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Abstract 

In this work in progress study I examined 

whether the method of hierarchical 

clustering could be used efficiently on 

Hungarian homophonic ciphers from the 

early modern age. First I have tested the 

methodology on artificial homophonic 

ciphers. The original corpora of these 

artificial codes were appropriate to ascertain 

the effectiveness of the method: knowing 

the plaintext I could control the outcome. In 

connection with text length I have identified 

the limits of the applicability of hierarchical 

clustering. In a second part, the investigation 

of eight original letters from the early 

modern age followed. The testing of original 

manuscripts shows whether the results based 

on the artificial ciphers are applicable to 

original historical documents as well. 

1 Homophonic Ciphers of the Early 

Modern Age 

In a homophonic substitution cipher single plaintext 

letters can be replaced with several code characters. 

In simpler cases only the vowels and the most 

frequent letters are replaced with more code 

characters, but in an advanced, complex cipher key, 

each of the plaintext letters receive several code 

characters, so-called homophones. I call these 

ciphers pure homophonic ciphers. But in many 

cases, early modern homophonic ciphers used 

separate tokens for syllables, logograms (characters 

representing frequent words or names) and nulls 

(meaningless tokens to confuse the cryptanalysis) 

beyond the homophones. I call these types of ciphers 

advanced homophonic systems.  

Both pure homophonic ciphers and advanced 

homophonic systems were part of the early modern 

practice, even the simple monoalphabetic 

substitution was in use in some cases. Breaking 

these monoalphabetic codes can even be an easy 

task. The frequency analysis of the code characters, 

recurring character lines, vowel-consonant analysis 

can bring us closer to find the plaintext letters of the 

ciphers. 

The same cannot be said about homophonic 

ciphers. Speaking of advanced homophonic systems 

of the 16th century, the few pages long character 

tables consisted of two or three homophones for 

each plaintext letter, about 10 symbols for nulls, 10 

for bigraphs, 100-150 characters for syllables and 

even 300 characters for logograms (Láng, 2015, 37). 
For such codes, a properly composed and correctly 

used cipher-key can result in an almost even 

distribution in the frequency of the code characters, 

making the task of the codebreakers much harder. 

So the tools that can lead us to the decryption of 

monoalphabetic codes give us no help for decrypting 

homophonic systems. 

In the practice, using homophonic substitution 

meant a higher security compared to simple 

monoalphabetic ciphering, but it also had its 

drawbacks. The complexity of the cipher-keys made 

the usage of this encrypting method slower and more 

complicated. 

2 Hierarchical Clustering 

"Cluster analysis groups data objects based only on 

information found in the data that describes the 

objects and their relationships. The goal is that the 

objects within a group be similar (or related) to one 

another and different from (or unrelated to) the 

objects in other groups. The greater the similarity (or 

homogeneity) within a group and the greater the 



difference between groups, the better or more 

distinct the clustering (Kumar et al., 2005, 490)." 

Speaking of homophonic ciphers, the base set of 

these data objects is the multitude of the code 

characters. The aim of the clustering process is to 

ascertain with which right and left neighbors the 

particular code characters appear in the text.  

To illustrate the operation of hierarchical 

clustering to homophonic codes let’s suppose that 
we have a homophonic cipher using 100 different 

code characters. The aim of the method is to 

investigate which code characters are likely to 

appear together. Based on the 100 code characters of 

the text, we prepare two 100x100 matrices. Both the 

rows and columns of the matrix represent the code 

characters of the cipher. If we point at a number in 

this matrix, it indicates the occurrence-frequency, 

how often the concerning two code characters 

(indicated by the row and the column) appear 

together. One matrix shows the occurrence 

frequency with the left neighbors, the other shows 

the occurrence frequency with the right neighbors. 

To create one attribution from the left and right 

neighborhood, we combine these two matrices and 

use the new 100x200 matrix in the following step. In 

this matrix, each line is a 200-dimensional vector, 

representing one code character. Depending on the 

neighbors of these code characters, each vector 

points to different directions. Similar vectors point 

almost to the same direction, vectors that differ from 

each other point into different directions. 

From the upper vectors, on the basis of cosine 

distance function we generate a 100x100 distance 

matrix with values from 0 to 1. In the diagonal of 

this matrix (where the distance of the vectors from 

themselves appears, namely the distance of two 

equal vectors) the function gets a value of 1. The 

other values – depending on the angle locked 

together – will get values between 0 and 1. The more 

similar these vector pairs, the more they point to the 

same direction (the closer this value is to 1). 

To display hierarchical clustering graphically I 

have used the open source Cran R software. It uses a 

tree-like diagram called a dendrogram to visualize 

these relationships. It draws these dendrograms on 

the basis of the distance-matrix.  

Exactly the same method was efficiently used by 

the decryption process of the famous Copiale code 

(Kevin et al., 2011). 

3 Artificial Ciphers 

Hereupon I have created artificial homophonic codes 

from a Hungarian corpus (Géza Gárdonyi, Eclipse 

of the Crescent Moon) to be able to tell a bit more 

about the criteria for the optimal application. These 

artificial codes are pure homophonic codes which 

were created by Cran R that randomly assigned the 

desired number of homophones to the plaintext 

letters. 

In the testing process I have investigated two 

things. First I have gradually increased the number 

of homophones assigned to a plaintext letter (starting 

with a monoalphabetic set of code characters) to see 

how long hierarchical clustering is able to detect the 

homophone groups. Secondly I have gradually 

reduced the length of the examined part of the text to 

find the point where hierarchical clustering loses its 

efficiency in finding the vowel and consonant 

groups and the groups of homophones. 

3.1 Full Text Codes 

Based on the artificial codes created from the full 

text of the novel I have faced with the followings. 

The first, monoalphabetic code has immediately 

brought in an interesting result. The software 

separated two bigger clusters on the dendrogram: 

one big cluster showed only vowels, the other bigger 

group contained only consonants. So the method can 

be used on monoalphabetic ciphers as well: it can 

almost perfectly separate vowels and consonants in a 

monoalphabetic ciphertext. 

By tripling the number of the homophones 

clustering can also find the vowel and consonant 

groups, furthermore it can correctly recognize the 

three-element homophone groups belonging to the 

particular plaintext letters. 

I was surprised when the program could even 

identify the vowel and consonant groups and the 

homophone groups when 20 homophones were 

assigned to a plaintext letter. It seems that in case of 

a 400-page corpus hierarchical clustering can 

identify the homophone groups belonging to the 

particular plaintext letters, even if we have far more 

homophones than the early modern practice shows 

(early modern cipher keys usually have 2-3 or 5-6 

code characters for one plaintext letter at most). 

Of course, in reality, codebreakers do not have 

book-lengthy texts. Most often they have a 

paragraph or at most a few pages written with 

encrypted characters. In the following, I have 

examined how the method worked when I started to 

reduce the length of the examined text. 

3.2 Unicity Point 

According to the writings of Elliot Fischer and 

James Reeds the limits of using hierarchical 

clustering efficiently will be discussed here with the 

concepts of text redundancy and unicity point. The 

unicity point of a cipher is U=H(k)/D where H(k) is 
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the logarithm of the number of possible keys of the 

ciphers and D is the redundancy of the language. 

The unicity point is the message length beyond 

which decipherment using a known system becomes 

a unique process. From the given formula it is clear 

that the lower the redundancy of a language, the 

greater the unicity point for a given cipher (Fischer, 

1979 and Reeds, 1977). 

I examined the original corpus in two ways. The 

first table shows how entropy – thus redundancy – 

and the unicity point changes when increasing the 

number of homophones gradually from 1 to 5 on the 

700000-character-long corpus. Despite of the 

indicated infinite limit of the 5th case, all of the 

related five dendrograms have identified the vowel 

and consonant groups correctly and clustering could 

even find the 1-2-3-4-5 element homophone groups 

of the ciphers. 

Number of 

homophones 

Number of 

used code 

characters 

Hmax Hreal Redundancy Unicity point 

1 35 5.129 4.58 0.107 1240 

2 70 6.129 5.579 0.09 3706 

3 105 6.714 6.164 0.082 6816 

4 138 7.109 6.579 0.074 10569 

5 174 7.443 6.901 0.073 ∞ 

Table 1: Increasing the number of homophones in the full 

text 

The second table shows how unicity point 

changes when decreasing text length assuming 2 

homophones for each plaintext letters. The first 

value (around 700000 characters) shows the full 

length of the text, 100%. Than follows 10%, 1%, 

0.5% and finally 0.1%. 

Text length (number of characters) Number of used code characters Unicity point 

700934 70 3706 

70093 66 3986 

7009 66 4059 

3504 65 4203 

700 62 3515 

Table 2: How unicity point changes when reducing text 

length using 2 homophones per letter 

We can see that in the given artificial code, 

speaking of pure homophonic substitution, using 

two homophones for each plaintext letter, the 

efficiency of hierarchical clustering falls down 

around the text length of 3500 characters. Here the 

unicity point is around 4200 characters, so a longer 

text is needed for a safe codebreaking than the 

examined one. The dendrograms of these cases also 

corroborate this statement: while the dendrogram of 

the 3500-character-long text can still separate a big 

cluster for vowels and another one for consonants 

almost perfectly, the dendrogram of the 700-

character-long text (of which unicity point value is 

already much lower than the real text length) falls 

into smaller clusters. These small clusters may still 

support the individual codebreaking process but 

neither separate vowels and consonants, nor identify 

the homophone pairs of the ciphertext in a proper 

way. 

4 Early Modern Letters 

In this section, I will investigate encrypted letters1 

from the early modern age. The cipher keys of these 

letters were also available (in an archive or 

reconstructed form), thus the keys offered help and 

control when examining the efficiency of clustering.  

The first letter I have examined – C.Bay.01 – was 

a 419-character-long almost fully encrypted letter 

that uses a very complex cipher key: beyond the 

homophonic set of code characters it also indicates 

syllables, logograms and nulls with separate signs. 

The dendrogram outlined as a result of clustering 

proved that this letter was too short, the cipher key 

was too complex to give any help in the decoding 

process.  

After the Bay letter I looked for a letter with a less 

complex cipher key than the first one, and examined 

C.Wes.03.a. It was a 2359-character-long letter 

using an all-in-all 43-element cipher key, assigning 

more (5-6) code characters only to the vowels. 

The cluster map of this cipher looked more 

promising. The software separated two bigger 

clusters: one showed only consonants, the other 

bigger cluster contained almost exclusively vowels. 

The program identified homophone pairs in five 

cases. The remaining smaller groups and the 

characters that were not grouped to other ones were 

mostly logograms, so they were "outranked" 

correctly from the homophones. 

So far I have examined 6 more early modern 

ciphers to find out where the limits of applicability 

are. All of the scrutinized letters come from the 

period 1664-1706 and have their cipher keys in an 

available form as well. 

To describe applicability, two outcomes were 

tested: 1) whether the clustering process could 

identify the vowels and consonants in different 

                                                           

1 Up to now I have investigated 8 early modern 

Hungarian letters. Since this is a work in progress, this 

outcome will be better grounded, after I will have 

transcribed and analyzed several other manuscripts in the 

near future. 
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clusters, and 2) whether the clustering process could 

identify the homophone groups belonging to the 

particular plaintext letters. In cases where clustering 

can show up any of these two identifications, 

hierarchical clustering can be stated effective. In 

these cases hierarchical clustering can support the 

codebreaking process.  

The outcomes of the examined letters are 

summarized in the following table. The first column 

shows the name of the letters following the notation 

of Benedek Láng (Láng, 2015, 233). The column of 
text length shows how many code characters the 

concrete letters are made of; number of used code 
characters shows how many characters were 

actually used in the concrete letters. Hmax shows the 

maximum value of entropy, Hreal stands for the 

actual values of entropy. Redundancy shows the text 

redundancy of the letters, the column of unicity point 
indicates the required text length. Vowel-consonant 
groups shows whether the method of hierarchical 

clustering could separate the vowels and the 

consonants in different clusters; and homophone 

groups shows if the clustering process could identify 

the homophone groups belonging to the particular 

plaintext letters. 

Letters2 
Text 

length 

Number of 

used code 

characters 

Hmax Hreal Redundancy 
Unicity 

point 

Vowel-

consonant 

groups 

Homophone 

groups 

C.Bay.01 419 113 6.82 6.113 0.104 5905 no no 

C.Bay.02 494 130 7.022 6.338 0.097 7490 no no 

C.Kov.02 1537 189 7.562 6.689 0.115 ∞ no no 

C.Wess.03.a 2359 64 6 4.92 0.18 1643 vowels in 6 cases 

C.Wess.03.b 828 61 5.931 4.939 0.167 1662 vowels in 5 cases 

C.Wes.04 1525 77 6.267 4.994 0.203 1850 vowels in 5 cases 

C.Wes.05 749 26, 4.7 4.029 0.143 618 partly - 

C.Wes.06 417 37 5.209 4.231 0.188 763 no no 

Table 3: Features of the examined early modern letters 

5 Summary 

In this paper I have first tested hierarchical clustering 

on artificial codes by modifying two parameters: 

increasing the number of homophones assigned to a 

plaintext letter and decreasing the text length. It can 

be stated that in case of a 400-page corpus 

hierarchical clustering could identify the homophone 

groups successfully, even if we had far more 

                                                           

2 These letters can be found in the Hungarian 

National Arcives, G 15 Caps. D. Fasc 81. and G 15 Caps. C. 

Fasc 36. fol. 3-4. and in the ÖStA HHStA Ungarische Akten 
Specialia Verschwörerakten VII. Varia (Pressburger 

Kommission etc.) Fasc. 327. Konv. D. Chiffres 1664-1668, 

fol 35-37, 40-41, 62, 63. 

homophones (20) than the early modern practice 

showed (2-6). Investigating the unicity points of 

ciphertexts it can be stated that hierarchical 

clustering was still efficient when text length was 

under the unicity point, but near to it. In cases when 

text length was much lower than the unicity point, 

the dendrograms could not give any help for the 

codebreaking process.  

In a second part I have processed original early 

modern ciphers with the upper methodology. I have 

stated that hierarchical clustering was efficient if it 

could clearly identify the vowels and consonants in 

separate clusters on the dendrogram and/or if it 

could find the homophone groups belonging to the 

particular plaintext letters. The features and 

outcomes of the eight early modern letters showed 

that when the unicity point was under or near the 

text length the dendrograms could help the 

codebreaking process. Hierarchical clustering could 

not bring any results in case of letters that were 

much shorter than the unicity point. 

Consequently, speaking of homophonic 

substitution ciphers we can state that the longer an 

encrypted letter, or the less symbols its cipher key 

uses, the more probable the cipher can be solved 

with the help of hierarchical clustering. Since the 

historical manuscripts of the early modern age do 

involve such encrypted letters – we can find ciphers 

with thousands of code characters, or cipher keys 

that have only 30-40 symbols – hierarchical 

clustering offers significant contribution to the 

codebreaking process of historical homophonic 

substitution ciphers.  
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