Of Ciphers and Neurons
Detecting the Type of Ciphers Using Artificial Neural Networks

Nils Kopal
University of Siegen, Germany
nils.kopal@uni-siegen.de

Abstract

There are many (historical) unsolved ci-
phertexts from which we don’t know the
type of cipher which was used to encrypt
these. A first step each cryptanalyst does
is to try to identify their cipher types us-
ing different (statistical) methods. This
can be difficult, since a multitude of ci-
pher types exist. To help cryptanalysts,
we developed a first version of an artifi-
cial neural network that is right now able
to differentiate between five classical ci-
phers: simple monoalphabetic substitu-
tion, Vigenere, Playfair, Hill, and transpo-
sition. The network is based on Google’s
TensorFlow library as well as Keras. This
paper presents the current progress in the
research of using such networks for detect-
ing the cipher type. We tried to classify all
ciphers of a new MysteryTwister C3 chal-
lenge called “Cipher ID” created by Stamp
in 2019. The network is able to classify
about 90% of the ciphertexts of the chal-
lenge correctly. Furthermore, the paper
presents the current state-of-the-art of ci-
pher type detection. Finally, we present
a method which shows that one can save
about 54% computation time for classifi-
cation of cipher types when using our arti-
ficial neural network instead of trying dif-
ferent solvers for all ciphertext messages
of Stamp’s challenge.

1 Introduction

Artificial neural networks (ANNs) experienced a
renaissance over the past years. Supported by the
development of easy-to-use software libraries, e.g.
TensorFlow and Keras, as well as the wide range
of new powerful hardware (especially graphic card
processors and application-specific integrated cir-

cuits). ANNs found usages in a broad set of dif-
ferent applications and research fields. Their main
purpose is fast filtering, classifying, and process-
ing of (mostly) non-linear data, e.g. image pro-
cessing, speech recognition, and language trans-
lation. Besides that, scientists were also able to
“teach” ANNSs to play games or to create paintings
in the style of famous artists.

Inspired by the vast growth of ANNS, also cryp-
tologists started to use them for different crypto-
graphic and cryptanalytic problems. Examples are
the learning of complex cryptographic algorithms,
e.g. the Enigma machine, or the detection of the
type of cipher used for encrypting a specific ci-
phertext.

In late 2019 Stamp published a challenge on the
MysteryTwister C3 (MTC3) website called “Ci-
pher ID”. The goal of the challenge is to assign
the type of cipher to each ciphertext out of a set
of 500 ciphertexts, while 5 different types of ci-
phers were used to encrypt these ciphertexts us-
ing random keys. Each cipher type was used ex-
actly 100 times and the different ciphertexts were
shuffled then. While the intention of the author
was to motivate people to start research in the field
of machine learning and cipher type detection, all
previous solvers solved the challenge by breaking
the ciphertexts using solvers for the 5 different ci-
pher types. Thus, after revealing the plaintext of
each cipher, the participants knew which type of
encryption algorithm was used.

We started to work on the cipher type detec-
tion problem in 2019 with the intention to de-
tect the ciphers’ types solely using ANNs. Ten-
sorFlow (Abadi et al.,, 2016) and Keras (Chol-
let, 2015) were used. TensorFlow is a free and
open-source data flow and math library devel-
oped by Google written in Python, C++, and
CUDA, and was publicly released in 2015. Keras
is a free and open-source library for developing
ANNSs developed by Chollet and also written in

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

77

Python. In 2017 Google’s TensorFlow team de-
cided to support Keras in the TensorFlow core li-
brary. While working on the cipher type detection
problem, Stamp’s challenge was published. We
then adapted our code and tools to the require-
ments of the challenge. Therefore, in this paper,
we present our current progress of implementing
a cipher type detection ANN with the help of the
aforementioned libraries especially for the MTC3
challenge. At the time of writing this paper, we are
able to classify the type of ciphers of the afore-
mentioned challenge at a success rate of about
90%. Despite this relatively good detection rate
it is still not good enough to solve the challenge
on its own. Therefore, we also propose a first idea
of a detection (and solving) method for ciphertexts
with unknown cipher types.
The contributions and goals of this paper are:

1. First public ANN classifier for classical ci-
phers developed with TensorFlow and Keras.

Presentation of the basics of ANNS to the au-
dience of HistoCrypt, who are from differ-
ent research areas, e.g. history and linguistics
(but mostly no computers scientists).

. Example Python code which can be used to
directly implement our methods in Tensor-
Flow and Keras.

Overview of the existing work in the field of
ANNs and cryptanalysis of classical/histori-
cal ciphers and cipher type detection.

. Presentation of a first idea of a method which
does both, cipher type detection and solving
of classical ciphers.

The rest of this paper is structured as follows:
Section 2 presents the related work in the field
of machine learning and cryptanalysis with a fo-
cus on ANNs. Section 3 shows the founda-
tion on which we created our methods. Here,
firstly we discuss ANNs in general. Secondly, we
briefly present TensorFlow as well as Keras. After
that, Section 4 presents our cipher type detection
approach based on the aforementioned libraries.
Then, Section 5 discusses our first ideas for a ci-
pher type detection and solving method. Finally,
Section 6 briefly concludes the paper and gives an
overview of planned future work with regards to
ANNSs and cryptology.

2 Related Work

In this section, we present different papers and ar-
ticles, which deal with ANNs and cryptology. The
usage of ANNSs in the paper ranges between the
emulation of ciphers, the detection of the cipher
type, and the recovering of cryptographic keys.
Also, there are papers where the authors worked
with other techniques to detect the cipher type.

1. Ibrahem (Khalel Ibrahem Al-Ubaidy, 2004)
presents two ideas: First, to determine the
key from a given plaintext-ciphertext pair. He
calls this the “cryptanalysis approach”. Sec-
ond, the emulation of an unknown cipher.
He calls this the “emulation approach”. He
used an ANN with two hidden layers in his
approach. For training his model he used
Levenberg-Marquardt (LM). He successfully
trains Vigenere cipher as well as two different
stream ciphers (GEFFE and THRESHOLD,
which are both linear feedback shift regis-
ters).

Chandra (Chandra et al., 2007) present their
method of cipher type identification. They
created different ANNs which are able to dis-
tinguish between different modern ciphers,
e.g. RC6 and Serpent. Their ANN architec-
ture is comparable small, consisting only of
2 hidden layers, where each layer has at most
25 neurons. They used different techniques
to map from the ciphertext to 400 “input pat-
terns”, which they fed to their network.

. Sivagurunathan (Sivagurunathan et al., 2010)
created an ANN with one hidden layer to
distinguish between Vigenere cipher, Hill ci-
pher, and Playfair cipher. While their net-
work was able to detect Playfair ciphers with
an accuracy of 100%, the detection rate of Vi-
genere and Hill was between 69% and 85%,
depending on their test scenarios.

. The BION classifiers from BION’s gadget
website! are browser-based classifiers, inte-
grated in two well working cipher type de-
tection methods built in JavaScript. The first
one works with random decision forests and
the second one is based on a multitude of
ANNSs. The basic idea with the second clas-
sifier (ANN-based) is, that the different net-
works (different layers, activation functions,

Isee https://bionsgadgets . appspot . com/

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

78

etc.) each have a “vote” for the cipher type.
In the end, the votes are shown, and the cor-
rect cipher type probably has the most votes.
The classifiers are able to detect the cipher
types defined by the American cryptogram
association (ACM).

. Nuhn and Knight’s (Nuhn and Knight, 2014)
extensive work on cipher type detection used
a support vector machine based on the lib-
SVM toolkit (Chang and Lin, 2011). In their
work, they used 58 different features to suc-
cessfully classify 50 different cipher types
out of 56 cipher types specified by the Amer-
ican cryptogram association (ACA).

. Greydanus (Greydanus, 2017) used recurrent
neural networks (RNN) to learn the Enigma.
An RNN has connections going from succes-
sive hidden layer neurons to neurons in pre-
ceding layers. He showed that an RNN with
a 3000-unit long short-term memory cell can
learn the decryption function of an Enigma
machine with three rotors, of a Vigenere ci-
pher, and of a Vigenere Autokey cipher. Fur-
thermore, he created an RNN network which
was able to recover keys (length one to six)
of Vigenere and Vigenere Autokey.

. Focardi and Luccio (Focardi and Luccio,
2018) present their method of breaking Cae-
sar and Vigenere ciphers with the help of neu-
ral networks. They used fairly simple neural
networks having only one hidden layer. They
were able to recover substitution keys with a
success rate of about 93%, where at most 2
mappings in the keys were wrong.

. Abd (Abd and Al-Janabi, 2019) developed
three different classifiers based on neural net-
works. Their work is the closest related to
our work. Their idea is to create three classi-
fiers, each a single ANN, with different lev-
els (1, 2, and 3), where each level increases
the detection accuracy. The first level differ-
entiates between natural language, substitu-
tion ciphers, transposition ciphers, and com-
bined ciphers. Then, their second level dif-
ferentiates between monoalphabetic, polyal-
phabetic, and polygraphic. Their last level
differentiates between Playfair and different
Hill ciphers. They state that their success rate
is about 99.6%.

Figure 1: A single neuron of an ANN with inputs,
outputs, bias, and activation function

3 Foundation

In this section, we describe the foundation used
for our detection method. First, we discuss the
ANN in general. Then, we give an introduction
to TensorFlow and Keras and show some example
Python code building an ANN.

3.1 Artificial Neural Network

Artificial neural networks (ANNSs) are computing
models (organized as graphs) that are in principle
inspired by the human brain. The book “Make
your own neural network” from (Rashid, 2016)
gives a good introduction into ANNs. Differ-
ent neurons are connected via input and output
connections, providing signals, having different
weights assigned to them. A neuron itself contains
an activation function a, which fires the neuron’s
outputs based on the neuron’s input values. For
example, all the values of the input connections
are combined with their respective weight values.
Then, all resulting values are combined and a bias
value b is also added to the result. After that, an
activation function is computed using the result of
the combined values. Figure 1 depicts an exam-
ple of one neuron with different input connections,
a bias input connection, an activation function a,
and output connections. Usually, the value of the
bias input connection is set to 1.

A common practice in ANNS is to organize neu-
rons in so-called layers. The input data is given to
an input layer consisting of n different neurons.
The input layer is then connected to one or more
hidden layers. Finally, the last hidden layer is
connected to an output layer. Each neuron of the
previous layer is connected to each neuron of the
following layer. Figure 2 depicts an example of an
ANN with only a single hidden layer. In general,

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

79

Input layer Hidden layer Output layer

Q4
P
XKL
VaW\Y
N7
e

OVAY
XY
S8

(X X)
SN,
R

Figure 2: An ANN with input, hidden, and output
layers

when working with ANNs having several hidden
layers, researchers refer to the term of deep learn-
ing (Wartala, 2018).

The learning, in general, is performed by adapt-
ing the weights of the connections between the
neurons. There exist different methods for learn-
ing, e.g. supervised and unsupervised learning.
Here, we focus on supervised learning, which is
suited well for classification tasks. The input data
is given as a so called feature vector x from the
input space X and the output is a label y from the
output space Y. A label, in general, clusters a set
of similar input values, i.e. each of the input val-
ues of the same cluster is mapped to the same la-
bel. The goal is to find a function f : X — Y that
maps each element of the input space correctly to
the labels of the output space.

As a basic idea, the ANN’s connection weights
are initialized with random values. Then, a set of
data (inputs and desired labels) is feeded to the
network. While doing so, the actual output labels
as well as the desired labels are compared using a
loss function. Using back propagation the error
is propagated in the reverse order through the net-
work and the weight values are changed for each
neuron of each layer accordingly.

Different parameters and attributes of the ANN
and the learning process influence the success rate
of the learning: e.g. the quality and quantity of
the input data and labels, the number of hidden
layers of the ANN, the number of neurons of each

layer, the types of used activation functions of the
neurons, the used loss function, and the number of
times the input data is feeded to the network.

Usually, the input data and their respective la-
bels are divided into two different sets: training
data and test data. For the actual learning, the
training data is used. Then, to measure the qual-
ity of the ANN the test data is used. In the best
case, after training the ANN is able to classify the
test data correctly. In the worst case, the ANN
only learned the training data (perfectly), but fails
in classifying the test data. In this case, researcher
refer to the term overfitting.

3.2 TensorFlow and Keras

TensorFlow (Abadi et al., 2016) is a software li-
brary developed by Google and firstly released
in 2015. Its name is based on the term ‘“ten-
sor”’, which describes a mathematical function that
maps a specific number of input vectors to output
vectors, and on the term “flow”, the idea of dif-
ferent tensors flowing as data streams through a
dataflow graph. Keras (Chollet, 2015) is an open-
source deep learning Python library and since
2017 also included in TensorFlow.

Working with TensorFlow and Keras (with
ANNS), in general, consists of the following five
steps:

—_

. Loading and preparing training and test data

\S)

. Creating a model

(98]

. Training the model

N

. Testing and optimizing the model

9,1

. Persisting the model

In the following, we describe the above steps
involved in the creation, training, and usage of a
Keras model. TensorFlow models work on multi-
dimensional Python numpy arrays.

Step 1) First, the data has to be loaded and then
split into a test and a training data set. In the fol-
lowing example, we split a data set of 5000 test
data and their according labels (each label corre-
sponds to one output class) into two disjunct sets
of training and test data and labels:

data is a set of data

labels is a set of labels
here, we split both into
two different sets

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

80

train_data = data[0:4500]
train_labels = labels[0:4500]
test_data = data[4500:5000]
test_labels = labels[4500:5000]

Step 2) The second step is the creation of a
Keras model. TensorFlow and Keras offer dif-
ferent methods of creating a model. The easiest
method is to use the sequential model, which cre-
ates a multi-layered ANN. An example call of cre-
ating a simple ANN with an input layer, a single
hidden layer, and an output layer is the following:

create model.:

= keras.Sequential ()

create and add input layer:
.add(Flatten(input_shape=(100,)))
create and add hidden layer:
.add(Dense (100,
activation="relu’,
use_bias=True))
create and add output layer:
m.add(Dense (5,
activation="softmax’))
m.compile(optimizer="adam",
loss="sparse_categorical._

2 % B % E R

crossentropy’,
metrics=[’accuracy’])

The first call creates a sequential Keras model.
With the add-function, layers are added to the
model. We add an input layer with 100 neu-
rons (or features), a hidden layer with 100 neu-
rons, and an output layer with 5 neurons. Each
neuron of the next layer is automatically con-
nected to each neuron of the previous layer, as
shown in Figure 2. In this example, we classify
some data with 100 features into 5 different out-
put classes. Some remarks on the parameters:
the activation function of the hidden layer is set
to rectified linear unit ("relu’), wich is defined as
y = max(0,x). The activation function of the out-
put layer is set to ’softmax’, which is also known
as a normalized exponential function. It maps an
input vector to a probability distribution consist-
ing, in our case, of 5 different probabilities. Each
probability corresponds to one of five classes, in
which we classify the input vectors. The last
call is the actual creation of the model using the
compile-function. Different loss-functions, opti-
mizers, and metrics can be used. In our example
we use the ’sparse_categorical_crossentropy’ loss
function, and as a metric the accuracy. The Adam

optimizer is an algorithm for first-order gradient-
based optimization of stochastic objective func-
tions, based on adaptive estimates of lower-order
moments. (For details on Adam, see (Kingma and
Ba, 2014)).

Step 3) The next step is to train the newly cre-
ated model using the prepared test data and labels:

m.fit(train_data, train_labels,
epochs=20,

batch_size=32)

Calling the fit-function starts the training. In
our case we use the train_data and train_labels to
train the model. Epochs define how many times
the model should be trained using the data set. The
data is always given in a different ordering to the
model. The batch_size is the amount of samples
which are feeded to the ANN in a single training
step.

Step 4) After training, the test data is used for
testing the accuracy of the model:

predict the test data
prediction = m.predict(test_data)
we count the correct predictions
correct = 0.0
do the counting
for i in range(®, len(prediction)):
if test_labels[i] ==
np.argmax (prediction[i]):
correct = correct + 1
print(’Correct:’, 100.0 * correct /
len(prediction))

First, we call the predict function on the model
to predict labels of the test_data. After that, to
check how accurate the prediction with the trained
model is, we count how many times the prediction
equals the correct label and calculate the correct-
ness as percentage value. In the end, we output the
value to the console.

Step 5) In the last step, we persist the model by
storing it in the hierarchical data format (.h5).

save the model to the hard drive
m.save ("mymodel.h5")

delete the model

del m

load model from hard drive

m = load_model ("mymodel.h5")

After persisting the model, it can be deleted
from memory and later be loaded from the hard
drive using the *load_model” function.

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

4 Our Cipher Type Detection Approach

In this section, we present our cipher type detec-
tion approach. First, we give a short overview
of the MysteryTwister C3 challenge created by
Stamp. Then, we discuss the cipher ID prob-
lem as a classification problem. After that,
we present our cipher detection ANN in detail
(input/hidden/output-layers, features, training and
test data).

4.1 The MTC3 Cipher ID Challenge

MysteryTwister C3 (MTC3) is an online plat-
form for publishing cryptographic riddles (= chal-
lenges). In 2019, Stamp published a cipher type
detection challenge? on MTC3, named “Cipher ID
— Part 1”. The detection of the cipher type of an
unsolved ciphertext is a difficult problem, since a
multitude of different (classical as well as mod-
ern) ciphers exist. E.g. in the DECODE database
(Megyesi et al., 2019), there is a huge collection
of (historical) ciphertexts of which we don’t know
the (exact) type of cipher. Without knowing the
type, breaking of such texts is impossible. Thus, a
first cryptanalysis step is always to determine the
cipher type. Different metrics, like text frequency
analysis and the index of coincidence are helpful
tools and indicators for the type of the cipher.

The MTC3 challenge is based on the aforemen-
tioned problem of often not knowing the type of
ciphers of historic encrypted texts. The term “Ci-
pher ID” refers to the type of used algorithm, or
its “identifier”. In the challenge the participants
have to identify different ciphers that were used
for encryption of a given dataset of 500 cipher-
texts, where each is 100 characters long. The
goal is to determine the type of cipher used to en-
crypt each message. The following ciphers were
used exactlay 100 times each: simple monoalpha-
betic substitution cipher, Vigenére cipher, colum-
nar transposition cipher, Playfair cipher, and the
Hill cipher. The English plaintexts are randomly
taken from the Brown University Standard Cor-
pus>. The set of provided ciphertexts is shuffled.

4.2 Cipher ID as a Classification Problem

The general idea is to treat the detection of the ci-
pher type as a classification problem. Each type of

https://www.mysterytwisterc3.org/en/
challenges/level-2/cipher-id-part-1

3Brown University Standard Corpus of Present-Day
American English, available for download at http://wuw.
cs.toronto.edu/~gpenn/csc401/alres.html

Cipher 1
Cipher 2

Feature B

Cipher 3

Feature A

Figure 3: Ciphertexts (dots) in a multidimensional
feature space. Classified into three cipher classes
(red, green, blue)

cipher is regarded as a disjunct class, hence, there
is a monoalphabetic substitution class, a Vigenere
class, etc. Figure 3 depicts the general idea. In
the figure, two feature dimensions (A and B) are
shown. Based on the cipher‘s characteristics, fea-
tures have stronger or weaker influence on the out-
put. Examples for features are the frequency of the
letter ‘A’ or the index of coincidence. The colored
dots (red, green, and blue) represent different ci-
phertexts. The dots are surrounded by a line show-
ing the classes (or ciphers) each ciphertext belongs
to.

With Stamp’s challenge, we have 5 different
classes, one for each cipher type. The ciphertexts’
features are given as input vectors to an ANN
which then classifies the text into one of the afore-
mentioned classes. As output, the ANN then re-
turns the ID of the detected cipher.

4.3 A Cipher ID Detection ANN

In the following we discuss the development of a
cipher ID detection ANN based on the steps intro-
duced in Section 3.2. Since it is a trivial step, we
omit the persisting step (Step 5):

Step 1: Loading/preparing training/test data
To train an ANN a sufficient amount of training
and test data is needed. In the case of the cipher
ID detection ANN, ciphertexts of the types which
should be detected are needed. Therefore, we first
implemented all 5 ciphers in Python. We also cre-
ated a Python script which extracts random texts

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

82

from a local copy of the Gutenberg library. Using
this script, we can create an arbitrary amount of
different (English) plaintexts of a specific length.
After extracting a sufficient amount of plaintexts
of length 100 each, we encrypted these with the
ciphers — always using randomly generated keys.
We created different sets of ciphertext files with
different amounts of ciphertexts for each cipher
(1000, 5000, 50000, 100000, and 250000). Thus,
the total amount of ciphertexts provided to the
ANN is a multiple of 5 of those numbers.

Since the ANN is not able to work on text di-
rectly, the data has to be transformed into a nu-
merical representation. Our first idea was to di-
rectly give each letter as a number to the network,
thus, having a feature vector of 100 float values.
As this lead to a poor performance of our network
we began experimenting with different other fea-
tures, i.e. statistical values of the ciphertext. The
next step shows our features and the overall ANN.

Step 2: Creating a model We experimented
with different features as input values as well as
with different amounts of hidden layers, widths
of hidden layers, activation functions, optimizers,
etc. We here now present the final ANN setup
which performed best in our tests.

We use the following features:

e 1 neuron: index of coincidence (unigrams)
e 1 neuron: index of coincidence (bigrams)

e 26 neurons: text frequency distribution of un-
igrams

e 676 neurons: text frequency distribution of
bigrams

Thus, the ANN has an input layer consisting of
a total of 704 input neurons. After that, we create
5 hidden layers, where each layer has a total of

2 2
\‘3 -inputSize + outputSizeJ = {3 *704 4 SJ =474

(D
neurons. Since we have 5 classes of cipher types,
the output layer consists of five output neurons,
each one for a specific cipher type. In Python, we
created the network with the following code:

sizes of layers

inputSize = 704

outputSize 5

hiddenSize = 2 *x (inputSize / 3) +

outputSize
create ANN model with Keras
model = keras.Sequential ()
create input layer
model .add(keras.layers.Flatten(
input_shape=(inputSize,)))
create five hidden layers
for i in range(®, 5)
model.add(keras.layers.Dense(
(int (hiddenSize)),
activation="relu",
use_bias=True))
create output layer
model .add(keras.layers.Dense(
outputSize,
activation="softmax’))

The type of the hidden layer’s activation func-
tion is 'relu’ and the output layer’s activation func-
tion is ’softmax’ (see Section 3.1).

Step 3: Training the model We trained dif-
ferent configurations of our model with different
amounts of ciphertexts. We used different sizes of
training data sets and obtained the following re-
sults (output of our test program) with our best
model:

Training data: 4,500 ciphertexts
Test data: 500 ciphertexts
— Simple Substitution: 87%
— Vigenere: 75%

— Columnar Transposition:
— Playfair: 80%
— Hill: 32%
Total correct:

100%

74%

Training data: 24,500 ciphertexts
Test data: 500 ciphertexts
— Simple Substitution: 88%
— Vigenere: 54%

— Columnar Transposition:
— Playfair: 93%
— Hill: 64%
Total correct:

100%

79%

Training data: 249,500 ciphertexts:
Test data: 500 ciphertexts
— Simple Substitution: 97%
— Vigenere: 63%

— Columnar Transposition:
— Playfair: 99%

— Hill: 70%

100%

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

Total correct: 86%
Training data:
Test data: 500 ciphertexts
Simple Substitution: 99%
Vigenere: 63%

Columnar Transposition:
Playfair: 97%

Hill: 67%

Total correct:

— 100%

87%

Train. data:
Test data: 500 ciphertexts
Simple Substitution: 100%
Vigenere: 69%

Columnar Transposition:
Playfair: 99%
Hill: 78%
Total correct:

— 100%

90%

The first two training runs were done in a few
minutes. The third test already took about an hour
on an AMD FX8350 with 8 cores. The last two
tests took several hours to run. Since there is a
problem with the CUDA support of TensorFlow
with the newest Nvidia driver in Microsoft Win-
dows, we could only work with the CPU and not
with the GPU, making the test runs quite slow.

During our tests, we saw that with increasing
the size of our training data, we could also increase
the quality of our detection ANN. Nevertheless,
the detection rate of the Vigenere cipher and the
Hill cipher is too low (between 60% and 80%).
In our first experiment, ciphertexts encrypted with
the Hill cipher were only correctly detected by
32% and Vigenere was only 75%. We assume,
that there is a problem for our ANN to differenti-
ate between those two ciphers, since their statisti-
cal values (text frequencies, index of coincidence)
are similar.

Step 4: Testing and optimizing the model For
optimizing our model (with respect to detection
performance), we tested other additional features
provided to the ANN. Those features are:

e Text frequency distribution of trigrams

Contains double letters

Contains letter J

Chi square

Pattern repetitions

499,500 ciphertexts:

1,249,500 ciphertexts:

e Entropy
e Auto correlation

The text frequencies of trigrams had no notice-
able influence on the detection rate, but made the
training phase much slower, since 26> = 17576
additional input neurons were needed. Also, an
equivalent number of neurons in the hidden layers
were needed. Thus, we removed the trigrams from
our experiment.

The ”Contains double letters” feature did also
have no influence. We additionally realized that
the double letters are also detected by the bigram
frequencies. Thus, we also removed this feature.
Same applies to the ”Contains letter J” feature.
The idea here was, that the Playfair cipher has
I = J, thus, there is no J in the ciphertext.

The chi square feature also had no influence on
the detection rate.

With pattern repetitions, we aimed at giving the
network an “idea” of the repetitive character of Vi-
genere ciphertexts. Unfortunately it did not help to
increase the detection rate.

Entropy and auto correlation of the ciphertext
were also given as features. Also no influence on
the detection rate was realized.

Finally, we kept only index of coincidence on
unigrams and bigrams as well as letter frequencies
of unigrams and bigrams.

5 Cipher Type Detection and Solving
Method for Stamp’s Challenge

To actually solve Stamp’s challenge this method
brings together the following parts:

e Cipher type detection ANN

Monoalphabetic substitution solver

Vigenere solver

Transposition solver

Playfair solver

The method consists of the cipher type detection
ANN and of solvers for each cipher despite the
Hill cipher. The basic idea is the following: First,
the set of ciphers is classified by the cipher de-
tection ANN. After that, each cipher has been as-
signed a cipher ID. Since we know that only about
90% of the cipher types is classified correctly, we
have to check each cipher type for correctness, in

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

84

order to reach a overall classification correctness
of 100%. Thus, each ciphertext is then tested in a
first run using its corresponding solver, despite the
ciphertexts marked as Hill cipher. Hill cipher, es-
pecially in the case of a 4x4-matrix and ciphertext-
only is a hard to solve cipher.

After that, all ciphertexts that could be success-
fully solved using the solvers are marked as “cor-
rectly classified”. The remaining ciphertexts, that
could not be solved using the assigned cipher type,
are then tested using the three other solvers. In the
end, there should only be a set of 100 ciphertexts
(in the case of the Stamp challenge), which cannot
be solved with the four solvers. In that case, these
100 remaining ciphertexts must be encrypted by
the Hill cipher. Since there is no good solver avail-
able for Hill ciphers, which performs much better
than brute-force in the ciphertext-only case, this is
very time consuming or nearly impractical for the
Hill cipher.

Execution time for classification with addi-
tional help of solvers Let S be the time a sin-
gle solver needs to test a given ciphertext, and this
time is the same for all solvers. After S time is
elapsed, the solver either produced a correct result
or we stop it, since we assume that the solver is
the wrong one for the specific ciphertext. In the
case that we do not use the cipher detection ANN,
we would need an overall of 4-500- S = 2000-S
amount of time to test each ciphertext with 4 dif-
ferent solvers. If after executing all solvers exactly
100 unsolved ciphertexts remain, these are most
probably texts encrypted using the Hill cipher. In
that case, we solved Stamp’s challenge.

Now, lets assume that testing a ciphertext using
the ANN takes only a fraction of S, i.e. the clas-
sification time for a single ciphertext is 7" where
T < S. In the real world, this is true since test-
ing the 500 ciphertexts using our ANN only takes
less than a second to be done. Generally, apply-
ing (testing) an ANN is much faster than train-
ing it. Since we know that the classification is
only correct by about 90%, we have to test each
ciphertext using the classified cipher type despite
those classified as Hill cipher-encrypted. Lets as-
sume that about 100 texts are classified as hill ci-
pher, thus about 400 ciphertexts remain to be ana-
lyzed. Since we know that 90% of those 400 texts
are already classified correctly, 10% of those texts
remain unsolved. These 10% plus the 100 hill-
cipher classified texts have now to be analyzed

using all 4 solvers (this can be further optimized
by only testing the remaining 10% with the three
unused solvers). This leads to the following total
amount of time needed for classification:
500-7+400-S4+40-3-S+100-4-S§

which is 920 - § is so small that it can be left out
of the calculation since 7 < S. Thus, we have a to-
tal execution time saving of about 100% — 100% -
2?3&')% = 54% for the classification of the cipher-
texts of Stamp’s challenge.

If we assume that a solver needs about one
minute to successfully solve a ciphertext, using all
solvers for testing would take about 2,000 min-
utes (about 33h). Using the ANN to reduce the
amount of needed solvers, this time would now
be 920 minutes (about 15h). Clearly, in the case
of the ANN the time for training the network has
also to be considered, which can also take several
hours. Nevertheless, this time is only needed once,
since the resulting ANN can be reused for classi-
fication tasks. The solvers could be executed in
parallel, which further reduces the overall elapsed
time.

6 Conclusion

This paper shows the current progress of our work
in the area of artificial neural networks (ANN)
used to detect the cipher types of ciphertexts en-
crypted with five different classical ciphers: sim-
ple monoalphabetic substitution, columnar trans-
position, Vigenere, Hill, and Playfair. For creation
and training of an ANN consisting of five hid-
den layers, we used Google’s TensorFlow library
and Keras. The goal of our initial research was to
solve Stamp’s challenge (see Section 4.1), which
required to determine the cipher type of 500 en-
crypted using the aforementioned five classical ci-
phers. The network was able to detect about 90%
of the ciphers correctly. Detection rates for Play-
fair and Hill were too low to solve the challenge
completely. Besides the creation of the ANN we
also proposed a method (see Section 4) for solv-
ing the challenge using the ANN as well as dif-
ferent solvers, e.g. from CrypTool 2 (Kopal et al.,
2014). Examples, how the solvers of CrypTool 2
can be used are shown in (Kopal, 2018). With the
method, described in Section 5, about 54% execu-
tion time could be saved for solving Stamp’s chal-
lenge. Another part of this paper is a survey of the
related work with respect to ANN and cryptanaly-
sis of classic ciphers (see Section 2) and an intro-

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

85

duction into the topic for the HistoCrypt audience
(see Section 3).

In future work, we want to extend our network
(e.g. by using different ANN architectures) and
method (e.g. by finding better features)in order
to detect more different and difficult cipher types.
We also want to use the methods in the DECRYPT
research project (Megyesi et al., 2020) to further
identify unkown types of several ciphers currently
stored in the DECODE database.

Acknowledgments

This work has been supported by the Swedish Re-
search Council, grant 2018-06074, DECRYPT —
Decryption of historical manuscripts.

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-
scale machine learning. In /2th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI 16), pages 265-283.

Ahmed J Abd and Sufyan Al-Janabi. 2019. Classi-
fication and Identification of Classical Cipher Type
Using Artificial Neural Networks. Journal of Engi-
neering and Applied Sciences, 14(11):3549-3556.

B Chandra, P Paul Varghese, Pramod K Saxena, and
Shri Kant. 2007. Neural Networks for Identification
of Crypto Systems. In IICAI, pages 402—411.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
transactions on intelligent systems and technology
(TIST), 2(3):27.

Francois Chollet. 2015. Keras: Deep learning library
for theano and tensorflow. URL: https://keras.io/,
7(8):T1.

Riccardo Focardi and Flaminia L Luccio. 2018. Neu-
ral Cryptanalysis of Classical Ciphers. In ICTCS,
pages 104-115.

Sam Greydanus. 2017. Learning the Enigma
with Recurrent Neural Networks. arXiv preprint
arXiv:1708.07576.

Mahmood Khalel Ibrahem Al-Ubaidy. 2004. Black-
box attack using neuro-identifier. Cryprologia,
28(4):358-372.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint

arXiv:1412.6980.
Nils Kopal, Olga Kieselmann, Arno Wacker, and Bern-

hard Esslinger. 2014. CrypTool 2.0. Datenschutz
und Datensicherheit-DuD, 38(10):701-708.

Nils Kopal. 2018. Solving Classical Ciphers with
CrypTool 2. In Proceedings of the Ist Interna-
tional Conference on Historical Cryptology His-
toCrypt 2018, number 149, pages 29-38. Linkdping
University Electronic Press.

Bedta Megyesi, Nils Blomqvist, and Eva Pettersson.
2019. The DECODE Database: Collection of His-
torical Ciphers and Keys. In The 2nd International
Conference on Historical Cryptology, HistoCrypt
2019, June 23-26 2019, Mons, Belgium, pages 69—
78.

Bedta Megyesi, Bernhard Esslinger, Alicia Fornés,
Nils Kopal, Benedek Lang, George Lasry, Karl de
Leeuw, Eva Pettersson, Arno Wacker, and Michelle

Waldispiihl. 2020. Decryption of historical
manuscripts: the decrypt project. Cryptologia,
pages 1-15.

Malte Nuhn and Kevin Knight. 2014. Cipher Type De-
tection. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1769-1773.

Tariq Rashid. 2016. Make your own neural network.
CreateSpace Independent Publishing Platform.

G Sivagurunathan, V Rajendran, and T Purusothaman.
2010. Classification of Substitution Ciphers using
Neural Networks. International Journal of com-
puter science and network Security, 10(3):274-279.

Ramon Wartala. 2018. Praxiseinstieg Deep Learning:
Mit Python, Caffe, TensorFlow und Spark eigene
Deep-Learning-Anwendungen erstellen. O’Reilly.

Proceedings of the 3rd International Conference on Historical Cryptology, HistoCrypt 2020

86

