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Abstract

This paper introduces the Virtual Systems Interface
(VSI) as a potential enhancement of the FMI interface
or as a separate open source interface. The VSl interface
is intended to simplify model exchange and dynamic
model coupling of continuous time systems with
discontinuities while ensuring fast, accurate and low-
cost simulations. The VSI interface uses a single
interface for the coupling of both continuous time and
discrete time systems. It is designed for variable time
step integration with proper discontinuity handling and
convergence checking. It requires no run-time licenses
for any model packaged using the interface.
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1 Introduction

Automotive and other industries are relying on the use
of simulation models to reduce product development
time and cost. This has generated a need for the dynamic
coupling of both physical system models (called plant
models in this paper) and electronic controller models.
Furthermore, many systems are composed of
subsystems and components produced by different
companies so the exchange of models and their
integration into simulation packages is required. This
has led to the development of the Functional Mock-up
Interface (FMI). The Function Mock-up Interface is an
open specification which allows import and export of
both plant and controller models into and out of any
simulation packages that support the specification.

There are two types FMI interfaces: model exchange
and co-simulation. The model exchange interface is
intended for use with models that are described by
differential, algebraic and discrete equations with or
without discontinuities, and the system equations are
solved simultaneously. The co-simulation interface is
intended for use with models where each subsystem is
solved independently, and data is exchanged between
subsystems only at discrete communication points. In
general, the co-simulation interface gives accurate
results only for systems that physically exchange
information at discrete communication points (i.e.
digital controllers) or have low degrees of dynamic

coupling so that the destabilizing effect of the discrete
communication can be made negligible by selecting a
small enough communication interval.

This paper focuses on the model exchange interface
and how it can be used effectively for the dynamic
coupling of continuous time systems with
discontinuities. First, two example usages of the FMI
1.0 model exchange interface are presented, and the
issues encountered are explained. Next, some
background for effective usage of a model exchange
type interface is presented. Finally, a new interface is
introduced which is intended to ensure fast, accurate and
low cost means for dynamic coupling of continuous
time systems with discontinuities.

2 FMI 1.0 Model Exchange Interface
Examples and Issues

Two examples are presented using the FMI 1.0 model
exchange interface. The first example is an automotive
driveline as an example of a continuous time plant
model with discontinuities. The second example is an
engine dynamic model as an example of a continuous
time behavioral controls model with discontinuities. The
results and the issues encountered are explained.

2.1 Example 1: Automotive Driveline

The first example is an automotive driveline torsional
model. This model is incorporated into several vehicle
systems models for the evaluation of both the vehicle
hardware and control system designs. The automotive
driveline model contains simple torsional elements
(springs, dampers, inertias, clutches, planetary gear sets,
etc.). The model is run in fixed gear with the torque
convertor open, so there are no active controls. The
automotive driveline model is a continuous time system
with discontinuities. The discontinuities occur due to the
inclusion of backlash elements in the model. The
automotive driveline model is shown in Figure 1.

The automotive driveline model is implemented in
Simcenter Amesim version 15.1 using Microsoft Visual
Studio 2010 64 bit as the compiler. The Simcenter
Amesim FMU generation tool was used to export the
model to FMI 1.0 model exchange format and then it
was imported back into Simcenter Amesim as an FMU
to verify that it runs correctly.
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Figure 1. Automotive Driveline Torsional Model (Simcenter Amesim model)
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Figure 2. Automotive Driveline FMU integrated into a Vehicle System Model (Simcenter Amesim model)
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Figure 3. Results for Native Simcenter Amesim Model vs. Simcenter Amesim Model with FMU

The automotive driveline FMU is integrated into a
vehicle system model as shown in Figure 2. The
simulation was run using the Simcenter Amesim
standard integrator and a 1 ms print interval. The results
for the system simulation with the automotive driveline
included as native elements and as an FMU is shown in
Figure 3 (results are the same and show up as one trace).

The FMU produced accurate results but was 10.3
times slower than the native Simcenter Amsim model
(24.7 seconds vs. 2.4 seconds). The slow simulation was
determined to be caused by the generation of an implicit
variable when connecting the FMU. This artificial
algebraic loop can be avoided by a better handling of the
model’s input-output dependencies when exporting the
FMU. It should be noted that improving the
management of these artificial algebraic loops was one
of the motivations behind FMI 2.0.

2.2 Example 2: Engine Dynamic Model

The second example is an automotive gasoline engine
dynamic model. This model is incorporated into several

vehicle systems models for the evaluation of both the
vehicle hardware and control system designs. The
engine dynamic model was built in Simulink and a 3™
party commercial FMI generation tool was used to
export it to FMI format so that it could be used in other
simulation packages. The engine dynamic model is a
continuous time system with discontinuities. The
discontinuities occur due to the inclusion of continuous
time rate limiter elements in the model. The engine
dynamic model is shown in Figure 4.

The model is implemented in Simulink version 2014a
(64 bit). FMUs were generated using Modelon software
version 2.6.1 and then imported into Simcenter Amesim
version 14.2 using Microsoft Visual Studio 2010 64 bit
as the compiler for system simulation. Even though the
Model Exchange interface was used, it was found that
the exported model was different depending on which
Simulink solver was specified at the time of export.
When a fixed time step solver (ODE4 with 1 ms time
step) was specified the exported FMU was generated
with each time step being a discontinuity (call this the
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Figure 4. Engine Dynamic Model (Simulink Model)

FMU with time-based discontinuities). When a variable
time step solver (ODE45 using a relative tolerance of
le-3) was specified the exported FMU was generated
without each time step being a discontinuity but
including event-based discontinuities (call this the FMU
with event-based discontinuities). For comparison, a
Simcenter Amesim equivalent model was created so the
results could be compared. The results are shown in
Figure 5.

The simulation was run using the Simcenter Amesim
standard integrator and a 1 ms print interval. The FMU
with time-based discontinuities produced accurate
results while the FMU with event-based discontinuities
did not. The FMU with time-based discontinuities was
65 times slower than the native Simcenter Amesim
model (1733 seconds vs. 26 seconds). The FMU with
event-based discontinuities was 1.3 times slower than
the native Simcenter Amesim model (33 seconds vs. 26
seconds). The slow simulation speed of the FMU with
time-based discontinuities was due to the creation of
discontinuities at each time point corresponding to the
Simulink model’s originally specified integration time
step (1 ms). The inaccuracy of the FMU with event-

based discontinuities was due to incorrect handing of the
model’s real discontinuity points.

2.3 FMI Model Exchange 1.0 Interface
Issues
The learnings from the two examples was that the FMI

1.0 Model Exchange interface does not contain enough
information on how the internal equations, discontinuity

handling, and solution algorithms should be
implemented in order to ensure that fast and accurate
FMUs are generated.

This paper proposes a new (extended) interface
intended to address these issues. The new interface
combines Virtual Systems in-the-Loop (VSiL)
technology developed jointly by General Motors with
the support of LMS (now Siemens Digital Industries
Software) and Autonomie technology developed by
Argonne National Labs. These two technologies are
described next.

3 Virtual Systems in-the-Loop (VSIL)

Virtual Systems in-the-Loop (VSIL) has been used at
General Motors since 2005 (Glaue, 2006). This
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Figure 5. Results for the Engine Dynamic Model Represented Using FMI 1.0 Model Exchange

methodology allows electronic control units (ECUs) to
be integrated with Simcenter Amesim plant models and
run as a single executable. The Simcenter Amesim plant
model is modeled using standard and custom sub models
based on Bond Graph (powerflow) methodology
(Rosenberg and Karnopp, 1983). This approach defines
causality between the powerflow variables which
determines how the equations are assembled and solved.

The controller model is built using the actual software
source code corresponding to the application layer. The
application layer includes all the control algorithms and
calibrations which are independent of the actual
controller hardware. A hardware input/output (HWIO)
layer is built to replace the actual controller hardware
specific software which includes all other software code
needed to run the ECU, but which is not included in the
application software code (i.e. the hardware input and
output drivers, task scheduler (RTOS), CAN messaging,
etc.). The application code is compiled into an
executable file which connects to the plant model thru
the glue layer. The glue layer includes method
declarations for all the external methods and variables
referenced by the application code and any default
definitions used when only partial ECU functionality is
being analyzed. A set of Simcenter Amesim custom
submodels is created to implement the sensors,
actuators, scheduler, CAN messaging and peek-inside-
ECU functionality. An example engine camshaft phaser
VSiL controller model is shown in Figure 6.

Sensors read continuous time signals in engineering
units from the plant model and convert these into
controller variables defined by the HWIO interfaces.
Actuators take controller variables defined by the
HWIO interfaces and convert them into continuous time
signals in engineering units which are sent to the plant
model. The scheduler determines when controller
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Figure 6. Engine camshaft phaser VSiL controller
(Simcenter Amesim model)

methods are executed including controller initialization
and the updating of a limited set of calibrations. The
CAN messaging sub models handle inter-controller
communication signals. The peek-inside-ECU sub
models expose a limited set of internal ECU variables
for printing and plotting.
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VSIL is intended for hardware focused analyses
where the controls are treated as a black-box with only
a limited number of controller functionalities (rings),
calibrations and internal variables are of interest. Other
approaches are used for fully functional software in-the-
Loop (SIL) models where all functionality of the
controller is of interest.

4 Autonomie

Autonomie is a software package primarily used to
analyze vehicle performance and fuel economy
(Halbach et al, 2010). Autonomie is based on Bond
Graph methodology (powerflow) concepts but is
implemented using a signal flow approach. This makes
it easy to connect plant models to controller models
which are also generally implemented using a signal
flow approach. Autonomie uses MATLAB/Simulink as
the master simulator and any external systems can be
integrated as S-functions. The S-Function interface has
both a standard (model exchange) and co-simulation
interface type. The system level interface used in
Autonomie is shown in Figure 7.

From Info Bus = —p To Info Bus

Imposed efforts and flows —p | SYSTEM |—» IMmposed efforts and flows
(from previous system) (to next system)

Feedback efforts and flows
(from next system)

Feedback efforts and flows
(to previous system)

Figure 7. System Level Interface used in Autonomie

The key feature of the Autonomie interface is that it
separates the power flow variables from the non-
powerflow variables. This concept will be used in the
VSI Interface and its importance will be explained later
in this paper.

5 Fundamental Problem with Co-
simulation Type Interfaces

Before introducing the new interface, we will explain
the fundamental problem with co-simulation type
interfaces which led to the development of the Virtual
Systems Interface. First, consider the operation of a real
electronic control unit (ECU) and how data is logged.
This is illustrated in Figure 8.

The current time stamp is used for all variables
updated during the execution of controller code that is
run as a result of a task initiator. This makes it look like
these variables are updated at the same time. In reality,
there is a time delay between the task initiator and the
updated variables.

For the co-simulation interface (parallel execution
and fixed time step communication) the execution is
done as shown in Figure 9.

The inputs at the previous time step (tn-1) are used to
calculate the outputs at the current time step (tn). Then,
the inputs at the current time step (t,) are updated. We
will call this Execution Order 1:

Step Forward > Update Outputs > Update Inputs

A different execution order can also be used which
updates the inputs at the current time step (t») first and
then calculates the outputs at the current time step (tn).
We will call this Execution Order 0:

Update Inputs > Step Forward > Update Outputs

Execution order O requires sequential (serial)
execution of the co-simulating models. During testing of
a two-model co-simulation system (one plant and one
controller model), it was found that to match the closed
loop simulation results, execution order 1 was needed
and to match open loop simulation results, execution
order 0 was needed. This was a surprising result which
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Figure 8. ECU data logging schematic
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Figure 10. VSI interface execution schematic

led to an extensive investigation into co-simulation data
exchange and discontinuity handling. The result of this
investigation was that to accurately predict the dynamics
of coupled systems (at all coupling strengths and at all
time steps) a simultaneous solution of the equations of
motion is needed with proper discontinuity handling.
The lack of this feature is the fundamental problem with
co-simulation type interfaces and was the motivation for
the development of the Virtual Systems Interface.

6 Virtual Systems Interface
Execution Schematic

The VSI interface has simultaneous solution of the
equations of motion and proper discontinuity handling.
This is shown in Figure 10.

Discrete systems (like ECUs) are treated as
continuous time systems with discontinuities. The VSI
interface does not have the sensing and controls delays
that are present in actual ECUs (compare Figure 8 and
Figure 10). These delays are either neglected or can be
added to the sensing and/or actuation part of the plant
model (i.e. as continuous time delays or first order lags).
These delays are often tuned using current or voltage
signals measured directly on the physical wiring of the
ECU (not using the ECU recorded variables which do
not contain these delays — see Figure 8). The VSI
interface is functionally equivalent to the VSiL
approach previously described.

7 Virtual Systems Interface
Description

The Virtual Systems Interface (VSI) is being introduced
as a potential enhancement of the FMI interface or as a
separate open source interface intended to simplify
model exchange and dynamic model coupling while
ensuring fast, accurate and low-cost simulations. The
enablers for these features are:

1. Single interface for coupling both continuous time
and discrete time systems (for simplicity)

2. Designed for variable time step integration with
proper discontinuity handling and convergence
checking (for fast and accurate results)

3. Requires no run-time licenses for any model
packaged using the interface (for low cost)

The proposed Virtual Systems Interface (VSI) is

shown in Figure 11.
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Figure 11. VSI interface Format
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The VSI interface is similar to the Autonomie
interface except that the location of the power flow ports
is revised to have the 1/O relative to the previous system
and the 1/0 relative to the next system to be on the same
sides. This is done to allow a more direct connection
between upstream and downstream models and easier
identification of the power flow signal pairs and
corresponding causality. The non-powerflow variables
are located above the VSI Model Name and the
powerflow variables are located below the VSI Model
Name. The inputs and outputs are numbered top to
bottom as shown.

To simplify the connection to other models, all of the
I/0 signals are double precision continuous time
variables. Any conversion to discrete time variables is
done internal to the interface.

The 1/0O signals in section 1 and 4 of the interface are
used for non-powerflow variables. Both the inputs and
outputs are piecewise continuous, and the interface
includes a mechanism to report the location of
discontinuities so that these are handled correctly. There
can be state variables that are integrated internally
and/or state variables that are sent to the external
integrator for integration.

The I/O signals in section 2, 3, 5 and 6 of the interface
are used for the physical coupling of the models using
the power flow concept from Bond Graph methodology.
The power flow approach requires that all signals be
done in pairs where one signal is an effort type variable
(force, torque, voltage, pressure, thermodynamic
temperature, etc.) and the other signal is a flow type
variable (linear velocity, angular velocity, current,
volume flow rate, entropy flow rate, etc.). The
multiplication of the two paired signals give the input or
output power. The power flow signals from Section 2
and 3 of the interface define the input power to the
model. The power flow signals from Section 5 and 6 of
the interface define the output power from the model.

Start

Initialization
Predict y,.,

Correct Y.

n
Convergence

i

no

Discontinuity

yes o
Locate iy
Discontinuit
Step Completior'i

The sign convention for the power flow signals is
defined as shown below:
Output Power = Input Power + Internal Power
Generation

Internal power generation is negative for internal
power loss. Since Bond Graph methodology is used,
these signals produce ordinary differential equations
(ODEs) with explicit state variables only. The interface
includes a mechanism to report the location of
discontinuities to the external integrator so that these are
handled correctly.

Both continuous time and discrete time systems can
be modeled using the VSI interface. A discrete time
system is defined as any system that includes one or
more discrete time components.

8 Master Algorithm

The VSI interface tries to re-use as much of the FMI
nomenclature and programming specifications as
possible. When a model is compiled using the VSI
interface it is called a VSU (Virtual Systems Unit). The
VSI interface is designed to use a single master
algorithm that implements variable time step
communication and/or integration. The master solver
high level flow chart is shown in Figure 12.

A variable time step master algorithm was selected to
ensure the fast and accurate solution of the system
equations. The VSl interface is not intended for use with
fixed time step communication/integration algorithms
as these do not handle discontinuities properly.

The VSI interface requires that all components of the
system (including each VSU) be continuous time
systems with or without discontinuities. Any discrete
time elements must be encapsulated inside the VSI
interface along with their corresponding analog-to-
digital and digital-to-analog convertors. This approach
is specifically done so that digital controllers can be

Bisection method with
‘| interpolation

o 1. Execute any actions
associated with the
discontinuity (for example
changing the equations,
triggering an event - call to
DLL in our case, etc.)

2. Reinitialize the states
associated with this
discontinuity

Error Control
Determine new
stepsize

Check Stop
Time

yes

Figure 12. VSI Interface Master Solver High Level Flow Chart
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packaged into VSUs and coupled to continuously time
plant models using physical signals corresponding to
force, torque, voltage, pressure, thermodynamic
temperature, linear velocity, angular velocity, current,
volume flow rate, entropy flow rate etc. as opposed to
the sensed electrical versions of these signals. This
approach allows the HWIO layer of the digital controller
to be implemented in varying levels of fidelity inside the
VSU without having to change the plant model
interface. Low fidelity HWIO layers would be typical of
ideal sensing (no errors). Medium fidelity HWIO layers
would be typical of sensing with empirical models of the
sensing errors (bias errors, random errors, first order
delays and lags, etc.). High fidelity HWIO layers would
be typical of physics-based models of the actual sensors
and actuators with state variables that are either solved
internally or externally (or combination of both).

To be considered compliant with the VSI
specification, the master solver must implement the
flow chart shown in Figure 12 and provide a PECE
integrator based on Heun’s method (Dobrushkin, 2014)
as a user selectable option. Having a common integrator
option is done to provide a means to validate and
compare different venders’ master solvers. It is allowed
and encouraged that each venders’ simulators contain
more advanced integration options. It is expected that
some systems will not be able to be solved with some
integrator types so having either a manual or automatic
selection of the integrator is desired. This will
automatically encourage venders to create and optimize
their master solvers so they can effectively handle a
wide variety of equations types. Since the master solvers
are expected to contain proprietary implementations,
licensing of the master simulator is allowed.

The VSl interface is designed to produce the same set
of ODEs regardless of which external integrator (and
simulation environment) is used. It is also expected that
the same results will be generated regardless of which
external integrator (and simulation environment) is used
(provided convergence at each time step). This was not
the case with FMI 1.0 model exchange interface.

The required features of the VSI interface are shown
in Table 1 along with a comparison to FMI 2.0.

Table 1. Required Features of VSI

Part of FMI 2.0 Model
Exchange Interface?

Required Features of VSI

Register discontinuities Yes
Indicate a passed discontinuity Yes
Reinitialize after a discontinuity Yes

Indication that a time step is converged Theoretically feasible
Indication that a time step is used for printing | No

Separation of power flow and non-power flow | No

signals in the interface
Restriction of input and output signals to be No
double precision variables
Standardization on how the internal equations | No
are implemented and solved

The FMI 2.0 specification already contains some of
the VSI interface features required. Thus, the VSI

interface can be thought of as an abstract super-class
(objective oriented programming terminology) of the
FMI interface.

9 VSI Interface Examples

Five examples are presented to illustrate typical use case
types for the VSI interface. These examples are described
in Table 2.

Table 2. VSI Interface Examples

# | Example Name Has Power Has states requiring Has
Flow Signals? | external integration? | discontinuities?

1 | Translational Mass Yes Yes No
2 | Dynamic Rate Limiter [ No Yes Yes
3 | Automotive Driveline | Yes Yes Yes
4 | Behavioral Engine No Yes Yes

Dynamic Model
5 | Engine Camshaft No No Yes

Phaser VSil Controller

9.1 Example 1: Translational Mass

The first example is a one degree of freedom
translational mass with power flow connections on both
sides. This shows how simple components can be
implement using the VSI interface. The free-body
diagram of the translational mass is shown in Figure 13.
The representation using the VSI interface is shown in
Figure 14.

M = Mass
X =X1=X2 = displacement of the mass

X1 X2
V =V1 = V2 = velocity of the mass
state variable = V
—-— F2 .
F1 state variable derivative = V = (F1-F2)/M
accel = V = acceleration of the mass

Figure 13. Free Body Diagram of a 1- DOF
Translational Mass

accel_mps2
Mass
3 F1M Y2_mps
W1_mps F2_N

Figure 14. 1-DOF Translational Mass VSI Interface
block

The state variable V is integrated using the external
integrator using the supplied initial condition and state
variable derivative value. Causality of the signals is
clearly shown by the I/O nature of the signals. Forces
are imposed on the mass and velocities are returned.
Input power is F1 times V1 and output power is F2 times
V2. Acceleration of the mass was implemented as an
output signal, but it could have been kept as an internal
variable used for printing purposes only.

9.2 Example 2: Dynamic Rate Limiter

The second example is a dynamic rate limiter. This is an
example of a continuous time system with
discontinuities in the state variable derivative and no
power flow signals. The functional description of the
dynamic rate limiter is shown in Figure 15. The
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representation using the VSI interface is shown in
Figure 16.

tau = time constant for rate limiter

state variable = Qut

state variable derivative: .
if (Inp -Out)/tau < low then Out = low
if low < (Inp -Out)tau < high then Qut = (Inp-Cut)/tau
if (Inp -Out)tau > high then Ot = high

3 Dyn Rate
Inp Limiter ¥ Out

Figure 15. Functional Description of the Dynamic Rate
Limiter

high out
Inp
e

| dynamic rate limiter |

Figure 16. Dynamic Rate Limiter VSI Interface Block

The state variable Out is integrated using the external
integrator using the supplied initial condition and state
variable derivative value. A discontinuity is reported to
the external integrator whenever the state variable
derivative is discontinuous, and the external integrator
takes the proper action. The numerical method used to
identify the discontinuity point (time) can be any
suitable type but the time corresponding to the
discontinuity point must be between the last converged
time step and the time step which identified the
discontinuity. One approach of discontinuity handling is
to linearly extrapolate the discontinuous equation and
interpolate the time corresponding to the discontinuity
as shown in Figure 17 for the dynamic rate limiter. The
FMU must report only real discontinuities to ensure fast
execution.

y out(®2)

out ) out(t1 l)’ﬂ#—
out(t3)

h|g|‘| .............. PO
t1=last converged

time step
> t2=unconverged
...... low |.ip time step

t3=discontinuity
time step

Figure 17. Discontinuity Handling Example

9.3 Example 3: Automotive Driveline

The third example is an automotive driveline torsional
model. This is an example of a continuous time system
with discontinuities and power flow signals. The
automotive driveline torsional model was previously
shown in Figure 1. The representation using the VSI
interface is shown in Figure 18.

| automative driveline |

}‘ engTor_Mm

axleTor _MNm
<1 engSpd_rpm

axleSpd_rpm

Figure 18. Automotive Driveline VSI Interface Block

The state variables are integrated using the external
integrator using the supplied initial conditions and state

variable derivative values. Causality of the signals is
clearly shown by the I/O nature of the signals. The
automotive driveline is modeled in a fixed gear state so
there are no control signals sent to or from the model.

9.4 Example 4: Engine Dynamic Model

The forth example is an engine dynamic model. This is
an example of a continuous time system with
discontinuities and no power flow signals. The engine
dynamic model was shown previously in Figure 4. The
representation using the VSI interface is shown in
Figure 19.

CSETRER_TorgReqValue_Nm
CSETRER_TglnvntnTyp_unitless
Immediate_TorRegVal_Nm
Immediate_TglnvntnTyp_unitless
Predicted_TorgReqgVal_Nm
Predicted_TglnvntnTyp_unitless
EngSpd_rpm
TransOutSpd_rpm
AccActPos_pct
PwrtnCricAct_unitless
EngRunAct_unitless
TransTurbineSpd_rpm

EngActSSTrg_MNm
EngAirflwStdyStTorg_Nm
EngMTrnsregStdyStTg_Nm
AccEffPos_pct
ThrtCommndPos_pct
EngTrgActExtRng_MNm
EngTrgDrRgdExtRng_Nm
ThrPos_pct
EngTrgMinExtRng_Nm
EngTrgMaxExtRng_MNm
EngTrgRunLimit_Nm
EngMNTrnsRegCmndTg_Nm
EngTrglmLimit_MNm
EngTgSparkLimit_Nm
EngTrgDrRgdRaw_MNm
AxlTrgDrRqdRaw_Nm
AxITrgDrRgd_Nm

Aol TrgDrRgdMin_MNm

S N N S N N N N N N

Engine Dynamic Model

Figure 19. Engine Dynamic Model VSI Interface
Block

The engine dynamic model does not have any power
flow signal pairs identified in the interface (no signals
below the VSI Interface name), but this does not mean
there is no power flow. Any system with inputs and
outputs can produce power flow bonds -either
intentionally or unintentionally. The engine dynamic
model is intended to provide engine dynamic torque to
a downstream system with the downstream system
providing the engine speed as feedback. Thus, there is a
hidden power flow in this interface. This occurs because
of the implementation is done using a signal flow model
and not a power flow model. Generally, the same
physics can be represented in either a signal flow model
or a power flow model and the VSI interface can handle
either model type and get the same results provided that
all the state variables in the non-power flow part of the
interface are exposed to the external integrator. This is
the case for the Engine Dynamic Model shown in this
section.

9.5 Example 5: Engine Camshaft Phaser
VSiL Controller

The fifth example is an engine camshaft phaser VSiL
controller. This is an example of a discrete time system
with no power flow signals. The VSiL controller model
was previously shown in Figure 6. The representation
using the VSl interface is shown in Figure 20.
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engSpeed_rpm cam\WFreq Hz
crankAngle_crkDeg cam¥WDutyCycle_unitless
camWWRelativeAngle_camDeg camXFreq_Hz

camXRelativeAngle_camDeg
ignOnOff_null
buffStatusA_pct
buffStatusB_pct
engQilPres_kPaGauge
engCoolTempSensorB_degC

camXDutyCycle_unitless

engQilTempSensori_degC
engQilTempSensor2_degC
inductAirTemp_degC
manifoldAbsPress_kPaAbs
baroAbsPress_kPaAbs
massAirFlow_gps
afmMode_unitless
camWDesiredPhase_camDeg
camXDesiredPhase_camDeg

SN M N N M N N N N N N N N N N N

Camshaft Phaser Contraller

Figure 20. Engine Camshaft Phaser VSIL controller
VSI interface block

There are no external or internal state variables to
integrate. The camshaft phaser VSIL controller reads the
input signals and calculates the output signals whenever
the controller detects a time based or event-based task
initiator (trigger). The external integrator is notified of
each task initiator as a discontinuity point and takes the
proper action. The camshaft phaser controller ring does
not use any signals from other controllers so no CAN
(Controller Area Network) communication signals are
included in the VSIiL controller.

10 Connecting VSI Interface Models

VSI interface models can be connected to other signal
flow models simply by connecting the input and output
signals. VSl interface models can be connected to power
flow models using ether sensor/actuator pairs or signals
to power flow elements as shown in Figure 21.

accel_mpsz

i Mass
o3 LN Vemps b -
! V1_mps Fap fe -mme S

=
sensor/actuator pair signals to powerflow
element

Figure 21. Connection of VSI interface Models

11 Algebraic Loops and Implicit State
Variables

The VSl interface is intended to produce the same set of
equations as the source models, thus if the source model
when combined into a feedback system produces
algebraic loops or implicit state variables, the VSU
model will likewise produce algebraic loops or implicit
state variables. Conversely, if the source model when
combined into a feedback system does not produce
algebraic loops or implicit state variables, the VSU
model will likewise not produce algebraic loops or
implicit state variables.

The VSI interface will not solve systems containing
algebraic loops or implicit state variables. The VSI
interface is designed to handle systems with ODEs (and
possibly DAEs in the future).

12 Why the VSI interface Requires No
Run-Time Licenses

The reason why the VSI Interface requires no run-time
licenses for any model packaged using the interface is
so that system simulation cost will be comparable to
single component and/or sub-system simulation cost.
This also ensures that all models packaged with the VSI
interface will run in any simulation package that
implements the interface. Software venders can and do
charge extra for the FMU generation feature and this is
still allowed in the VSI specification.

13 Application Areas for VSI Interface

The intended application areas for the VSI interface are
shown in Table 3.

Table 3. VSI Intended Application Areas

Area# | Application Area Intended for
VSl Interface

1 Plant Models for HIL bench No

2 Plant Models for MIL & SIL Yes

2 Continuous Time Behavioral Controllers MIL Yes

3 Discrete Time Ring Level Controllers for SIL & VSiL Yes

4 Discrete Time Full Controllers for SIL No

14 Conclusions

The VSI interface is presented in this paper as a high-
level overview and will require additional work to
formalize its content into a usable specification. Future
development of the VSI interface will be dependent on
the feedback from the FMI developers and the model
coupling and co-simulation user community as to
whether these types of enhancements are of significant
value for the type of simulations being done for product
development in their specific industries.
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