontinuities

did not. The FMU with time-based discontinuities was

65 times slower than the native Simcenter Amesim

model (1733 seconds vs. 26 seconds). The FMU with

event-based discontinuities was 1.3 times slower than

the native Simcenter Amesim model (33 seconds vs. 26

seconds). The slow simulation speed of the FMU with

time-based discontinuities was due to the creation of

discontinuities at each time point corresponding to the

Simulink model’s originally specified integration time

step (1 ms). The inaccuracy of the FMU with event-

based discontinuities was due to incorrect handing of the

model’s real discontinuity points.

2.3 FMI Model Exchange 1.0 Interface

Issues

The learnings from the two examples was that the FMI

1.0 Model Exchange interface does not contain enough

information on how the internal equations, discontinuity

handling, and solution algorithms should be

implemented in order to ensure that fast and accurate

FMUs are generated.

This paper proposes a new (extended) interface

intended to address these issues. The new interface

combines Virtual Systems in-the-Loop (VSiL)

technology developed jointly by General Motors with

the support of LMS (now Siemens Digital Industries

Software) and Autonomie technology developed by

Argonne National Labs. These two technologies are

described next.

3 Virtual Systems in-the-Loop (VSiL)

Virtual Systems in-the-Loop (VSiL) has been used at

General Motors since 2005 (Glaue, 2006). This

Figure 4. Engine Dynamic Model (Simulink Model)

Session 1: Mechanical Systems

DOI
10.3384/ecp2017413

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

15

methodology allows electronic control units (ECUs) to

be integrated with Simcenter Amesim plant models and

run as a single executable. The Simcenter Amesim plant

model is modeled using standard and custom sub models

based on Bond Graph (powerflow) methodology

(Rosenberg and Karnopp, 1983). This approach defines

causality between the powerflow variables which

determines how the equations are assembled and solved.

The controller model is built using the actual software

source code corresponding to the application layer. The

application layer includes all the control algorithms and

calibrations which are independent of the actual

controller hardware. A hardware input/output (HWIO)

layer is built to replace the actual controller hardware

specific software which includes all other software code

needed to run the ECU, but which is not included in the

application software code (i.e. the hardware input and

output drivers, task scheduler (RTOS), CAN messaging,

etc.). The application code is compiled into an

executable file which connects to the plant model thru

the glue layer. The glue layer includes method

declarations for all the external methods and variables

referenced by the application code and any default

definitions used when only partial ECU functionality is

being analyzed. A set of Simcenter Amesim custom

submodels is created to implement the sensors,

actuators, scheduler, CAN messaging and peek-inside-

ECU functionality. An example engine camshaft phaser

VSiL controller model is shown in Figure 6.

Sensors read continuous time signals in engineering

units from the plant model and convert these into

controller variables defined by the HWIO interfaces.

Actuators take controller variables defined by the

HWIO interfaces and convert them into continuous time

signals in engineering units which are sent to the plant

model. The scheduler determines when controller

methods are executed including controller initialization

and the updating of a limited set of calibrations. The

CAN messaging sub models handle inter-controller

communication signals. The peek-inside-ECU sub

models expose a limited set of internal ECU variables

for printing and plotting.

Figure 6. Engine camshaft phaser VSiL controller

(Simcenter Amesim model)

Figure 5. Results for the Engine Dynamic Model Represented Using FMI 1.0 Model Exchange

Introducing the Virtual Systems Interface for Dynamic Coupling of Continuous Time Systems with
Discontinuities

16 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp2017413

VSiL is intended for hardware focused analyses

where the controls are treated as a black-box with only

a limited number of controller functionalities (rings),

calibrations and internal variables are of interest. Other

approaches are used for fully functional software in-the-

Loop (SIL) models where all functionality of the

controller is of interest.

4 Autonomie

Autonomie is a software package primarily used to

analyze vehicle performance and fuel economy

(Halbach et al, 2010). Autonomie is based on Bond

Graph methodology (powerflow) concepts but is

implemented using a signal flow approach. This makes

it easy to connect plant models to controller models

which are also generally implemented using a signal

flow approach. Autonomie uses MATLAB/Simulink as

the master simulator and any external systems can be

integrated as S-functions. The S-Function interface has

both a standard (model exchange) and co-simulation

interface type. The system level interface used in

Autonomie is shown in Figure 7.

The key feature of the Autonomie interface is that it

separates the power flow variables from the non-

powerflow variables. This concept will be used in the

VSI Interface and its importance will be explained later

in this paper.

5 Fundamental Problem with Co-

simulation Type Interfaces

Before introducing the new interface, we will explain

the fundamental problem with co-simulation type

interfaces which led to the development of the Virtual

Systems Interface. First, consider the operation of a real

electronic control unit (ECU) and how data is logged.

This is illustrated in Figure 8.

The current time stamp is used for all variables

updated during the execution of controller code that is

run as a result of a task initiator. This makes it look like

these variables are updated at the same time. In reality,

there is a time delay between the task initiator and the

updated variables.

For the co-simulation interface (parallel execution

and fixed time step communication) the execution is

done as shown in Figure 9.

The inputs at the previous time step (tn-1) are used to

calculate the outputs at the current time step (tn). Then,

the inputs at the current time step (tn) are updated. We

will call this Execution Order 1:

Step Forward > Update Outputs > Update Inputs

A different execution order can also be used which

updates the inputs at the current time step (tn) first and

then calculates the outputs at the current time step (tn).

We will call this Execution Order 0:

Update Inputs > Step Forward > Update Outputs

Execution order 0 requires sequential (serial)

execution of the co-simulating models. During testing of

a two-model co-simulation system (one plant and one

controller model), it was found that to match the closed

loop simulation results, execution order 1 was needed

and to match open loop simulation results, execution

order 0 was needed. This was a surprising result which

Figure 7. System Level Interface used in Autonomie

Figure 8. ECU data logging schematic

Session 1: Mechanical Systems

DOI
10.3384/ecp2017413

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

17

led to an extensive investigation into co-simulation data

exchange and discontinuity handling. The result of this

investigation was that to accurately predict the dynamics

of coupled systems (at all coupling strengths and at all

time steps) a simultaneous solution of the equations of

motion is needed with proper discontinuity handling.

The lack of this feature is the fundamental problem with

co-simulation type interfaces and was the motivation for

the development of the Virtual Systems Interface.

6 Virtual Systems Interface

Execution Schematic

The VSI interface has simultaneous solution of the

equations of motion and proper discontinuity handling.

This is shown in Figure 10.

Discrete systems (like ECUs) are treated as

continuous time systems with discontinuities. The VSI

interface does not have the sensing and controls delays

that are present in actual ECUs (compare Figure 8 and

Figure 10). These delays are either neglected or can be

added to the sensing and/or actuation part of the plant

model (i.e. as continuous time delays or first order lags).

These delays are often tuned using current or voltage

signals measured directly on the physical wiring of the

ECU (not using the ECU recorded variables which do

not contain these delays – see Figure 8). The VSI

interface is functionally equivalent to the VSiL

approach previously described.

7 Virtual Systems Interface

Description

The Virtual Systems Interface (VSI) is being introduced

as a potential enhancement of the FMI interface or as a

separate open source interface intended to simplify

model exchange and dynamic model coupling while

ensuring fast, accurate and low-cost simulations. The

enablers for these features are:

1. Single interface for coupling both continuous time

and discrete time systems (for simplicity)

2. Designed for variable time step integration with

proper discontinuity handling and convergence

checking (for fast and accurate results)

3. Requires no run-time licenses for any model

packaged using the interface (for low cost)

The proposed Virtual Systems Interface (VSI) is

shown in Figure 11.

Figure 11. VSI interface Format

Figure 10. VSI interface execution schematic

Figure 9. Co-simulation execution schematic

Introducing the Virtual Systems Interface for Dynamic Coupling of Continuous Time Systems with
Discontinuities

18 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp2017413

The VSI interface is similar to the Autonomie

interface except that the location of the power flow ports

is revised to have the I/O relative to the previous system

and the I/O relative to the next system to be on the same

sides. This is done to allow a more direct connection

between upstream and downstream models and easier

identification of the power flow signal pairs and

corresponding causality. The non-powerflow variables

are located above the VSI Model Name and the

powerflow variables are located below the VSI Model

Name. The inputs and outputs are numbered top to

bottom as shown.

To simplify the connection to other models, all of the

I/O signals are double precision continuous time

variables. Any conversion to discrete time variables is

done internal to the interface.

The I/O signals in section 1 and 4 of the interface are

used for non-powerflow variables. Both the inputs and

outputs are piecewise continuous, and the interface

includes a mechanism to report the location of

discontinuities so that these are handled correctly. There

can be state variables that are integrated internally

and/or state variables that are sent to the external

integrator for integration.

The I/O signals in section 2, 3, 5 and 6 of the interface

are used for the physical coupling of the models using

the power flow concept from Bond Graph methodology.

The power flow approach requires that all signals be

done in pairs where one signal is an effort type variable

(force, torque, voltage, pressure, thermodynamic

temperature, etc.) and the other signal is a flow type

variable (linear velocity, angular velocity, current,

volume flow rate, entropy flow rate, etc.). The

multiplication of the two paired signals give the input or

output power. The power flow signals from Section 2

and 3 of the interface define the input power to the

model. The power flow signals from Section 5 and 6 of

the interface define the output power from the model.

The sign convention for the power flow signals is

defined as shown below:

Output Power = Input Power + Internal Power

Generation

Internal power generation is negative for internal

power loss. Since Bond Graph methodology is used,

these signals produce ordinary differential equations

(ODEs) with explicit state variables only. The interface

includes a mechanism to report the location of

discontinuities to the external integrator so that these are

handled correctly.

Both continuous time and discrete time systems can

be modeled using the VSI interface. A discrete time

system is defined as any system that includes one or

more discrete time components.

8 Master Algorithm

The VSI interface tries to re-use as much of the FMI

nomenclature and programming specifications as

possible. When a model is compiled using the VSI

interface it is called a VSU (Virtual Systems Unit). The

VSI interface is designed to use a single master

algorithm that implements variable time step

communication and/or integration. The master solver

high level flow chart is shown in Figure 12.

A variable time step master algorithm was selected to

ensure the fast and accurate solution of the system

equations. The VSI interface is not intended for use with

fixed time step communication/integration algorithms

as these do not handle discontinuities properly.

The VSI interface requires that all components of the

system (including each VSU) be continuous time

systems with or without discontinuities. Any discrete

time elements must be encapsulated inside the VSI

interface along with their corresponding analog-to-

digital and digital-to-analog convertors. This approach

is specifically done so that digital controllers can be

Figure 12. VSI Interface Master Solver High Level Flow Chart

Session 1: Mechanical Systems

DOI
10.3384/ecp2017413

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

19

packaged into VSUs and coupled to continuously time

plant models using physical signals corresponding to

force, torque, voltage, pressure, thermodynamic

temperature, linear velocity, angular velocity, current,

volume flow rate, entropy flow rate etc. as opposed to

the sensed electrical versions of these signals. This

approach allows the HWIO layer of the digital controller

to be implemented in varying levels of fidelity inside the

VSU without having to change the plant model

interface. Low fidelity HWIO layers would be typical of

ideal sensing (no errors). Medium fidelity HWIO layers

would be typical of sensing with empirical models of the

sensing errors (bias errors, random errors, first order

delays and lags, etc.). High fidelity HWIO layers would

be typical of physics-based models of the actual sensors

and actuators with state variables that are either solved

internally or externally (or combination of both).

To be considered compliant with the VSI

specification, the master solver must implement the

flow chart shown in Figure 12 and provide a PECE

integrator based on Heun’s method (Dobrushkin, 2014)

as a user selectable option. Having a common integrator

option is done to provide a means to validate and

compare different venders’ master solvers. It is allowed

and encouraged that each venders’ simulators contain

more advanced integration options. It is expected that

some systems will not be able to be solved with some

integrator types so having either a manual or automatic

selection of the integrator is desired. This will

automatically encourage venders to create and optimize

their master solvers so they can effectively handle a

wide variety of equations types. Since the master solvers

are expected to contain proprietary implementations,

licensing of the master simulator is allowed.

The VSI interface is designed to produce the same set

of ODEs regardless of which external integrator (and

simulation environment) is used. It is also expected that

the same results will be generated regardless of which

external integrator (and simulation environment) is used

(provided convergence at each time step). This was not

the case with FMI 1.0 model exchange interface.

The required features of the VSI interface are shown

in Table 1 along with a comparison to FMI 2.0.

Table 1. Required Features of VSI

The FMI 2.0 specification already contains some of

the VSI interface features required. Thus, the VSI

interface can be thought of as an abstract super-class

(objective oriented programming terminology) of the

FMI interface.

9 VSI Interface Examples

Five examples are presented to illustrate typical use case

types for the VSI interface. These examples are described

in Table 2.

9.1 Example 1: Translational Mass

The first example is a one degree of freedom

translational mass with power flow connections on both

sides. This shows how simple components can be

implement using the VSI interface. The free-body

diagram of the translational mass is shown in Figure 13.

The representation using the VSI interface is shown in

Figure 14.

Figure 13. Free Body Diagram of a 1- DOF

Translational Mass

Figure 14. 1-DOF Translational Mass VSI Interface

block

The state variable V is integrated using the external

integrator using the supplied initial condition and state

variable derivative value. Causality of the signals is

clearly shown by the I/O nature of the signals. Forces

are imposed on the mass and velocities are returned.

Input power is F1 times V1 and output power is F2 times

V2. Acceleration of the mass was implemented as an

output signal, but it could have been kept as an internal

variable used for printing purposes only.

9.2 Example 2: Dynamic Rate Limiter

The second example is a dynamic rate limiter. This is an

example of a continuous time system with

discontinuities in the state variable derivative and no

power flow signals. The functional description of the

dynamic rate limiter is shown in Figure 15. The

Table 2. VSI Interface Examples

Introducing the Virtual Systems Interface for Dynamic Coupling of Continuous Time Systems with
Discontinuities

20 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp2017413

representation using the VSI interface is shown in

Figure 16.

Figure 15. Functional Description of the Dynamic Rate

Limiter

Figure 16. Dynamic Rate Limiter VSI Interface Block

The state variable Out is integrated using the external

integrator using the supplied initial condition and state

variable derivative value. A discontinuity is reported to

the external integrator whenever the state variable

derivative is discontinuous, and the external integrator

takes the proper action. The numerical method used to

identify the discontinuity point (time) can be any

suitable type but the time corresponding to the

discontinuity point must be between the last converged

time step and the time step which identified the

discontinuity. One approach of discontinuity handling is

to linearly extrapolate the discontinuous equation and

interpolate the time corresponding to the discontinuity

as shown in Figure 17 for the dynamic rate limiter. The

FMU must report only real discontinuities to ensure fast

execution.

Figure 17. Discontinuity Handling Example

9.3 Example 3: Automotive Driveline

The third example is an automotive driveline torsional

model. This is an example of a continuous time system

with discontinuities and power flow signals. The

automotive driveline torsional model was previously

shown in Figure 1. The representation using the VSI

interface is shown in Figure 18.

Figure 18. Automotive Driveline VSI Interface Block

The state variables are integrated using the external

integrator using the supplied initial conditions and state

variable derivative values. Causality of the signals is

clearly shown by the I/O nature of the signals. The

automotive driveline is modeled in a fixed gear state so

there are no control signals sent to or from the model.

9.4 Example 4: Engine Dynamic Model

The forth example is an engine dynamic model. This is

an example of a continuous time system with

discontinuities and no power flow signals. The engine

dynamic model was shown previously in Figure 4. The

representation using the VSI interface is shown in

Figure 19.

Figure 19. Engine Dynamic Model VSI Interface

Block

The engine dynamic model does not have any power

flow signal pairs identified in the interface (no signals

below the VSI Interface name), but this does not mean

there is no power flow. Any system with inputs and

outputs can produce power flow bonds either

intentionally or unintentionally. The engine dynamic

model is intended to provide engine dynamic torque to

a downstream system with the downstream system

providing the engine speed as feedback. Thus, there is a

hidden power flow in this interface. This occurs because

of the implementation is done using a signal flow model

and not a power flow model. Generally, the same

physics can be represented in either a signal flow model

or a power flow model and the VSI interface can handle

either model type and get the same results provided that

all the state variables in the non-power flow part of the

interface are exposed to the external integrator. This is

the case for the Engine Dynamic Model shown in this

section.

9.5 Example 5: Engine Camshaft Phaser

VSiL Controller

The fifth example is an engine camshaft phaser VSiL

controller. This is an example of a discrete time system

with no power flow signals. The VSiL controller model

was previously shown in Figure 6. The representation

using the VSI interface is shown in Figure 20.

Session 1: Mechanical Systems

DOI
10.3384/ecp2017413

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

21

Figure 20. Engine Camshaft Phaser VSIL controller

VSI interface block

There are no external or internal state variables to

integrate. The camshaft phaser VSIL controller reads the

input signals and calculates the output signals whenever

the controller detects a time based or event-based task

initiator (trigger). The external integrator is notified of

each task initiator as a discontinuity point and takes the

proper action. The camshaft phaser controller ring does

not use any signals from other controllers so no CAN

(Controller Area Network) communication signals are

included in the VSiL controller.

10 Connecting VSI Interface Models

VSI interface models can be connected to other signal

flow models simply by connecting the input and output

signals. VSI interface models can be connected to power

flow models using ether sensor/actuator pairs or signals

to power flow elements as shown in Figure 21.

Figure 21. Connection of VSI interface Models

11 Algebraic Loops and Implicit State

Variables

The VSI interface is intended to produce the same set of

equations as the source models, thus if the source model

when combined into a feedback system produces

algebraic loops or implicit state variables, the VSU

model will likewise produce algebraic loops or implicit

state variables. Conversely, if the source model when

combined into a feedback system does not produce

algebraic loops or implicit state variables, the VSU

model will likewise not produce algebraic loops or

implicit state variables.

The VSI interface will not solve systems containing

algebraic loops or implicit state variables. The VSI

interface is designed to handle systems with ODEs (and

possibly DAEs in the future).

12 Why the VSI interface Requires No

Run-Time Licenses

The reason why the VSI Interface requires no run-time

licenses for any model packaged using the interface is

so that system simulation cost will be comparable to

single component and/or sub-system simulation cost.

This also ensures that all models packaged with the VSI

interface will run in any simulation package that

implements the interface. Software venders can and do

charge extra for the FMU generation feature and this is

still allowed in the VSI specification.

13 Application Areas for VSI Interface

The intended application areas for the VSI interface are

shown in Table 3.

Table 3. VSI Intended Application Areas

14 Conclusions

The VSI interface is presented in this paper as a high-

level overview and will require additional work to

formalize its content into a usable specification. Future

development of the VSI interface will be dependent on

the feedback from the FMI developers and the model

coupling and co-simulation user community as to

whether these types of enhancements are of significant

value for the type of simulations being done for product

development in their specific industries.

Acknowledgements

The authors would like to acknowledge the original

developers of the Virtual Systems in-the-Loop (VSiL)

technology and the Autonomie software which led to the

development of the VSI interface.

References

Ronald C. Rosenberg and Dean C. Karnopp. Introduction to

Physical System Dynamics, McGraw-Hill, 1983.

Shane Halbach, Phillip Sharer, Sylvain Pagerit, Aymeric P.

Rousseau and Charles Folkerts. Model Architecture,

Methods, and Interfaces for Efficient Math-Based Design

and Simulation of Automotive Control Systems. SAE 2010-

01-0241, SAE World Congress, Detroit, April 2010.

Tim Glaue. Virtual Systems-in-the-Loop (VSiL): System

Modeling for Quality Controls Integration. 2006 Simcenter

Amesim European Users Conference, March 30, 2006.

Vladimir A. Dobrushkin, Applied Differential Equations: The

Primary Course, Mathematica Tutorial for the First Course.

Part III: Heun Methods, CRC Press, 1st Edition, 2014.

Introducing the Virtual Systems Interface for Dynamic Coupling of Continuous Time Systems with
Discontinuities

22 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp2017413

