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Abstract
This paper presents a concept how a hybrid DAE of a va-
por compression cycle can be initialized in steady state us-
ing the homotopy method. A simplified equation system
for a vapor compression cycle is described and its compu-
tational causality explained. It is discussed how additional
boundary conditions can be applied to the simplified equa-
tion system, which do not apply to the actual equation sys-
tem. The robustness and CPU time for different cases is
examined and discussed based on transition plots.
Keywords: Vapor Compression Cycle, Homotopy, TIL,
ThermalSystems

1 Introduction
Modelica is nowadays widely used in industry and re-
search for object oriented modelling and transient simu-
lation of cyber physical systems. Several Modelica com-
pilers are available and the compatibility between them is
continuously improving.

Although Modelica is used for transient simulation of
dynamic models, the user is often only interested in the
steady state results. And even if the transient simulation
is wanted, the initial state of the model is preferred to be
in steady state. These arguments particularly apply to va-
por compression cycles, because they are computationally
very expensive.

Models which were implemented for steady state sim-
ulation are fundamentally different from transient mod-
els, because simplifications or analytic solutions such as
the NTU method (see Verein deutscher Ingenieure (2013))
can be applied. From a user’s perspective it would be most
convenient to have just one model for both cases. If it is
not possible to merge both models, then the two different
models should provide the same level of detail and preci-
sion.

A typical simple model optimized for steady state simu-
lation of a vapor compression cycle could have two (alge-
braic) state variables. A dynamic model using finite vol-
ume method may have more than 100 (continuous time)
state variables, which have to be brought into a steady
state. So the dynamic models used for transient simu-
lation are structurally more complex than models which
have been optimized for steady state calculations.

If a dynamic model is initialized in steady state, all con-

tinuous time states and other initial unknowns (e.g. fixed
=false parameters) are calculated from an nonlinear sys-
tems of equations of the initialization problem. This ini-
tialization equation system is a result of the initial equation
der()=0 for all continuous time states.

Most Modelica tools translate the hybrid DAE de-
scribed by the Modelica equations to an explicit hybrid
ODE to solve it. Nonlinear sub-systems are solved inline
e.g. using Newton’s method. Some tools also provide a
DAE Solver to handle both, the differential equations and
the algebraic equations. However, the focus of these solv-
ing methods is the transient integration rather than solving
large nonlinear systems. Often the nonlinear solvers fail
to solve the nonlinear equation system of the initialization
problem.

One solution to improve the chance for a convergence
of the nonlinear system of the initialization problem would
be to improve the root finding method. Another solution
would be to simplify the model. The homotopy operator is
targeted at the second option. The nonlinear equation sys-
tem of the initialization problem can be simplified to make
sure that also less sophisticated solvers find a solution.

Vapor compression cycles are computationally very ex-
pensive. The fluid properties used in these models are
highly nonlinear and based on complex equations (mul-
tiparameter equations of state). The fluid properties also
have a very limited numerical range of validity, e.g. evalu-
ating these properties for a negative pressure, temperature
or density is impossible. As the equations have been es-
timated to describe measurement data, they also have an
even more restrictive physical range of validity. So it is
essential that the system state always is within the range
of validity.

2 Homotopy Operator
2.1 Rationale
If a dynamic model is initialized in steady state, many start
values are required. From an engineer’s perspective, rea-
sonable start values are either obvious and easily defined,
or they are almost impossible to provide, because they are
actually the desired result of the model. The solving pro-
cedure is obscure because it is intellectual property of the
tool vendor, and often it is not clear if the solving pro-
cess has failed because of physical or numerical problems.
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Usually the engineer can observe that parts of the system
seem to diverge to problematic working conditions, but
there is no way to influence the solving procedure.

The larger algebraic nonlinear systems are, the harder
it is to trace back the reason for convergence problems
of nonlinear systems. It is very difficult to provide good
feedback to the user about the underlying problem.

Homotopy is a concept to increase the robustness and
simplify the solving procedure for algebraic nonlinear sys-
tems. The idea is to use a simplified model (to replace
complex dependencies by simplified ones), to calculate a
first guess for the result of the actual equation system, and
to make use of the similarity of the systems during the
transition from the simple to the complex equation sys-
tem.

For simple nonlinear systems a common Newton solver
will be more efficient than using homotopy method. The
larger the nonlinear systems are, the more effort has to be
invested into the numeric root finding method. The ho-
motopy method enables the engineers to find better ways
to define start values, and to focus the solving procedure
on relevant aspects. So in other words, it enables to de-
scribe the aspects which are obvious to the engineer with
a physical understanding of the system. An engineer al-
ways crosschecks the plausibility of the calculated system
states - the solver cannot do that.

An engineer would also try to generate guess values
based on a levelled approach. So first the focus should be
on the top level, to set general working conditions includ-
ing guess values for interface values between subsystems.
After that each subsystem has to be processed using the
interface values. Interdependencies between subsystems
can and have to be broken completely at the interfaces be-
tween the subsystems.

The homotopy method requires a simple equation sys-
tem, which can be used to calculate the same state vari-
ables that are calculated from the actual equation system.
Additionally it is essential that the resulting solution of the
state variables only changes continuously during the tran-
sition from the simple to the actual equation system. So
the causality must be compatible, and the transition must
be continuous. If these two requirements are fulfilled, then
the homotopy method can be applied.

2.2 Homotopy in Modelica
The Modelica implementation of homotopy as presented
in Sielemann et al. (2011) uses one global dimensionless
transition factor λ which is zero for the simple equation
system and one for the actual equation system.

The homotopy operator looks like a function in Model-
ica. It outputs a linear combination of the two inputs:

function homotopy
input Real actual;
input Real simplified;
output Real val;

end homotopy;

The homotopy function switches term-wise between
actual and simple equations. A small example could look
like this:

y = Termactual ·λ +Termsimple · (1−λ ) (1)

z = y2 (2)

Even though the term for the calculation of y is switched
linearly in eq. 1, the eq. 2 to calculate z is switched non-
linearly because it is nonlinearly dependent on y.

In general all derivatives have to be set to zero, to ini-
tialize a system in steady state, consequently there will
be a large initialization nonlinear system. The homotopy
function can be used anywhere in the model equations or
initial equations. The function is intended to be used to
support solving nonlinear systems and it will be ignored
in other cases.

In Dymola there is a separate symbolic analysis of the
simplified equation system (λ = 0) that may have a differ-
ent computational causality and structure. E.g. the former
iteration variables could be calculated explicitly. There
is also a symbolic analysis for the initialization nonlinear
equation system dependent on the parameter λ which rep-
resents the der()=0 initial equations. The latter equation
system has the same structure, dimension and computa-
tional causality as if the homotopy method was not used,
although the homotopy function calls were inlined.

The solving procedure often implements a few basic
steps:

1. λ is set to 0

2. The (separately analysed) simplified equation system
is solved

3. The initialization equation system with the current λ

is solved using a common root finding method with
start values from the last evaluation

4. λ is increased

5. if λ < 1, repeat steps 3-5, else final execution of 3

Instead of solving one equation system, an equation
system has to be solved for each λ -value. So by design
the homotopy method is more computationally expensive
than solving the actual equation system directly. However,
comparing the CPU time is difficult, because the start val-
ues have a huge impact, and the chance of convergence
for different boundary conditions is also important. Com-
mon root finding method usually fail to initialize a larger
system in steady state without using homotopy method.
Considering robustness and the lack of good start values,
it is worth investigating the homotopy method.

Dymola usually uses a common root finding method for
nonlinear systems and it is required to activate the homo-
topy method use from the beginning (this can be done with
an Advanced-flag, or an annotation in the model). By de-
fault, the initial lambda step size is 0.1 and it remains un-
changed until one evaluation fails. If that happens, the step
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size is reduced and the solver will try again. But the step
size will not be reset to 0.1, it remains reduced for the rest
of the solving procedure. This sometimes has a negative
effect on the computation time, if the transition is highly
nonlinear for low λ -values.

Initialization in a partially steady state is usually not
meaningful. Parts of a model which are not initialized in
steady state can be seen as a dynamic boundary condition
to the connected other model part which shall be initial-
ized in steady state. If the time derivative of all states in
a subsystem are zero given dynamic boundary conditions,
then usually that subsystem is not in a steady state. The
time derivative will be zero at the simulation start, but will
be unequal to zero as soon as t > tstart.

The Modelica homotopy operator is supported by dif-
ferent Modelica compilers such as OpenModelica, Dy-
mola, and SimulationX. But currently not many libraries
extensively use this method. E.g. the ThermoPower li-
brary (Casella and Leva, 2006) provides models with ho-
motopy as discussed in Casella et al. (2011). The ClaRa
library (Gottelt et al., 2017) also applies the homotopy op-
erator, but this feature is not implemented completely. The
ThermoCycle (Quoilin et al., 2014) uses homotopy. The
TIL library (Gräber et al., 2010), which is also known as
ThermalSystem library, does not yet support homotopy,
but is the basis for this publication.

2.3 Simple Example

Figure 1. Nonlinear pump characteristic with transition to a
simplified solution. The simplified model is linear, can there-
fore be solved symbolically and has only one solution.

In figure 1 the transition between a nonlinear pump
characteristic and linear approximation equation is shown.
The Modelica code is listed in section A.

These nonlinear pump characteristics can cause prob-
lems because algebraic equation systems based on them
may have several solutions. E.g. if the pressure differ-
ence is known and not dependent on the volume flow rate,
there might be three possible volume flow rates (e.g. at
dp = 6.5). In fact this is also a common problem for real
systems. Homotopy can help to find the wanted (right-
most) solution without giving a start value.

First the simple equation system can be rearranged
symbolically to calculate the mass flow rate because it
is a linear relationship. Then this result will be used to
solve the nonlinear equation system 6.5 = dp(Vflow) with
λ = 0. So the residual should be equal to zero for the
calculated start values. Subsequently lambda is increased

(e.g. λ = 0.1) and the equation system is solved again.
But since the new equation system is almost the same as
the last one, it is easy for the root finding method to find a
solution close to the start value.

Figure 2. Solving the pump characteristic for dp = 6.5 at λ =
0.7. The last result of the nonlinear system is used as start value
(large diamond marker) to find the next result (small diamond
marker).

In figure 2 the curve for λ = 0.7 is shown. The large
diamond marker represents the start value from the last so-
lution for λ = 0.6. The small diamond marker represents
the result of the equation system. The start value and the
solution are very close to each other, and by reducing the
λ step size, the values will be even closer.

Figure 3. Solutions of the equation system plotted over λ . The
transition is continuous and describes the transition from the
simple equation system to the actual one.

If the transition is continuous, then solutions calculated
for different lambda form a continuous solution path from
the simple to the actual equation system. The transition
of the resulting algebraic state is shown in figure 3. There
must not be a discontinuity or pole in this λ -plot. The
λ -plot could also be considered as a root locus plot - the
solutions for different λ -values are connected to a line.

3 Initializing Vapor Compression Cy-
cles with Homotopy

We are focusing on finite volume models with balance
equations for mass, energy, and momentum. Some com-
ponents such as the valve and compressor have steady
state balance equations. The dynamic heat exchangers are
dicretized one-dimensionally. In contrast to that the sep-
arator model is a 0-D model with dynamic mass and en-
ergy balance. For more details see Schulze (2013). If the
dynamic component models shall be initialized in steady
state, then an additional initial equation has to be added
to set the time derivative of the continuous time state to
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zero. The continuous time state variables are pressure and
specific enthalpy.
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Figure 4. User-defined boundary conditions for the simplified
equation system. Heat flow rates in each component are pre-
defined, mass flow rate, separator pressure, and a linear valve
characteristic.

In figure 4 the boundary conditions used for this work
are shown. The basic concept for the simple equation sys-
tem is to describe the state of a whole vapor compression
cycle using a number of simple conditions:

• Fixed heat flow rates in each heat exchanger

• Fixed mass flow rate and power in the compressor

• Fixed pressure and filling level in the separator

• Linear characteristic in the valve

For this simplified nominal working state, all mass flow
rates, enthalpy and pressure states can be calculated. Due
to the steady state mass balance all mass flow rates are
equal to the one set in the compressor. The high pres-
sure is set by the user in the separator. The low pressure
is calculated from the mass flow rate, the high pressure,
and linear valve characteristic. Starting from the separator
outlet enthalpy in a saturated state (which is known due
to the fixed pressure), all enthalpies can be calculated. In
a discretized heat exchanger the heat flow rate density is
assumed to be constant, so if the control volumes have the
same size, the enthalpy difference between two neighbor-
ing volumes is constant.

The valve characteristic is a linear equation which con-
nects high pressure, low pressure, mass flow rate, and
valve opening area. The valve opening area is usually con-
trolled.The valve opening area must not be removed from
the simple equation system, because the controller state
will be calculated from it.

The above described simplified equation system does
not require the calculation of fluid properties. Usually
the heat flow rate is calculated from a temperature differ-
ence, but as the heat flow rates are predefined, the tem-
perature has no influence on the result of the simplified
equation system. If in contrast a complex heat transfer

model would be replaced only by a constant heat transfer
coefficient, then the temperature-enthalpy relation is not
broken (Casella et al., 2011).

During the transition between the simplified and actual
equation system the states must stay within the range of
validity of the fluid properties. So the definition of the
simple system and the transition to the actual equation sys-
tem are the most important challenges when using homo-
topy.

Because the simple equation system is analysed sep-
arately, it is solved symbolically and no start values are
required. This is one of the main advantages when using
homotopy. The user only has to provide the values listed
above and nothing more. Usually the user knows how to
choose this nominal working state.

This concept also works for more complex vapor com-
pression cycles. In case there are more than two pressure
levels, there has to be an additional separator or a compo-
nent such as an ejector. An additional separator would set
the pressure, and an ejector would set the mass flow rate
ratio between suction inlet and driving inlet. Also inter-
nal heat exchangers do not cause problems, because the
predefined heat flow rate decouples the two fluid pipes. If
a system consists of multiple connected vapor compres-
sion cycles and/or heating/cooling liquid cycles, this sim-
ple equation system decouples the cycles and the above
shown computational causality can be applied to each cy-
cle.

The level of abstraction of the presented approach is
higher than in other publications such as (Casella et al.,
2011), many relations have been replaced completely by
predefined values, not only by linear relations.

4 Loop Breaker Component
A vapor compression cycle consists of at least 4 compo-
nents connected to a cycle. If dynamic models are used,
then it is no problem to connect these components to a cy-
cle. If only steady state models are used, then the mass
balance causes circular dependencies. Each component
has a mass balance that basically sets the outlet mass flow
rate equal to the (negative) inlet mass flow rate:

ṁA = ṁB (3)
ṁB = ṁC (4)
ṁC = ṁD (5)
ṁD = ṁA (6)

This equation system is singular. The equation ṁA = ṁA
can be derived, and no value is set.

To solve this problem using pure steady state models,
an additional component called loop breaker is used. This
component does not have a mass balance and is therefore
underconstrained. The circular dependency is no longer a
problem. However, when initializing a dynamic model in
steady state, the mass balance cannot be removed. Only
for the initialization phase the circular dependency has to
be broken.
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The locally overdetermined equation system for the

mass flow rates can be brought into a balanced form, if one
degree of freedom is added to the this part of the initializa-
tion problem. This degree of freedom has to be set by the
mass balance equations. There are only a few ways to add
a degree of freedom to the initialization equation system
without changing the continuous time equation system:

1. A parameter with fixed=false

2. A discrete state variable

3. A continuous time state variable with der()=0 as
continuous time definition

One possible implementation for a loop breaker can
be interpreted as a junction model. Starting point is a
component model with one inlet connector and one out-
let connector. In this model an additional mass flow rate
mDot_loopbrk is added to the mass balance. If this com-
ponent is integrated to the closed cycle of steady state
components, mDot_loopbrk can be calculated. As no
mass is added in the other components, no mass will leave
the loop breaker component, therefore mDot_loopbrk is
equal to zero:

parameter Real mDot_loopbrk(fixed=false);
initial equation
der(density)=0;

equation
mDot_in + mDot_out + mDot_loopbrk =
volume*der(density);

It is important to notice, that the whole initialization
problem is balanced. It is only locally overdetermined. So
by adding a degree of freedom another initial equation can
be added.

The presented approach is similar to the one used by
(Casella et al., 2011).

5 Separator Model
The separator model has to be treated different from the
other models. Generally the separator has two main pur-
poses. First, it separates liquid from vapor in a normal
operating condition. Second, it is used to store refrigerant
without changing the state of the system. This compo-
nent is also special because its state cannot be calculated
from the constraint der()=0, because in normal operat-
ing condition, the filling level of this component does not
influence the outlet state (pure liquid or vapor). An addi-
tional information about the initial filling level or the total
mass in the system is required. The additional degree of
freedom added for the mass balance loop breaker is used
for this purpose. So actually there is a der(h)=0 initial
equation, and a fillingLevel=initialFillingLevel

initial equation.
The above presented approach to use predefined heat

flow rates may lead to another problem: The sum of the
predefined heat flow rates and powers might not sum up to
0. This is by definition not a steady state, since more (or

less) heat is put into than taken of the cycle. This circular
dependency is not properly detected by Dymola, rather the
problem is solved numerically. If the energy balance is
fulfilled numerically, then the solution can be found. If the
energy balance is not fulfilled, then evaluating the simple
solution fails. Similar to the mass balance, the system of
equations is not in a locally balanced state.

To overcome this overdetermined energy balance and
to smooth the transition from simple to actual solution,
an additional degree of freedom is added to the separator
model: An energy balance loop breaker. Similar to the
mass balance loop breaker, an additional variable is added
to the balance equation, and it is calculated from all ini-
tial conditions - namely the der(h)=0. So if the heat flow
rates sum up to zero, then the simple equation system re-
sult for this energy flow is zero. But if the heat flow rates
are unbalanced, then this additional energy flow is equal
to the energy balance error for the simple equation system.

For this additional degree of freedom an additional ini-
tial equation has to be added. But this initial equation
should not be used to define this degree of freedom, but
rather set something else which had not been defined yet:
the total pressure level. Up to now the pressure is not yet
defined, only pressure difference due to the valve charac-
teristic. Of course in the actual equation system the energy
balance loop breaker variable should be zero.

The following initial equation has been chosen:

homotopy(deltah_loopbrk, k*(p-pInitial))=0;
k=1e-2;

The loop breaker variable deltah_loopbrk with the unit
[J/kg] is set to zero as actual solution, and for the simpli-
fied solution the pressure is set to a fixed value. k is used
to define the transition shape between pressure difference
and energy boundary condition. As a result of this the en-
ergy balance does not have to be fulfilled for the prefixed
user values in the simple equation system. However, in
the actual equation system the loop breaker enthalpy dif-
ference is zero.

6 Specific Enthalpy Breaker Models
Similar to the separator model, it is useful to add addi-
tional breaker models, to define the fluid state i.e. spe-
cific enthalpy at certain positions. This is possible by
adding more degrees of freedom to the initialization prob-
lem which disappear at simulation time.

For example the superheat after the evaporator is often
controlled to a constant value. So assuming the controller
will be successful, the fluid state at that position is known
and can be set to a constant value for the simple solution.
The enthalpy difference delta_h in the model has to be 0
for the actual solution, and for the simple solution it has
to be calculated from the constraint portB.h_outflow=
superheatedEnthalpy. superheatedEnthalpy is the
enthalpy difference to the saturated enthalpy. So one pos-
sible implementation is:

Real superheatedEnthalpy=...;
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parameter Real delta_h(fixed=false);

initial equation
0 = homotopy(delta_h,

portB.h_outflow-superheatedEnthalpy);
equation
portB.h_outflow = inStream(

portA.h_outflow) + delta_h;

7 Controller
In the presented simplified solution, the superheating af-
ter the evaporator depends on the mass flow rate, but the
outlet specific enthalpy does not. So the solver will try
to find a low pressure value, that has the desired super-
heating temperature for a given specific enthalpy. This
equation system is hard to solve and often has zero or two
solutions.

However, the controlled variables can be changed for
the simple solution. Instead of passing the actual super-
heating temperature to the controller, a pressure differ-
ence to a desired low pressure value can be passed to it
(of course the setpoint of the controller has to be added to
this difference). A simple model to modify the measured
signal could look like this:

parameter Real replacement_desired = ...;
parameter Real original_setpoint = ...;
parameter Real k = 1e-6;
RealInput u "original value";
RealInput replacement_measured;
RealOutput y = homotopy(u,

original_setpoint + (
replacement_measured -
replacement_desired)*k);

The replacement_desired is the desired low pressure,
replacement_measured is connected to the current low
pressure. k is used to relate the order of magnitude of a
pressure difference to a temperature difference.

Similar to this the capacity controller in the system has
to be modified. The controller usually modifies the com-
pressor displacement and consequently the mass flow rate.
The cooling capacity is fixed for the simple solution and so
is the air outlet temperature. If the controller is not mod-
ified, then the output will be limited and the integral part
will may be defined by the anti-windup implementation.
This issue can be fixed similarly by replacing the mea-
sured air outlet temperature with an homotopy term that
depends on the controller output itself. So using the above
described model the replacement_desired=0.9 is the
desired relative displacement, replacement_measured

has to be connected to the current relative displacement.
k is set to 10.

8 Software Experimental Results
In the following a common R-134a automotive vapor com-
pression cycle is examined. The system is shown in fig-
ure 5. The cycle has a valve, an evaporator, a compressor,
and a condenser with separator and build-in subcooling
section. The superheating after the evaporator is used to

control the expansion valve (superheating setpoint 7 K).
The evaporator air outlet temperature is used to control the
relative displacement of the compressor (air temperature
setpoint 3◦C). The whole system including the controllers
is initialized in steady state. The evaporator air inlet tem-
perature and the condenser inlet air temperature are 30◦C.
The compressor speed is set to 50 Hz (=3000 rpm). All
results have been calculated using Dymola 2019.

Figure 5. Automotive air conditioning cycle used for simulative
experiments, based on TIL. The condenser is implemented using
two separate heat exchangers.
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Figure 6. Steady state of the automotive air conditioning cycle
used for simulative experiments shown in the ph diagram.

The predefined values in the simplified equation system
are:

• High pressure: 25 bar

• Mass flow rate: 0.05 kg/s,

• Condenser heat flow rate: 7000 W condensation +
1000 W subcooling

• Evaporator heat flow rate: 6000 W

• Compressor power: 2000 W
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• Nominal linear valve characteristic: mass flow rate =

0.05 kg/s at 24 bar pressure difference

• Setpoint for superheat controller replacement (low
press.) = 1 bar

• Setpoint for capacity controller replacement (rel.
disp.)= 0.9

The predefined values are enough to replace all initial and
start values in the model, if the system is initialized in
steady state.

The robustness of the solving procedure is influenced
by two aspects:

1. Plausibility of the simplified nominal working state.

2. Similarity between the simplified and nominal oper-
ating condition.

8.1 Transition from Simplified Nominal
System State to Actual System State
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Figure 7. Transition from simplified nominal system state to
actual system state. Each marker represents a thermodynamic
state in a control volume of the heat exchanger. Circles mark the
simplified state. diamonds mark the actual state.

Figure 7 shows the transition between the simplified
and the actual control volume states in a ph-diagram. It
is clearly visible that the transition of the states is contin-
uous, but the shape of the transition is not linear. There
is no simple explanation for transition form. In the simple
equation system the pressures are predefined, in the actual
equation system the pressures are defined by the refriger-
ant mass in the components, the temperatures, and heat
transfer to the other medium.

As mentioned before, it is important that all enthalpy
and pressure states remain in a reasonable range during
the transition. Otherwise the fluid properties would cause
problems. E.g. it is not possible to provide reasonable
property data for a negative pressure or if temperature are
below the triple temperature. As can be seen the transition
stays well within a reasonable range. Pressures stay below
the critical point and above the triple point. The specific
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Figure 8. Transition from simplified nominal system state with
zero heat flow rate to actual system state.

enthalpies stay around the two phase region. If the simpli-
fied nominal working state is not close to the actual state,
this does not seem to be a problem.
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Figure 9. Transition from simplified nomnial system state with
low pressure difference to actual nominal system state.

Even the zero heat flow rate use case shown in figure 8
is working fine, although the transition is nonlinear. The
pressure levels of the simplified nominal working state
seem to be very important for the plausibility of the system
state as is visible in the nonlinear transition in figure 9.

8.2 Robustness against Operating State
Often a normal transient simulation from an arbitrary ini-
tial state is done to find the steady state of a dynamic
model. Homotopy method is an alternative to that. To
enable a fair comparison, the simulation times for both
cases have been tested. In this section the results of a batch
run for different boundary conditions are discussed. The
operating states of the system are shown to illustrate the
robustness. The following conditions have been varied:

• compressor speed: 10 Hz to 50 Hz (600 to 3000 rpm)

• condenser air inlet temperature: 10◦C to 60◦C

• evaporator air inlet temperature: 10◦C to 50◦C
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All the dynamic simulations start from the same initial

state. The simulation stop time was set to 1000 s, DASSL
was used with a tolerance of 1e-4. To increase the chance
of convergence, the supheating controller has a compa-
rably low gain value. The results calculated with homo-
topy method are all based on the same nominal state ("nor-
mal"). The model was only initialized with homotopy at
t = 0s, but not simulated. The total number of cases is 60.

To examine how these results depend on the model size,
the same batch run has been done with different levels of
dicretization. "2 x volumes" indicates, that the number of
control volumes in the heat exchangers has been doubled.
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Figure 10. Steady state results of the cycle of the parameter
variation. The results vary from very low pressures and temper-
atures up to the critical point.

Figure 10 shows the steady state results of the batch
run. In all cases the superheating was reached, and the
filling level of the separator was around 40 to 50%. So the
system was always in a normal operating condition, which
simplifies the simulation. The pressures are ranging from
2.5 bar to 43 bar.

For a wide range of operating states the above presented
homotopy method is capable of finding a steady state. It
proved to be very robust and easy to parametrize. How-
ever, if the controller limits would be active, the picture
might change.

8.3 Computational Effort
The batch run discussed in section 8.2 is now examined re-
garding its CPU time and function evaluations. The mea-
surements were taken on an i7 (2. gen), each calculation
as been executed 5 times to get an average execution time.

In figure 11 the CPU times for the different cases are
shown. For the three variations (three levels of dicretiza-
tion) of the system homotopy method is computationally
less expensive than a simulation by a factor of 5-10.

Since the CPU time is difficult to measure precisely and
is highly dependent on the CPU an additional indicator
was chosen: For the dynamic simulations the number of
F-evaluations (evaluations of the RHS of the hybrid ODE),
and for the homotopy method the number of evaluations of
the residual of the initialization problem. These measures
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Figure 11. CPU time of a parameter variation compared be-
tween simulation with Dassl (tolerance = 1e-4) and homotopy
initialization. "2 x volumes" indicates that the number of con-
trol volumes has been doubled compared to the normal example.
The thickness of this violin plot indicates the density of occur-
rence.
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density of occurrence.
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usually are proportional to the CPU time. The results are
shown in figure 12.

The two figures look very similar, so the CPU time has
been measured with a sufficient precision. But compar-
ing the simulation with the homotopy shows that a RHS
evaluation of the ODE is not equivalent to a residual eval-
uation of the intialization problem. The F-evaluation is
computationally more expensive.

However, larger parameter studies and user tests have to
be done to clearly evaluate the benefits from using homo-
topy for different initial states, simplified nominal work-
ing states, and larger systems.

9 Conclusion
The simplified equation system to describe a vapor com-
pression cycle that was presented in this paper is easy to
parametrize, and defines a reasonable system state. The
simple model is very abstract but it particularly enables
separation of different flow paths and different cycles, so
it is potentially able to handle large scale problems, even
though this still has to be proven.

The mass and energy balance require a loop breaker to
handle the different causality of the simplified model. The
energy balance loop breaker turned out to have a positive
influence on the convergence. Measured values for con-
trollers have to be modified the define the integral part.

The experiments show that initialization using the pre-
sented approach is very robust, and neither the operating
state of the system, nor the boundary conditions have to
be close to the simplified solution.

Homotopy method lead to a reduction of the computa-
tional effort. The transition of the system state including
the controllers have a huge impact on the result. A bad
homotopy implementation is likely to fail or be compu-
tationally more expensive. More time has to be invested
to evaluate the user-friendliness, robustness, and compu-
tational speed also for other cycles.
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A Appendix
Code for a simple homopty example:

model HomotopyPumpLine
Real V_flow(start=0);
parameter Real dp0=6;

initial equation
der(V_flow) = 0;

equation
der(V_flow) =
1*(
6.5 - homotopy(

actual = (dp0 + 3*V_flow - (3*
V_flow-0.5)^2*sign(3*V_flow-0.5
)),

simplified = (2*dp0 - 10*V_flow)
)

);
end HomotopyPumpLine;

In Dymola the flag Advanced.OnlyUseHomotopyMethod

has to be activated to find the rightmost solution. If it is
not activated, homotopy is only used if the default alge-
braic solver fails. If the flag Advanced.DebugHomotopy

is activated, a csv file with the V_flow over lambda will
be generated in the current working directory.
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