
Proceedings of the 1st Conference on Historical Cryptology, pages 133– 136,
Uppsala, Sweden, 18-20 June, 2018

The Application of Hierarchical Clustering to Homophonic Ciphers

Anna Lehofer

Department of Philosophy and History of Science

Budapest University of Technology and Economics

Budapest H-1111, Egry József u. 1. E 610, Hungary

lehofer.anna@gmail.com

Abstract

In this work in progress study I examined

whether the method of hierarchical

clustering could be used efficiently on

Hungarian homophonic ciphers from the

early modern age. First I have tested the

methodology on artificial homophonic

ciphers. The original corpora of these

artificial codes were appropriate to ascertain

the effectiveness of the method: knowing

the plaintext I could control the outcome. In

connection with text length I have identified

the limits of the applicability of hierarchical

clustering. In a second part, the investigation

of eight original letters from the early

modern age followed. The testing of original

manuscripts shows whether the results based

on the artificial ciphers are applicable to

original historical documents as well.

1 Homophonic Ciphers of the Early

Modern Age

In a homophonic substitution cipher single plaintext

letters can be replaced with several code characters.

In simpler cases only the vowels and the most

frequent letters are replaced with more code

characters, but in an advanced, complex cipher key,

each of the plaintext letters receive several code

characters, so-called homophones. I call these

ciphers pure homophonic ciphers. But in many

cases, early modern homophonic ciphers used

separate tokens for syllables, logograms (characters

representing frequent words or names) and nulls

(meaningless tokens to confuse the cryptanalysis)

beyond the homophones. I call these types of ciphers

advanced homophonic systems.

Both pure homophonic ciphers and advanced

homophonic systems were part of the early modern

practice, even the simple monoalphabetic

substitution was in use in some cases. Breaking

these monoalphabetic codes can even be an easy

task. The frequency analysis of the code characters,

recurring character lines, vowel-consonant analysis

can bring us closer to find the plaintext letters of the

ciphers.

The same cannot be said about homophonic

ciphers. Speaking of advanced homophonic systems

of the 16th century, the few pages long character

tables consisted of two or three homophones for

each plaintext letter, about 10 symbols for nulls, 10

for bigraphs, 100-150 characters for syllables and

even 300 characters for logograms (Láng, 2015, 37).
For such codes, a properly composed and correctly

used cipher-key can result in an almost even

distribution in the frequency of the code characters,

making the task of the codebreakers much harder.

So the tools that can lead us to the decryption of

monoalphabetic codes give us no help for decrypting

homophonic systems.

In the practice, using homophonic substitution

meant a higher security compared to simple

monoalphabetic ciphering, but it also had its

drawbacks. The complexity of the cipher-keys made

the usage of this encrypting method slower and more

complicated.

2 Hierarchical Clustering

"Cluster analysis groups data objects based only on

information found in the data that describes the

objects and their relationships. The goal is that the

objects within a group be similar (or related) to one

another and different from (or unrelated to) the

objects in other groups. The greater the similarity (or

homogeneity) within a group and the greater the

difference between groups, the better or more

distinct the clustering (Kumar et al., 2005, 490)."

Speaking of homophonic ciphers, the base set of

these data objects is the multitude of the code

characters. The aim of the clustering process is to

ascertain with which right and left neighbors the

particular code characters appear in the text.

To illustrate the operation of hierarchical

clustering to homophonic codes let’s suppose that
we have a homophonic cipher using 100 different

code characters. The aim of the method is to

investigate which code characters are likely to

appear together. Based on the 100 code characters of

the text, we prepare two 100x100 matrices. Both the

rows and columns of the matrix represent the code

characters of the cipher. If we point at a number in

this matrix, it indicates the occurrence-frequency,

how often the concerning two code characters

(indicated by the row and the column) appear

together. One matrix shows the occurrence

frequency with the left neighbors, the other shows

the occurrence frequency with the right neighbors.

To create one attribution from the left and right

neighborhood, we combine these two matrices and

use the new 100x200 matrix in the following step. In

this matrix, each line is a 200-dimensional vector,

representing one code character. Depending on the

neighbors of these code characters, each vector

points to different directions. Similar vectors point

almost to the same direction, vectors that differ from

each other point into different directions.

From the upper vectors, on the basis of cosine

distance function we generate a 100x100 distance

matrix with values from 0 to 1. In the diagonal of

this matrix (where the distance of the vectors from

themselves appears, namely the distance of two

equal vectors) the function gets a value of 1. The

other values – depending on the angle locked

together – will get values between 0 and 1. The more

similar these vector pairs, the more they point to the

same direction (the closer this value is to 1).

To display hierarchical clustering graphically I

have used the open source Cran R software. It uses a

tree-like diagram called a dendrogram to visualize

these relationships. It draws these dendrograms on

the basis of the distance-matrix.

Exactly the same method was efficiently used by

the decryption process of the famous Copiale code

(Kevin et al., 2011).

3 Artificial Ciphers

Hereupon I have created artificial homophonic codes

from a Hungarian corpus (Géza Gárdonyi, Eclipse

of the Crescent Moon) to be able to tell a bit more

about the criteria for the optimal application. These

artificial codes are pure homophonic codes which

were created by Cran R that randomly assigned the

desired number of homophones to the plaintext

letters.

In the testing process I have investigated two

things. First I have gradually increased the number

of homophones assigned to a plaintext letter (starting

with a monoalphabetic set of code characters) to see

how long hierarchical clustering is able to detect the

homophone groups. Secondly I have gradually

reduced the length of the examined part of the text to

find the point where hierarchical clustering loses its

efficiency in finding the vowel and consonant

groups and the groups of homophones.

3.1 Full Text Codes

Based on the artificial codes created from the full

text of the novel I have faced with the followings.

The first, monoalphabetic code has immediately

brought in an interesting result. The software

separated two bigger clusters on the dendrogram:

one big cluster showed only vowels, the other bigger

group contained only consonants. So the method can

be used on monoalphabetic ciphers as well: it can

almost perfectly separate vowels and consonants in a

monoalphabetic ciphertext.

By tripling the number of the homophones

clustering can also find the vowel and consonant

groups, furthermore it can correctly recognize the

three-element homophone groups belonging to the

particular plaintext letters.

I was surprised when the program could even

identify the vowel and consonant groups and the

homophone groups when 20 homophones were

assigned to a plaintext letter. It seems that in case of

a 400-page corpus hierarchical clustering can

identify the homophone groups belonging to the

particular plaintext letters, even if we have far more

homophones than the early modern practice shows

(early modern cipher keys usually have 2-3 or 5-6

code characters for one plaintext letter at most).

Of course, in reality, codebreakers do not have

book-lengthy texts. Most often they have a

paragraph or at most a few pages written with

encrypted characters. In the following, I have

examined how the method worked when I started to

reduce the length of the examined text.

3.2 Unicity Point

According to the writings of Elliot Fischer and

James Reeds the limits of using hierarchical

clustering efficiently will be discussed here with the

concepts of text redundancy and unicity point. The

unicity point of a cipher is U=H(k)/D where H(k) is

134

the logarithm of the number of possible keys of the

ciphers and D is the redundancy of the language.

The unicity point is the message length beyond

which decipherment using a known system becomes

a unique process. From the given formula it is clear

that the lower the redundancy of a language, the

greater the unicity point for a given cipher (Fischer,

1979 and Reeds, 1977).

I examined the original corpus in two ways. The

first table shows how entropy – thus redundancy –

and the unicity point changes when increasing the

number of homophones gradually from 1 to 5 on the

700000-character-long corpus. Despite of the

indicated infinite limit of the 5th case, all of the

related five dendrograms have identified the vowel

and consonant groups correctly and clustering could

even find the 1-2-3-4-5 element homophone groups

of the ciphers.

Number of

homophones

Number of

used code

characters

Hmax Hreal Redundancy Unicity point

1 35 5.129 4.58 0.107 1240

2 70 6.129 5.579 0.09 3706

3 105 6.714 6.164 0.082 6816

4 138 7.109 6.579 0.074 10569

5 174 7.443 6.901 0.073 ∞

Table 1: Increasing the number of homophones in the full

text

The second table shows how unicity point

changes when decreasing text length assuming 2

homophones for each plaintext letters. The first

value (around 700000 characters) shows the full

length of the text, 100%. Than follows 10%, 1%,

0.5% and finally 0.1%.

Text length (number of characters) Number of used code characters Unicity point

700934 70 3706

70093 66 3986

7009 66 4059

3504 65 4203

700 62 3515

Table 2: How unicity point changes when reducing text

length using 2 homophones per letter

We can see that in the given artificial code,

speaking of pure homophonic substitution, using

two homophones for each plaintext letter, the

efficiency of hierarchical clustering falls down

around the text length of 3500 characters. Here the

unicity point is around 4200 characters, so a longer

text is needed for a safe codebreaking than the

examined one. The dendrograms of these cases also

corroborate this statement: while the dendrogram of

the 3500-character-long text can still separate a big

cluster for vowels and another one for consonants

almost perfectly, the dendrogram of the 700-

character-long text (of which unicity point value is

already much lower than the real text length) falls

into smaller clusters. These small clusters may still

support the individual codebreaking process but

neither separate vowels and consonants, nor identify

the homophone pairs of the ciphertext in a proper

way.

4 Early Modern Letters

In this section, I will investigate encrypted letters1

from the early modern age. The cipher keys of these

letters were also available (in an archive or

reconstructed form), thus the keys offered help and

control when examining the efficiency of clustering.

The first letter I have examined – C.Bay.01 – was

a 419-character-long almost fully encrypted letter

that uses a very complex cipher key: beyond the

homophonic set of code characters it also indicates

syllables, logograms and nulls with separate signs.

The dendrogram outlined as a result of clustering

proved that this letter was too short, the cipher key

was too complex to give any help in the decoding

process.

After the Bay letter I looked for a letter with a less

complex cipher key than the first one, and examined

C.Wes.03.a. It was a 2359-character-long letter

using an all-in-all 43-element cipher key, assigning

more (5-6) code characters only to the vowels.

The cluster map of this cipher looked more

promising. The software separated two bigger

clusters: one showed only consonants, the other

bigger cluster contained almost exclusively vowels.

The program identified homophone pairs in five

cases. The remaining smaller groups and the

characters that were not grouped to other ones were

mostly logograms, so they were "outranked"

correctly from the homophones.

So far I have examined 6 more early modern

ciphers to find out where the limits of applicability

are. All of the scrutinized letters come from the

period 1664-1706 and have their cipher keys in an

available form as well.

To describe applicability, two outcomes were

tested: 1) whether the clustering process could

identify the vowels and consonants in different

1 Up to now I have investigated 8 early modern

Hungarian letters. Since this is a work in progress, this

outcome will be better grounded, after I will have

transcribed and analyzed several other manuscripts in the

near future.

135

clusters, and 2) whether the clustering process could

identify the homophone groups belonging to the

particular plaintext letters. In cases where clustering

can show up any of these two identifications,

hierarchical clustering can be stated effective. In

these cases hierarchical clustering can support the

codebreaking process.

The outcomes of the examined letters are

summarized in the following table. The first column

shows the name of the letters following the notation

of Benedek Láng (Láng, 2015, 233). The column of
text length shows how many code characters the

concrete letters are made of; number of used code
characters shows how many characters were

actually used in the concrete letters. Hmax shows the

maximum value of entropy, Hreal stands for the

actual values of entropy. Redundancy shows the text

redundancy of the letters, the column of unicity point
indicates the required text length. Vowel-consonant
groups shows whether the method of hierarchical

clustering could separate the vowels and the

consonants in different clusters; and homophone

groups shows if the clustering process could identify

the homophone groups belonging to the particular

plaintext letters.

Letters2
Text

length

Number of

used code

characters

Hmax Hreal Redundancy
Unicity

point

Vowel-

consonant

groups

Homophone

groups

C.Bay.01 419 113 6.82 6.113 0.104 5905 no no

C.Bay.02 494 130 7.022 6.338 0.097 7490 no no

C.Kov.02 1537 189 7.562 6.689 0.115 ∞ no no

C.Wess.03.a 2359 64 6 4.92 0.18 1643 vowels in 6 cases

C.Wess.03.b 828 61 5.931 4.939 0.167 1662 vowels in 5 cases

C.Wes.04 1525 77 6.267 4.994 0.203 1850 vowels in 5 cases

C.Wes.05 749 26, 4.7 4.029 0.143 618 partly -

C.Wes.06 417 37 5.209 4.231 0.188 763 no no

Table 3: Features of the examined early modern letters

5 Summary

In this paper I have first tested hierarchical clustering

on artificial codes by modifying two parameters:

increasing the number of homophones assigned to a

plaintext letter and decreasing the text length. It can

be stated that in case of a 400-page corpus

hierarchical clustering could identify the homophone

groups successfully, even if we had far more

2 These letters can be found in the Hungarian

National Arcives, G 15 Caps. D. Fasc 81. and G 15 Caps. C.

Fasc 36. fol. 3-4. and in the ÖStA HHStA Ungarische Akten
Specialia Verschwörerakten VII. Varia (Pressburger

Kommission etc.) Fasc. 327. Konv. D. Chiffres 1664-1668,

fol 35-37, 40-41, 62, 63.

homophones (20) than the early modern practice

showed (2-6). Investigating the unicity points of

ciphertexts it can be stated that hierarchical

clustering was still efficient when text length was

under the unicity point, but near to it. In cases when

text length was much lower than the unicity point,

the dendrograms could not give any help for the

codebreaking process.

In a second part I have processed original early

modern ciphers with the upper methodology. I have

stated that hierarchical clustering was efficient if it

could clearly identify the vowels and consonants in

separate clusters on the dendrogram and/or if it

could find the homophone groups belonging to the

particular plaintext letters. The features and

outcomes of the eight early modern letters showed

that when the unicity point was under or near the

text length the dendrograms could help the

codebreaking process. Hierarchical clustering could

not bring any results in case of letters that were

much shorter than the unicity point.

Consequently, speaking of homophonic

substitution ciphers we can state that the longer an

encrypted letter, or the less symbols its cipher key

uses, the more probable the cipher can be solved

with the help of hierarchical clustering. Since the

historical manuscripts of the early modern age do

involve such encrypted letters – we can find ciphers

with thousands of code characters, or cipher keys

that have only 30-40 symbols – hierarchical

clustering offers significant contribution to the

codebreaking process of historical homophonic

substitution ciphers.

References

Benedek Láng. 2015. Titkosírás a Kora Újkori
Magyarországon. Balassi Kiadó, Budapest.

Elliot Fischer. 1979. Language Redundancy and

Cryptanalysis. In Cryptologia, volume 3, pages 233-

235.

James Reeds. 1977. Entropy Calculations and Particular

Methods of Cryptanalysis. In Cryptologia, volume 1,

pages 235-254.

Kevin Knight, Beáta Megyesi, Christiane Schaefer. 2011.
The Copiale Cipher. Presented at the ACL Workshop
on Building and Using Comparable Corpora.

Vipin Kumar, Michael Steinbach, Pang-Ning Tan. 2005.

Introduction to Data Mining. Pearson (Education Inc.),

Boston.

136

