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Abstract
The spread of electrical storage devices continues to be
underpinned by the limited charging currents that can be
applied. The limitation arises from the lack of sufficient
high power charging stations, either at home or along
roads and highways, and from the maximum admissible
current that can be applied to the battery before undesir-
able degradation mechanisms are triggered. Accordingly,
most traditional charging protocols limit the charging cur-
rent as a function of the standing state of charge of the bat-
tery. These protocols are designed empirically and restrict
the potential benefit of more flexible charging options.
However, the alternative to traditional protocols must rely
on a more precise knowledge of the operating constraints
and on advanced control techniques to compute online the
best operating plan. This work presents a model predic-
tive control (MPC) application to minimize the charging
time of a lithium-ion battery subject to electrochemical
and thermal constraints. The satisfaction of these con-
straints ensures that the battery degradation is minimized,
or at least mitigated. The programming language Model-
ica and the optimization and simulation framework JMod-
elica.org is used in combination with Python language to
assess the computing time and potential use of MPC and
the developed cell models in commercial batteries.
Keywords: Fast-charge, nonlinear MPC, optimization,
battery aging

1 Introduction
Lithium-based battery cells dominate the spectrum of
electrical storage when it comes to portable electronic/-
electric devices. These cells can withstand thousands of
charge-discharge cycles before degradation makes them
unusable. However, when the batteries are charged at high
rates, the expected life is reduced. In general, the degra-
dation rate depends on the charging current and the cell
temperature. Empirical results show that operation above
40 ◦C can dramatically reduce the life of the cell (Wang
et al., 2011; Ecker et al., 2012). The same results from
operating at low temperatures (below 10◦C).

High charging current increases the voltage of the bat-
tery due to the effect on the cell of the electrochemically
induced overpotentials. This observable effect is a con-
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sequence of the ohmic, charge transfer, and diffusion re-
sistances (Gerl et al., 2014). When these exceed certain
thresholds then the side-reactions that cause cell degrada-
tion are triggered.

The overpotentials depend on the current applied I, the
temperature T , and the state of charge (SOC). It is ex-
pected, therefore, that if certain operating constraints de-
fined as a function of these variables are not violated, then
the degradation mechanisms will be ceased or at least
slowed down. How these constraints are identified and
modeled has been covered recently by different authors
(e.g. (Moura et al., 2013; Romagnoli et al., 2017)). It
has been more common, however, to use empirical results
of capacity and power fade (degradation) as a function of
SOC, I and T , to subsequently obtain empirical degrada-
tion expressions by some fitting procedure. The result-
ing expressions can be used in combination with control
schemes to maximize the benefit of utilizing the cells in
the best possible way, often optimal under certain crite-
rion.

In the recent years, Modelica has been chosen by many
research institutions and companies to study the interac-
tion of batteries with other systems such as power-trains,
cooling devices, or power electronics. The component-
oriented programming facilitated by Modelica can be used
to compare multiple configurations in the design stage,
as well as to optimize the size and operation of battery
systems. Several libraries have been developed in the
last years ((Dao and Schmitke, 2015; Uddin and Picarelli,
2014; Gerl et al., 2014; Bouvy et al., 2012; Brembeck and
Wielgos, 2011; Einhorn et al., 2011; Janczyk et al., 2016)),
which have been validated with experimental data. Appli-
cations have focused mostly on hybrids, plug-in hybrids,
and full electric vehicles, with emphasis on fuel econ-
omy (Batteh and Tiller, 2009; Spike et al., 2015), thermal
management (Bouvy et al., 2012), and battery aging (Gerl
et al., 2014). Despite the significant effort, there is still
some room for improvement in the area of constrained
control techniques using Modelica to explicitly account
for electrochemical and thermal operating boundaries.

This paper presents an optimal control strategy to
charge a lithium-ion battery cell subject to electrochem-
ical constraints. The model used to describe the cell dy-
namics and to draw the operational limits is the so-called
Equivalent Hydraulic Model (EHM), which is linear on
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the two electrochemical states (state of charge and critical
surface concentration), and nonlinear on the output volt-
age. In addition to the electrochemical states, the cell tem-
perature dynamics is also modeled and constrained. The
optimal charging profile is obtained and applied over a re-
ceding horizon following a classical MPC approach, and
is implemented in Python and JModelica.org. The optimal
control strategy is compared with a commercial constant-
current/constant-voltage (CCCV) charging protocol that is
the standard in most applications, illustrating the benefits
of the optimal constrained charging strategy.

The remainder of this work can be summarized as fol-
lows. Section 2 introduces the EHM model and its exten-
sion to include the temperature state. Section 3 describes
the conventional and the optimal charging strategies, as
well as the implementation details. Results and their dis-
cussion are covered in Section 4, followed finally by the
conclusions and future work.

2 Battery modeling and control
This section presents a reduced order model of the battery
cell taken from the literature, as well the description of the
coupled thermal model and two control strategies that are
later compared for battery charging.

2.1 Equivalent Hydraulic Model
The equivalent hydraulic model (EHM) was first proposed
by (Manwell and McGowan, 1993) for lead acid batter-
ies, but it has been recently applied to lithium-ion cells as
a reduced-order electrochemical battery model. Figure 1
depicts the physical meaning of the model states and how
they interact with the flow of lithium ions. The model cap-
tures the dynamics of an idealized two-layer single parti-
cle within which lithium accumulates. The dynamics can
be represented with more traditional two-tank hydraulic
model (?). In continuous-time, this model takes the form

dSOC
dt

=−γI (1)

dCSC
dt

=
g(SOC−CSC)

β (1−β )
− γ

1−β
I (2)

where SOC and CSC are the state of charge and the
critical surface concentration of lithium ions respectively,
I is the applied current in [A ·m−2], and g, β and γ are con-
stant parameters as defined in (Couto and Kinnaert, 2018).
The convention of negative currents for battery charge is
respected here.

The positive electrode dynamics are usually faster than
the negative electrode ones, which motivates the assump-
tion of fast dynamics for the former electrode, i.e.

CSC+ = SOC+

SOC+ = ρSOC+σ
(3)

where ρ and σ are also constant parameters. The output
voltage of the battery is a nonlinear function consisting of

Figure 1. Equivalent hydraulic model and the spherical-solid
particle representation (Couto et al., 2016). u(k), q1 and q2 are,
respectively, the lithium flow, and the bulk and surface lithium
concentration

the open-circuit voltage ∆U , the surface overpotential η±
s

and the film resistance R f given by

V = ∆U +η
+
s −η

−
s −R f γI (4)

where ∆U = f (SOC,CSC) and

η
±
s =C sinh−1

(
θ±√

z(1− z)
I

)
,

where z = CSC+ = ρSOC + σ for the positive compo-
nent and z = CSC for the negative one, and C and θ± are
constant parameters. All parameters and functions of the
EHM are chemistry dependent.

In order to avoid the main side reactions that compro-
mise battery life and its safe operation, the battery over-
potentials should be restricted through constraints. These
constraints are in general nonlinear, which may result
in solution spaces that are nonconvex (Romagnoli et al.,
2017). However, it is possible to convexify the solu-
tion space with more conservative linear constraints of the
form:

I ≥ αiCSC+βi, i = 1, . . . ,nc (5)

where αi and βi are the parameters associated to the
linear approximations of the nonlinear side reaction con-
straints, and nc is the considered number of linear con-
straints. In this work, only two linear approximations are
used to describe the nonconvex solution space.

Besides electrochemical side reactions, there are oper-
ational limits of the electrode materials that need to be re-
spected. Introducing or extracting more Li-ions that the al-
lowed limit SOCmax results in accelerated battery degrada-
tion (Tang et al., 2009; Hausbrand et al., 2015). Finally, a
maximum input current Imax could also be imposed, which
represents a given maximum C-rate, which is a multiple of
the current that charges the battery in 1 hour. If the capac-
ity of the battery is 34 [Ah ·m−2], then a C-rate 1C corre-
sponds to -34 [A ·m−2], 3C to -102 [A ·m−2], and so on.
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These constraints take the following form for the charging
process

SOC ≤ SOCmax, CSC ≤ SOCmax (6)

SOC+ ≥ SOC+
max, CSC+ ≥ SOC+

max (7)
I ≤ Imax (8)

2.2 Thermal Model
The previous reduced-order electrochemical model can be
augmented to include the effect on the cell temperature of
the heat generated when charging or discharging the bat-
tery. The augmented model is nonlinear because the heat
generated depends on the product of voltage and current,
both variables of the system. The first order differential
equation governing the thermal dynamics can be written
as

mcellCp,cell
dTcell

dt
= hA(Tcell −Tamb)+ Q̇gen (9)

where Tcell is the cell temperature, mcell is the cell mass,
Cp,cell the specific heat, h is the overall heat transfer coeffi-
cient (accounting for convection and conduction), A is the
heat exchange area, Tamb is the ambient temperature, and
Q̇gen is the heat generated by the cell.

The thermal model for simulation is based on (Onda
et al., 2003), where the total heat generated is defined as

Q̇gen = I(∆U −V −Tref
d(∆U)

dT
) (10)

where Tref is a reference temperature, and d(∆U)
dT can be

calculated as the entropy change ∆S divided by the Fara-
day constant (F). The value of ∆S is based on a LiNiCoO2
pouch cell (Uddin et al., 2014).

The cell ohmic resistance Rint can also be used to cal-
culate the heat generated as Q̇gen = I2Rint. In this work,
and for the benefit of the predictive controller proposed in
the following section, this expression of the heat is used in
combination with the one-dimensional thermal model of
the battery to approximate the heat exchange process.

Temperature constraints are motivated by the larger ag-
ing rates of batteries at higher temperatures as their lifes-
pan roughly halves for each 13◦C increase in average bat-
tery temperature (Keyser et al., 2017). The resulting upper
constraint can be defined as follows:

Tcell ≤ Tcell,max (11)

A lower bound constraint is not considered in this work,
but it would be necessary should ambient temperatures
drop below 10◦C.

2.3 Standard Charging Protocol
Standard charging protocols such as the constant current-
constant voltage (CCCV) and its variations (Keil and
Jossen, 2016) rely only on voltage measurements to reach

a desired SOC. A typical CCCV protocol consists of a
charge period under constant current (CC), followed by
a constant voltage (CV) stage. The CV stage begins when
a predefined voltage threshold is reached, and terminates
when either a fixed maximum duration time or a minimum
current threshold is achieved. The CV stage can be driven
by a proportional feedback controller which in practice
leads to a progressive reduction of the current as the ref-
erence voltage is reached; this is the approach followed in
the present study.

2.4 Constrained Control
A widely used strategy to cope with constrained control
problems is MPC (Camacho and Bordons, 2004). Model
predictive controllers calculate the future control actions
on the process, u(t), by solving an on-line optimization
problem subject to constraints that can be written as

min
u(t)

∫ tf

t0
(SOC(t)−SOCref)

2dt

s.t. model dynamics
electrochemical constraints
thermal constraints

(12)

The optimization problem (12) minimizes a cost func-
tion that depends on the predicted tracking error (given
a desired reference SOCref) and the control effort. The
former is the difference between the SOC and its refer-
ence. The latter depends on u(t), which is the sequence
of control actions on the system, i.e., the applied current.
The time horizon (tf − t0) is discretized into a finite num-
ber of time steps in which the variables of the problem
are defined. Constraints include the predictions performed
with a simplified battery model, as well as upper and lower
bounds on states, outputs, input, or a combination of these.

3 Case Studies and Implementation
Figure 2 shows the control scheme adopted. The con-
troller, which is either based on the CCCV protocol or
on MPC, can receive information regarding the reference,
outputs and measured disturbances. It is assumed in this
work that the effect of the disturbances is negligible.

Table 1. CCCV controller

Variable Value Units

Iend -0.15 [A ·m−2]
Vthres 4.19 [V]
Vref 4.2 [V]
Kp -5250 [A ·V−1]
Ki 0 [A · (V · s)−1]
∆tsample 1 [s]
∆tsim 0.1 [s]
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Figure 2. Feedback control loop including different controllers and the plant model.

Regarding the CCCV protocol, the stopping conditions
and setup parameters for the proportional controller used
are shown in Table 1. Iend and Vthres are the termination
current and the voltage threshold respectively. ∆t coin-
cides with the simulation time step, and is the rate at which
the controller is implemented. KP and KI are the propor-
tional and integral coefficients for the PI controller, and
Vref define the voltage reference to calculate the error. In
order to ensure a smooth transition between the CC and
CV stages, the applied current in the later was filtered us-
ing the arithmetic mean of the calculated and a number of
past applied currents (this number is 9 in this work).

Table 2. NMPC controller

Variable Value Units

tf 200 [s]
SOCref 0.665 [-]
ne 20 [-]
ncp 1 [-]
H 200 [s]
∆tMPC 10 [s]
∆tsim 1 [s]
solver IPOPT

The implementation in Modelica of both the plant
model (Appendix I), used for simulation, as well as the
prediction model (Appendix II, including constraints) are
included at the end of the document. Both are based on ex-
perimental data obtained for a commercial LCO batteries
(Turnigy Nano-tech, 160mAh (Turnigy, 2018)). The op-
timal control problem was solved with the programming
language Python and JModelica.org. The latter is an open
source platform for optimization, simulation and analysis
of complex dynamic systems (Link et al., 2015). It in-
terfaces the numerical solver IPOPT and CasADi, which
is an open source symbolic framework for automatic dif-
ferentiation and optimal control (Andersson et al., 2012).
The Python program to compute the MPC problem is also
included in Appendix III. Table 2 shows the settings for
the NMPC algorithm, which is solved using the interior
point method, where ne is the number of finite elements,

Figure 3. Current profiles for CCCV protocols (1C, 3C and 5C).

ncp is the number of collocation points in each element,
H is the control horizon, ∆tMPC is the sampling time and
the length of each time interval for the MPC, ∆tsim is the
simulation timestep.

4 Results
In this section, we present results regarding current, tem-
perature, voltage and critical surface concentration. The
values for the current applied are shown in the units of
the model (I ·m−2), but are also referred to in terms of the
equivalent C-rate.

4.1 CCCV Protocols
The results of the application of three CCCV charge pro-
files with increasing constant current are discussed first.
Figure 3 presents the current profiles, calculated by the
proportional controller and limited by the prescribed CC
current.

As expected, the increase of the CC rate reduces the
charging time: around 4165 s for 1C, 1975 s for 3C, and
1590 s for 5C. These values depend on the battery chem-
istry, the controller setup, and the termination conditions.
Figure 4 shows the consequence of using charging proto-
cols that overlook the existence of an electrochemically
safe operating region. The grey area denotes the combina-
tion of I and CSC where side reactions are triggered.
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Figure 4. Charging trajectories in the I-CSC plane for CCCV
protocols.

Figure 5. Voltage profiles for CCCV protocols (1C, 3C and 5C).

Figures 5 and 6 show the respective results for voltage
and temperature. The first figure illustrates the effect of
the proportional controller, which takes the same parame-
teres for the three CCCVs. Regarding the temperature, as
expected, the maximum temperature achieved varies sig-
nificantly with the current applied. However, an equally
important fact is that the higher the Crate of the CC stage,
the longer the cell’s temperature remain above ambient
temperatures. This means that calendar aging, i.e., the
aging that takes place with zero current conditions and
which depends on the cell temperature, will be higher for
the higher C-rate CCCVs. For 1C CCCV the tempera-
ture increase remains below 5◦C. Given the relationship
between aging, current and temperature, it is not surpris-
ing that most manufacturers recommend the use of low
C-rates for charging (below 1C).

4.2 Nonlinear MPC
In this section, we compare the previous results for 5C
CCCV with the thermally unconstrained (NMPC) and
constrained (NMPC_T) optimal controllers. For the latter,
the maximum temperature allowed (Tmax) is 35◦C. This
choice is arbitrary, but well below the maximum temper-

Figure 6. Temperature profiles for CCCV protocols (1C, 3C and
5C).

Figure 7. Current profiles for the nonlinear controllers and the
5C-CCCV protocol.

ature achieved by the 5C CCCV, and so suitable for il-
lustrating the methodology. In practice, to properly select
the boundary one should have an estimation of its impact
in the battery’s long-term performance, so to measure the
economic gains from setting such a boundary. This issue
is not addressed in the present paper.

Figure 7 shows the current profiles. Regarding the op-
timized profiles, they remain qualitatively close for most
of the charge, except for an interval in which the current
is decreased to enforce the temperature constraints for the
NMPC_T, which slightly increases the charging time.

Figure 8 shows the admissible charging region, now
with the NMPC and the NMPC_T profiles. Both remain
electrochemically feasible throughout the charging pro-
cess but, as a consequence of the temperature constraints,
the NMPC_T departs from the electrochemical convex
hull. In this figure, as well as in Fig. 7, it can be observed
that the NMPC_T resembles a CCCV with boost charge.
This charging protocol can reduce significantly the life of
the cell, as shown by (Keil and Jossen, 2016). In their
work, the authors present experimental results considering
boost current of 5C that fills 40% of the capacity, including
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Figure 8. Charging trajectories in the I-CSC plane for nonlinear
controllers and 5C-CCCV protocols.

the following intervals: 0%-40%, 10%-50%, 20%-60%.
The first interval results in the highest degradation, which
is explained as a higher cell resistance at low SOC. Nev-
ertheless, these three boost-charge profiles bring the 5C
current into the region of side reactions, similar to what
results with the 5C CCCV in the present paper (Fig. 5).

Finally, results for voltage and temperature are pre-
sented. As anticipated in the previous subsection, the elec-
trochemical constraints limit the rate at which the voltage
approaches the SOC reference. Regarding the tempera-
ture profiles, a ∆T = 4◦C reduction is obtained just by
imposing electrochemical constraints with a further de-
crease when activating the thermal constraints. Taking
into account that aging increases exponentially with tem-
perature, these differences could improve the battery life
at the expense of increasing the charging times. These
are 3520 s for the thermally unconstrained, and 3720 s for
the thermally constrained. It is worth noting that NMPC
is charged up to 80% (SOC = 0.55) in 960 s, while the
NMPC_T is charged up to this SOC in 1500 s. For the
model used, CSC deviates only slightly from the SOC, and
thus the charging times can be obtained comparing I-CSC
and I-t plots.

Solution times when solving the NMPC problem at
each time interval remain close to 0.15 s, while for the
thermally constrained NMPC rise slightly up to 0.20 s. In
any case the total time surpassed 0.3 s. Given the non-
linear controller update rate (10 s), this ensures that in
absence of great disturbances, both controllers can be ap-
plied online, if the tools needed for estimation remain in
the same order of magnitude.

5 Conclusions and Future Work
The fast and safe charge of lithium-ion batteries remains
an open problem. Most charging protocols rely on empir-
ically obtained parameters, and generally result too con-
servative, limiting the flexibility of operation. This work
presents the modeling, simulation and control efforts to
better understand the open challenges. In particular a

Figure 9. Voltage profiles for the nonlinear controllers and the
5C-CCCV protocol.

Figure 10. Temperature profiles for the nonlinear controllers
and the 5C-CCCV protocol.

NMPC scheme was implemented in Python and JModel-
ica.org, which provides an excellent platform to compare
the results of optimization-based control methods with
more traditional charging protocols that rely on relay, pro-
portional, or PI controllers.

It can be concluded that the NMPC solver can be ap-
plied on-line, and that charging time can be reduced com-
pared with CCCV protocols while complying with elec-
trochemical constraints, which will presumably extend the
battery life. However, adding thermal constraints can sig-
nificanly limit the advantage of the optimal controller re-
garding the charging time. Arising from the simultaneous
application of electrochemical and thermal constraints are
boost-charge-like charging strategies, which make possi-
ble to charge up to 80% the battery in less than 30 min.
Ongoing work focuses on time constraints to enforce a
certain level of SOC within a given time, and on an op-
timization scheme to pre-compute electrochemically and
thermal safe CCCV with boost charge.
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Appendix I. Battery plant model

model EHMcell

// Heat transfer problem parameters
parameter Modelica.SIunits.Resistance R =

0.330 "Internal resistance";
parameter

Modelica.SIunits.CoefficientOfHeatTransfer
h = 10 "Heat transfer [W/m2.K]";

parameter Modelica.SIunits.Area A = 4.7
e-4 "Heat transfer area [m2]";

parameter Modelica.SIunits.Mass M =
0.0045 "Cell mass [kg]";

parameter
Modelica.SIunits.SpecificHeatCapacity
Cp = 800 "Cell specific heat [J/kg.K

]";

// Electrochemical parameters
parameter Real gamma = 0.0000054581;
parameter Real g = 0.042653404659871;
parameter Real beta = 0.7;
parameter Real Ccell = 0.16 "Battery

capacity [Ah]";
parameter Real p_oneC = 34 "1C current

flux [A/m2]";
parameter Real p_alpha = 0.5;
parameter Real p_Faraday(unit = "C/mol")

= 96487 "Faraday constant";
parameter Real p_R = 8.314472;
parameter Real p_T_ref = 298.15;
parameter Real p_aFRT = (p_alpha*

p_Faraday)/(p_R*p_T_ref);
parameter Real p_thetap =

0.003753150372049;
parameter Real p_thetan

=0.002390386732068;

parameter Real p_Rf = 0.000846744769459;
parameter Real p_ro = 0.798857289559742;
parameter Real p_sigma =

1.001138873133620;

// Constraint parameters
parameter Real alpha1 = 137.436438945007;
parameter Real alpha2 = 858.977743406295;
parameter Real beta1 = -171.795548681259;
parameter Real beta2 = -532.566200911903;

// The states and variables
Real SOC(start = 0.01) "State of charge";
Real CSC(start = 0.01) "Critical surface

concentration";
Real CSCp(start = 0.01) "CSC

Overpotential positive electrode";
Modelica.SIunits.Temp_C T(start = 25.) "

Battery temperature";
Modelica.SIunits.Voltage Up(start = 0.1)

"Surface overpotential positive
electrode";

Modelica.SIunits.Voltage Un(start = 3.5)
"Surface overpotential negative
electrode";

Modelica.SIunits.Voltage V(start = 3.5) "
Battery voltage";

Modelica.SIunits.MolarEntropy DS "Entropy
change [J/mol.K]";

// The control signal
input Modelica.SIunits.ElectricCurrent I

"Input current flux [A/m2]";

equation
der(SOC) = - gamma * I;
der(CSC) = g/beta/(1-beta) * SOC - g/beta

/(1-beta) * CSC - gamma * I/(1-beta)
;

der(T) = ((-I/(p_oneC/Ccell)*(V - (-Un +
Up) + p_T_ref*DS/p_Faraday) ) - h*A*(
T - 25))/M/Cp;

DS = 0.5609*1e+3*(SOC/0.68)^5 -1.3440*1e
+3*(SOC/0.68)^4 + 1.1877*1e+3*(SOC
/0.68)^3 -0.6072*1e+3*(SOC/0.68)^2 +
0.2378*1e+3*(SOC/0.68)^1 -0.0397*1e
+3*(SOC/0.68)^0 ;

CSCp = -p_ro * SOC + p_sigma;
Up = (0.654807602368402*((1-CSCp)

.^3.196972561445755))+ 3.85516954 +
1.247319422*(1-CSCp) -
11.15240126*(1-CSCp).^2 +
42.8184855*(1-CSCp).^3 -
67.71099749*(1-CSCp).^4 +
42.50815332*(1-CSCp).^5 - 6.13244713
e-4*Modelica.Math.exp(-7.657419995*(
CSCp.^115.0));

Un = 8.002296379 + 5.064722977*CSC -
12.57808059*CSC.^(1/2) - 8.632208755
e-4*CSC.^(-1) + 2.176468281e-5*CSC.
^(3/2) - 0.4601573522*
Modelica.Math.exp(15.0*(0.06 - CSC))
- 0.5536351675*Modelica.Math.exp
(-2.432630003*(CSC - 0.92));

V = -Un + Up -(p_Rf*I) - (1/p_aFRT)*(
Modelica.Math.asinh(( 1*p_thetan*I)/
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sqrt(CSC*(1-CSC)))) + (1/p_aFRT)*(
Modelica.Math.asinh((-1*p_thetap*I)/
sqrt(CSCp*(1-CSCp))));

end EHMcell;

Appendix II. Battery optimization model

optimization EHMTV_Opt (objectiveIntegrand
= (SOC - 0.665)^2,

startTime = 0,
finalTime = 200)

// Heat transfer problem parameters
// ...

// Electrochemical parameters
// ...

// Constraint parameters
// ...

// The states and variables
Real SOC(start = 0.01) "State of charge";
Real CSC(start = 0.01) "Critical surface

concentration";
Real CSCp(start = 0.01) "CSC

Overpotential positive electrode";
Modelica.SIunits.Temp_C T(start = 25.) "

Battery temperature";
Modelica.SIunits.Voltage Up(start = 0.1)

"Surface overpotential positive
electrode";

Modelica.SIunits.Voltage Un(start = 3.5)
"Surface overpotential negative
electrode";

Modelica.SIunits.Voltage V(start = 3.5) "
Battery voltage";

Modelica.SIunits.MolarEntropy DS "Entropy
change [J/mol.K]";

// The control signal
input Modelica.SIunits.ElectricCurrent I

"Input current flux [A/m2]";

equation
// ...
der(T) = (R*(I/(p_oneC/Ccell))^2 - h*A*(T

- 25))/M/Cp;
// ...

constraint
SOC <= 0.665 + 0*0.627319647304968;
CSC <= 0.665 + 0*0.627319647304968;
SOC >= 0.001;
CSC >= 0.001;
I >= alpha1 * CSC + beta1;
I >= alpha2 * CSC + beta2;
I >= -34*5;
I <= 0.;
T <= 300;
V <= 4.5;

end EHMTV_Opt;

Appendix III. Python implementation of the MPC,
based on JModelica.org User Guide (Modelon, 2018)

# // Program that demonstrate the native
FMI interface for simulation

# // Integration takes place within python

import numpy as N
import pylab as plt
from pymodelica import compile_fmu
from pyfmi.fmi import load_fmu

# // Import the function for compilation of
models and the load_fmu method

from pyjmi import
transfer_optimization_problem

# // Compile model and load FMU
fmu_name = compile_fmu("EHMcell", "C:\...\

EHMcell_old.mo")
model = load_fmu(fmu_name)

# // Transfer the optimization problem to
casidi

# // This function transfers the
optimization problem into Python

# // and expresses its variables,
equations, etc., using the

# // automatic differentiation tool
CasADi.

op = transfer_optimization_problem("
EHMTV_Opt", "C:\...\EHMTV_Opt.mop")

# // Optimization options
opts = op.optimize_options()
opts[’n_e’] = 20
opts[’n_cp’] = 1
opts[’solver’] = ’IPOPT’
opts[’expand_to_sx’] = ’NLP’

# // Simulation times and model
initialization

Tstart = 0
Tend = 3600+1000
model.time = Tstart
I0 = -1.
I02 = I0
model.set(’I’, I0)
h0 = 10.
model.set(’h’, h0)
model.initialize()

# // Data to be stored in the integration
loop

# // Get continous States
x = model.continuous_states
# // Get the Nominal Values
x_nominal = model.nominal_continuous_states
# // Get the Event Indicators
event_ind = model.get_event_indicators()

# // Values for the solution
# // Retrieve the valureferences for the

values ’SOC’, ’CSC’ and ’T’
states0 = [model.get_variable_valueref(’SOC

’)] + [model.get_variable_valueref(’CSC
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’)] + [model.get_variable_valueref(’T’)
]

vol0 = model.get_variable_valueref(’V’)
voltage = [model.get_real(vol0)]
vol = model.get_real(vol0)
t_sol = [Tstart]
sol = [model.get_real(states0)]
I_sol = [I0]

# // Initialize integration time and define
the step-size

time = Tstart
Tnext = Tend # Used for time events
dt = 1 # Step-size
Iend = -0.15

# // Main integration loop using explicit
Euler method.

# // This is the integration loop for
advancing the solution one step at a
time.

# // The loop continues until the final
time has been reached or

# // if the FMU reported that the
simulation is to be terminated.

count = 0
while time < Tend and not

model.get_event_info().
terminateSimulation:

# // Compute the derivative of
theprevious step f(x(n), t(n))

dx = model.get_derivatives()

# // Advance
h = min(dt, Tnext - time)
time = time + h

# // Set the time
model.time = time

# // Set the states at t = time
# // Perform the step using x(n+1) = x(

n) + h*f(x(n), t(n)))
x = x + h*dx

# // To make sure that the plant
does not feed back infeasible
states

if x[2] >30 and x[2]<31:
x[2]=30

if x[2] > 31:
break

model.continuous_states = x

# // Retrieve solutions at t = time for
outputs

# // model.get_real, get_integer,
get_boolean, get_string(valueref)

t_sol += [time]
sol += [model.get_real(states0)]
vol = model.get_real(vol0)
voltage += [vol]

if vol > 4.5:
I0 = 0.;
model.set(’I’, I0)

op.set(’SOC0’,float(N.array(sol)[-1,0])
)

op.set(’CSC0’,float(N.array(sol)[-1,1])
)

op.set(’CSCp0’,float(N.array(sol)
[-1,1]))

op.set(’T0’,float(N.array(sol)[-1,2]))

clause = count \% 10
if clause <= 1e-5:

resopt = op.optimize(options = opts
)

Iopt = resopt[’I’]
print Iopt[0]
if count > 100:

I0 = Iopt[0]
else:

I0 = Iopt[0]
model.set(’I’, I0)

I_sol += [I0]
count=count+1
if I0 >= Iend:

break

# // Plots...


	Session 2D: Electrical Power 1
	A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

	Session 3A: HVAC



