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Abstract
This paper presents the results of a study where the
feasibility of a non-invasive acoustic measurement
method was tested for monitoring of erosion in a
pneumatic conveying system during the dilute-
phase conveying of sand. Measurements were collected 
by the acoustic method from a pipe bend in a test 
area of a pneumatic conveying system which were 
found in previous studies to be especially afflicted 
with erosion. Reference measurements of the loss of 
mass caused by erosion were obtained by removing a 
detachable piece from the test area and weighing it 
before reattaching it to the pipeline. Partial least 
squares regression was used to calibrate models relat-
ing the acoustic measurements to the response vari-
able. Cross-validation techniques were used to evalu-
ate the feasibility of the method for monitoring of ero-
sion in the pipe bend and to investigate whether the 
method would be affected by noise and vibrations 
generated by the pneumatic conveying system.

 
Keywords:     erosion, pneumatic conveying, monitoring,
acoustic sensors

1 Introduction
Pneumatic conveying, the transportation of dry material
through a pipeline in a gas stream, is a common method
of transportation of particulate and granulate material in
many industries. Advantages of the technology include
flexibility in the conveying system with multiple pick-
up and discharge points, clean and dust-free
transportation of solids and easy automation of the
conveying systems. Pipe erosion has been identified as
one of the main challenges of the pneumatic conveying
technology. Erosive wear is particularly significant in
dilute phase pneumatic conveying due to the higher
velocities used in such systems. Pipe bends are often
exposed to severe erosion.

Erosion is defined as the removal of material from a
surface due to impinging particles. Erosive wear can be
influenced by multiple factors, including properties of
the conveyed material such as particle size and hardness
as well as flow properties like particle velocity and

impact angle. The characteristics of the surface material 
can also have an effect on erosive wear (G. E. Klinzing 
et al. 1997). Material which is removed from the pipe 
walls can mix with the conveyed material and cause 
quality and safety issues. Contamination of the 
conveyed material can be highly problematic for 
example in food and feed production. In some processes, 
mixing metal particles with the transported powder 
materials can cause dust explosions. Also, equipment 
failure due to erosion can lead to system downtime and 
higher maintenance costs (Ratnayake et al. 2007).  

  In a study by (Vieira et al. 2017), a system of 16 
non-intrusive ultrasonic devices attached to the outer 
wall of a pipe bend was used to measure erosion in a test 
rig during multiphase flow. The pipe wall thickness was 
monitored in 16 points under various conditions, and the 
measurements were used to investigate the resulting 
erosion rates and patterns. The ultrasonic method was 
found to be a useful tool for investigating erosion 
mechanisms and getting a better understanding of the 
erosive wear phenomenon. However, for monitoring of 
erosion in an industrial setting, a simpler and more 
practical monitoring system which require less 
equipment to be installed in the test area would be 
preferable.  

Developed at the University College of South-
Eastern Norway, acoustic chemometrics is an indirect 
monitoring method in which chemometric techniques 
are applied to relate acoustic measurements to a 
response variable. A recent, active version of the 
acoustic method was presented in (Haugland et al. 
2019), where the method was used to monitor scaling in 
a pneumatic conveying system. Acoustic chemometrics 
is a non-intrusive technique utilizing easy to install 
"clamp-on" sensors.   

This paper presents the results of a study conducted 
to test the feasibility of the active acoustic method to 
monitor erosion in a pneumatic conveying system 
transporting material in dilute phase. Measurements 
were obtained during powder transportation as well as 
during system shutdown periods to evaluate whether the 
performance of the method would be disturbed by noise 
and vibrations from the conveying system during 
powder transportation.   
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2 Materials and Methods 
2.1 Pneumatic conveying test rig  
Tests were conducted in a pilot-scale pneumatic 
conveying rig located in the powder research hall of 
SINTEF Tel-Tek (Porsgrunn, Norway). A schematic 
sketch of the rig, which makes up a closed system, can 
be seen in Figure 1. When the pneumatic conveying rig 
is operated, bulk material is dispatched from the storage 
tank and fed into the pipeline by a rotary feeder at a pre-
set feeding rate. The pipeline (3.5-inch) consist of both 
horizontal and vertical sections as well as several bends. 
At the end of the line, the material is collected in the 
receiving tank, from which it can be transported back 
into the storage silo. The receiving tank is installed on 
top of three load cells. Readings from the load cells can 
be used to estimate the material flow of the conveying 
system. Transportation air is supplied by a screw-type 
air compressor (Ingersoll Rand R110i) combined with 
an air dryer (Ingersoll Rand D1300IN-A). The air flow 
rate is controlled manually by a ball valve and 
monitored by two air flow meters (Yokogawa, YF 108) 
situated at the start and end of the conveying pipeline, 
respectively. The pressure drops are monitored by nine 
pressure transducers (General Electric, UNIK 500 
series) distributed along the pipeline.  

In previous tests conducted in the pneumatic 
conveying rig, several areas where severe erosion occur 
were identified. One of these areas, the exit of a 90° 
bend, was selected as the test area for this study. The 
position of the test area is marked in Figure 1. In the test 
area, the pipe was fitted with a customized flange such 
that the outer wall of the pipe bend could be detached 
from the pipeline. The detachable part of the pipe bend 
will hereafter be referred to as the test piece. By 
removing and weighing the test piece, reference 
measurements of the erosion of this part of the pipe 
could be obtained. An image of the test piece can be seen 
in Figure 2.   
 

2.2 Active acoustic monitoring method 
A newly developed version of acoustic chemometrics, 
the active method involves exciting a system by an 
acoustic input signal. The acoustic signal will be 
changed by the system in a way that is affected by some 
of the systems physical properties. Thus, such altered 
acoustic signals contain latent information about system 
characteristics. Altered acoustic signals are measured as 
output signals from selected locations in the system. The 
measured and processed output signals are referred to as 
acoustic spectra. In order to extract information from the 
acoustic spectra, models which relates the 
measurements to the properties of interest must be 
calibrated.   

Piezo elements (Murata, 7BB-20-6L0) were used 
both to send the input signal and to measure output 
signals in the study. The piezo elements (one transducer 
and two sensors) were attached to the test piece and their 
cables were taped to the same surface to avoid vibrations 
which could disturbe the measurements. The set-up of 
the transducer and sensors can be seen in Figure 2.  

A function generator (Escort ECG-3230) was used to 
create the input signals, which consists of a square 
waveform sweep function of linearly increasing 
frequency (0-200 kHz) and constant amplitude. 
Simultaneously, the frequency response of the sweep 
function was monitored as output signals by the two 
sensors. The output signals were amplified by a signal 
adapter (SAM, Applied Chemometrics Research Group, 
University of South-Eastern Norway) and then sent 
through a bandpass filter to avoid aliasing. 
Subsequently, A/D conversion was conducted by a 
DAQ-unit (National Instruments). The signals were 
filtered by a Blackman-Harris window to avoid spectral 
leakage and transformed from the time domain to the 
frequency domain by a Fast Fourier Transformation 
(FFT). A PC with specialized LabVIEW software 
(National Instruments) was applied for the data 
acquisition.  
 

Figure 1. Schematic overview of the pneumatic conveying system. 
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2.3 Test procedure 
Due to its abrasive nature, sand was selected as the 
material to convey. A 50:50 mixture (approx. 550 kg) of 
two different sand qualities A and B (Sibelco Nordic 
AS) was added to the storage tank. The two qualities 
were mixed in order to get a steady flow through the 
pneumatic conveying system. The size ranges of the 
sand qualities are given in Table 1.  

 

Table 1. Size ranges of sand qualities.  

Sand quality Size range (mm) 
A 0.4-1.0 
B 1.0-2.5 
 

To operate the pneumatic conveying rig, the air inlet 
valve was opened to start air flow before sand was 
introduced from the storage tank to the pipeline through 
the rotary feeder. When the desired test conditions had 
been achieved and the dilute phase transportation of 
sand had reached steady state, three replicate 
measurements were obtained by the acoustic sensors. 
After all the sand had been conveyed from the storage 
tank to the receiving tank, the pipeline was flushed to 
remove any remaining material from the pipeline. 
Subsequently, the pneumatic conveying system was 
shut down and three additional replicate measurements 
were obtained by the acoustic method during the system 
downtime. Finally, the material was transferred back to 
the storage tank. The procedure was repeated multiple 
times. An overview of the test conditions is listed in 
Table 2. 
 
 

 

Table 2. Overview of test conditions.  

Inlet air flow rate [Nm3/h] 300-320 
Air temperature [°C] 15-20 
Solid mass flow rate [kg/s] 0.2-0.3 
Solid loading ratio 0.9-1.5 
Reynolds number 1.1*104-1.2*104 

 
Reference measurements of the erosion as the loss of 

mass from the test piece was obtained approx. for every 
2 tons of sand transported past the test area. To get a 
reference measurement, the test piece was detached 
from the pipe bend and weighed. Then the test piece was 
reattached to the pipeline and pneumatic conveying of 
sand was resumed. 

2.4 Data analysis  
Two datasets were prepared from the measurements, 
one containing the acoustic spectra obtained during 
operation of the pneumatic conveying system and the 
other consisting of the measurements collected during 
system downtime. In each of the datasets, the acoustic 
spectra were arranged in a matrix X. In X, every row 
contains a measurement and every column represents a 
frequency of the acoustic spectra. The reference values 
associated with each spectrum were placed in the 
corresponding rows of a response vector y. The 
variables in the datasets were mean centered and scaled 
to unit variance prior to the data analysis.  

2.4.1 Latent variable matrix decomposition 
In many cases, multivariate data is colinear. That is, 
many of the variables the matrix X are related to and 
influenced by some common factors. Thus, the data in 
X can be expressed by a smaller set of components, 
sometimes referred to as latent variables. Each latent 
variable is represented by a score vector t and a loading 
vector p and can be constructed by linear combinations 

Figure 2. Photography of the test piece with transducer and acoustic sensors. 
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of the original variables in X. There are several different 
strategies which can be applied to decompose a matrix 
into latent variables, of which the NIPALS algorithm is 
the standard choice. This approach is based on an 
iteration process of successive orthogonal projections as 
described in Equations 1-3 (Kvalheim 1987).  

First, a weight vector wa is defined and a score vector 
ta is calculated by projecting the rows of Xa onto the 
weight vector as described in Equation 1. 

 
𝒕𝒕𝑎𝑎 = 𝑿𝑿𝑎𝑎𝒘𝒘𝑎𝑎 (1) 

  
Next, the columns in Xa are projected onto the score 

vector to calculate the loading vector pa as stated in 
Equation 2. 

𝒑𝒑𝑎𝑎 =
𝒕𝒕𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎
‖𝒕𝒕𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎‖

 (2) 

 
Finally, the part of the Xa matrix which is described 

by the component represented by ta and pa is subtracted 
from Xa as described in Equation 3, for which X1 = X.   

 
𝑿𝑿𝑎𝑎+1 = 𝑿𝑿𝑎𝑎 − 𝒕𝒕𝑎𝑎𝒑𝒑𝑎𝑎𝑇𝑇 (3) 

 
The steps expressed in Equation 1-3 are repeated for 

a = 1,2, …, A, where A ≤ rank(X). Typically, X can be 
closely approximated by a model constructed from only 
a few components, that is A << rank(X). Thus, the 
matrix decompositions can lead to a significant 
reduction of dimensionality and simplify interpretation 
of the data. Accordingly, the X matrix is decomposed 
into an information part (represented by the A 
components) and a noise part (the E matrix) as 
expressed in Equation 4.  

 

𝑿𝑿 = 𝒕𝒕1𝒑𝒑1𝑇𝑇 + 𝒕𝒕2𝒑𝒑2𝑇𝑇 +⋯+ 𝒕𝒕𝐴𝐴𝒑𝒑𝐴𝐴𝑇𝑇 + 𝑬𝑬 (4) 
 

2.4.2 Partial Least Squares Regression (PLS-R) 
Partial Least Squares Regression (PLS-R) is a 
multivariate calibration method based on latent variable 
matrix decomposition. In PLS-R, the target is to find a 
matrix β which relates the predictor variables in X to the 
response variable y and minimizes the error ϵ in 
Equation 4.  

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝝐𝝐 (5) 
 

In PLS-R, the weights w are defined as stated in 
Equation 6.  

𝒘𝒘𝑎𝑎 =
𝒚𝒚𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎
‖𝒚𝒚𝑎𝑎𝑇𝑇𝑿𝑿𝑎𝑎‖

 (6) 

 
As a consequence of the definition of the weights w, 

the matrix decomposition in PLS-R is guided by a 

criterion maximizing the covariance between the 
predictor variables in X and the response y. Thus, the 
PLS components will contain relevant information to 
describe the relationship between X and y (Martens and 
Næs 1989).  
 

2.4.3 Cross-validation 
In cross-validation, the n measurements in a calibration 
dataset is split into s segments of similar or equal size, 
where s = 2, 3, …, n. The distribution of measurements 
into segments can be done randomly or by some 
dedicated method. One by one, each of the segments are 
held out while a sub-model is calibrated based on the 
remaining measurements. The measurements in every 
left-out segment are used to test the corresponding sub-
model. For the left-out measurements, ŷ-values are 
predicted by the calibrated sub-model (Filzmoser 2009). 
The root mean squared error of cross validation 
(RMSECV) is calculated by comparing every ŷ-value to 
the corresponding reference y-value as stated in 
Equation 7.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎 = �∑ �𝒚𝒚�𝑎𝑎,𝑖𝑖 − 𝒚𝒚𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 (7) 

 
A RMSECV value is calculated for every component 

a and can be used to evaluate how many components 
should be included in a model. There are several 
versions of cross validation, differing by the selected 
number s of segments applied.  

The case where s = 2 is considered to be the ideal 
version of cross-validation and should only be used 
when the calibration set contains a high quantity of 
measurements. This method is somewhat similar to test 
set validation, the latter a validation method where an 
independently collected test set is used to validate a 
model (Esbensen et al. 2001). There are multiple ways 
of combining the n measurements into two segments. 
Thus, the model statistics resulting from using the 2-
segmented version of cross-validation will vary to some 
extent depending on how the measurements in the 
calibration set are distributed into the two sections.  

Leave-one-out (LOO) is another version of cross 
validation, for which s = n, meaning that every 
measurement in the calibration set is left out once while 
a sub-model is calibrated based on all other 
measurements. Although much used in the literature, 
this method is considered the weakest form of cross 
validation (Esbensen et al. 2001). However, since there 
is only one possible way of distributing the n 
measurements into segments for LOO, the model 
statistics resulting from using LOO will not vary based 
on sample selection as was the case with the 2-
segmented version of cross validation. Consequently, 
the LOO cross-validation method is well suited for 
conducting relative comparisons of the performance of 
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models calibrated from similar data obtained under 
different process conditions.  

3 Results 
In Figure 3, the measured values of loss of mass from 
the test piece are plotted against the mass of sand 
transported through the pneumatic conveying system.  

 
Figure 3. Erosion as loss of mass from test piece. 
 

As can be seen from Figure 3, erosion of the test 
piece occurred by a steady rate throughout the study. 
Based on the data in Figure 3, reference values for every 
obtained acoustic measurement were calculated.  

To evaluate the feasibility of the acoustic method 
for monitoring of erosion in a pipeline, the 2-segmented 
version of cross-validation was used when calibrating 
models from the measured data. Several plots describing 
one of these models, which was calibrated from the 
measurements obtained during powder transportation, 
are shown in Figure 4 to Figure 7.  

 

 
Figure 4. X-y Relation Outliers plot. 

Figure 4 shows a X-y Relation Outliers plot which 
can be used for outlier detection. The measurement 
points should form a relatively straight line in a X-y 
Relation Outliers plot, and any points deviating 
significantly from the line can be considered as outlier 
candidates. In Figure 4, it can be seen that most of the 
points falls close to a straight line. A few points in the 
lower left corner of Figure 4 deviates from the rest to 
some extent. The deviating points correspond to some 
of the first measurements obtained in the study, when 
very little erosion had occurred. Thus, it is not so 
surprising that the points are somewhat different from 
the rest. Since it was assumed that the outlier candidates 
were correctly obtained measurements representing 
special conditions in the test area, they were not 
removed from the dataset.  

 

 
Figure 5. Residual Validation Variance plot. 

 
In Figure 5, a Residual Validation Variance plot 

showing the variance in the response vector y which is 
explained by adding components to the model is shown. 
Such plots can be used to decide the number of 
components which should be included in a model to be 
able to describe the relevant variations in a dataset 
without overfitting the model. Based on the plot in 
Figure 5, it was decided to include two components in 
the model. 
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Figure 6. Predicted vs. Reference plot. 

 
The measured reference values are compared with 

the corresponding values predicted by the calibrated 
model in Figure 6, which also include some model 
statistics describing the model. The RMSECV error has 
the same unit as the y-values. The relatively low 
RMSECV-value together with the r2-value, slope and 
offset of the line fitted to the points in Figure 6 shows 
that the two sub-models calibrated as part of the cross 
validation could predict the held-out values with good 
precision.  

 

 
Figure 7. Predicted and Reference plot. 

 
From Figure 7, in which the reference values are 

plotted together with the values predicted by the model, 
it can also be seen that there is generally a good 
correspondence between the predicted values and the 
reference values. After considering the plots in Figure 4 
to Figure 7 together with the model statistics given in 
Figure 6, it can be concluded that the acoustic method 
holds good promise as a monitoring method for erosion 

in a pipeline. There is a clear structure in the measured 
acoustic data which can be related to erosion through 
calibrated PLS-R models. To estimate the magnitude of 
the prediction error which should be expected when the 
acoustic method is used to predict new values y based 
on new measurements X, test set validation against a 
new and independently measured dataset should be 
performed in future work.     

In order to compare how well the acoustic method 
performed for monitoring of erosion while sand was 
transported through the pipeline with the case where the 
pneumatic conveying system was shut down, two 
additional models were calibrated. One model was 
based on data obtained during powder transportation 
and the other on measurements conducted during system 
shutdown. The leave-one-out version of cross validation 
was used in the model calibrations to facilitate objective 
comparison of the two situations. Model statistics 
describing the resulting models are listed in Table 3.  

 

Table 3. Model statistics for LOO cross validated models.  

Model Powder transport System downtime 
r2 0.991 0.996 
RMSECV 0.485 0.439 
Slope 0.979 0.981 
Offset 0.180 0.162 

 
From Table 3, it can be seen that the model based 

on the measurements which were obtained when the 
pneumatic conveying system was shut down gave 
slightly better model statistics and lower error than the 
model calibrated from data measured during powder 
transportation. However, the differences are minimal, 
showing that the acoustic method is not significantly 
affected by noise from the system during powder 
transportation.  

Further work is needed to test the effect of factors 
like temperature changes, variating flow conditions, on 
the performance of the method. Model should be made 
from measurements obtained for conditions 
spanning/representing the range of conditions in a 
specific industrial site. Scaling, heat expansion 
 

4 Conclusions 
In this study, the feasibility of an acoustic measurement 
technique for monitoring of erosion in dilute phase 
pneumatic conveying was evaluated. Results indicated 
that the method holds good promise for monitoring of 
erosion in pneumatic conveying pipelines. A clear 
structure in the data which could be related to erosion 
through PLS-R models was found. Also, it was found 
that the acoustic method was not significantly affected 
by noise and vibration generated by the pneumatic 
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conveying system during transportation of material 
through the pipeline.  
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