
Proceedings of the 1st Conference on Historical Cryptology, pages 115– 124,
Uppsala, Sweden, 18-20 June, 2018

An Automatic Cryptanalysis of Playfair Ciphers Using
Compression

Noor R. Al-Kazaz1

School of Computer Science
Bangor University

Bangor, UK
n.al-kazaz@bangor.ac.uk

noor82.nra@gmail.com

Sean A. Irvine
Real Time Genomics

Hamilton, New Zealand
sairvin@gmail.com

William J. Teahan
School of Computer Science

Bangor University
Bangor, UK

w.j.teahan@bangor.ac.uk

Abstract

This paper introduces a new
compression-based approach to the
automatic cryptanalysis of Playfair
ciphers. More specifically, it shows
how the Prediction by Partial Match-
ing (‘PPM’) data compression model,
a method that shows a high level of
performance when applied to different
natural language processing tasks, can
also be used for the automatic decryp-
tion of very short Playfair ciphers with
no probable word. Our new method
is the result of an efficient combina-
tion between data compression and
simulated annealing. The method has
been tried on a variety of cryptograms
with different lengths (starting from
60 letters) and a substantial majority
of these ciphers are solved rapidly
without any errors with 100% of
ciphers of length over 120 being solved.
In addition, as the spaces are omitted
from the ciphertext traditionally, we
have also tried a compression-based
approach in order to achieve readabil-
ity by adding spaces automatically
to the decrypted texts. The PPM
compression model is used again to
rank the solutions and almost all the
decrypted examples were effectively
segmented with a low average number
of errors. Furthermore, we have also
been able to break a Playfair cipher
for a 6×6 grid using our method.

1 Introduction

Compression can be used in several ways to
enhance cryptography and cryptanalysis. For
example, many cryptosystems can be broken

1Computer Science Department, College of Science
for Women, Baghdad University, Baghdad, Iraq.

by exploiting statistical regularities or redun-
dancy in the source. Since compression re-
moves redundancy from a source, it is im-
mediately apparent why compression is advo-
cated prior to encryption (Irvine, 1997). How-
ever, this paper considers another application
of compression to tackle the plaintext iden-
tification problem for cryptanalysis. This is
an approach that has resulted in relatively
few publications compared to the many other
methods that have been proposed for break-
ing ciphers. The purpose of this paper is to
explore the use of a compression model for the
automatic cryptanalysis of Playfair ciphers.

The primary motivation for data compres-
sion has always been making messages smaller
so they can be transmitted more quickly or
stored in less space. Compression is achieved
by removing redundancy from the message, re-
sulting in a more ‘random’ output. There are
two main classes of text compression adap-
tive techniques: dictionary based and sta-
tistical (Bell et al., 1990). Prediction by
Partial Matching (’PPM’), first described in
1984 (Cleary and Witten, 1984), is an adap-
tive statistical coding approach, which dy-
namically constructs and updates fixed order
Markov-based models that help predict the
upcoming character relying on the previous
symbols or characters being processed. PPM
models are one of the best computer models
of English and rival the predictive ability of
human experts (Teahan and Cleary, 1996).

Our new approach to the automatic crypt-
analysis of Playfair ciphers uses PPM com-
pression to tackle the plaintext recognition
problem. We rank the quality of the differ-
ent plaintexts using the size of the compressed
output in bits as the metric. We also use an-
other PPM-based algorithm to automatically
insert spaces into the decrypted texts in order
to achieve readability.

This paper is organised as follows. Sec-
tion 2 covers the basics of Playfair ciphers and

also includes a general overview of previous
research on the cryptanalysis of Playfair ci-
phers as well as a discussion of its weaknesses.
Our PPM based method and the simulated an-
nealing search we use are explained in section
3. Section 4 covers the experimentation and
results obtained with the conclusions to our
findings presented in the final section.

2 Playfair Ciphers
The Playfair cipher is a symmetric encryption
method which is based on bigram substitution.
It was first invented by Charles Wheatstone
in 1854. The cipher was named after Lord
Lyon Playfair who published it and strongly
promoted its use. It was considered as a sig-
nificant improvement on existing encryption
methods. A key is written into a 5× 5 grid
and this may involve using a keyword (as in
the example below). For English, the 25 let-
ters are arranged into the grid with one letter
omitted from the alphabet. Usually, the letter
‘I’ takes the place of letter ‘J’ in the text to be
encrypted.

To generate the key that is used, spaces in
the grid are filled with the letters of the key-
word and then the remaining spaces are filled
with the rest of the letters from the alpha-
bet in order. The key is usually written into
the top rows of the grid, from left to right,
although some other patterns can be used in-
stead. For example, if the keyword ‘CRYPTOL-
OGY’ is used, the key grid would be as below:

C R Y P T
O L G A B
D E F H I
K M N Q S
U V W X Z

To encrypt any plaintext message, all spaces
and non-alphabetic characters must be re-
moved from the message at the beginning,
then the message is split into groups of two
letters (i.e. bigrams). If any bigrams contain
repeated letters, an ‘X’ letter is used to sepa-
rate between them. (It is inserted between the
first pair of repeated letters, and then bigram
splitting continues from that point). This pro-
cess is repeated (as necessary) until no bigrams
with repeated letters. If the plaintext has an
odd number of letters, an ‘X’ is inserted at the
end so that the last letter is in a bigram (Klima
and Sigmon, 2012). For example, the message
“To be or not to be that is the question” would
end up as:
“TO BE OR NO TX TO BE TH AT IS TH EQ UE
ST IO NX”.

There are three basic encryption rules to be
applied (Klima and Sigmon, 2012):

• If both letters of the bigram occupy the
same row, replace them with letters to
the immediate right respectively, wrap-
ping from the end of the row to the start
if the plaintext letter is at the end of the
row.

• If both letters occupy the same column,
then replace them with the letters imme-
diately below them. So ‘IS’ enciphers to
‘SZ’. Wrapping in this case occurs from
the bottom to the top if the plaintext let-
ter is at the bottom of the column.

• If both letters occupy different rows and
columns, replace them with the letters at
the free end points of the rectangle de-
fined by both letters. Thus ‘TO’ enci-
phers to ‘CB’. The order is important—
the letters must correspond between the
encrypted and plaintext pairs (the one on
the row of the first letter of the plaintext
should be selected first).

Following these rules, the encrypted message
would be:

“CB LI LC KG PZ CB LI PI BP SZ PI HM VD ZB
DB QW”

The Playfair cipher is one of the most well
known multiple letter enciphering systems.
However, despite the high efficiency demon-
strated by this cipher, it suffers from a number
of drawbacks. The existing Playfair method is
based on 25 English alphabetic letters with no
support for any numeric or special characters.
Several algorithms have been proposed aim-
ing to enhance this method (Srivastava and
Gupta, 2011; Murali and Senthilkumar, 2009;
Hans et al., 2014). One particular extended
Playfair cipher method (Ravindra Babu et al.,
2011) is based on 36 characters (26 alphabeti-
cal letters and 10 numeric characters). Here, a
6×6 key matrix was constructed with no need
to replace the letter ‘J’ with ‘I’. By using the
same previous keyword ‘CRYPTOLOGY’, the
key matrix in this case would be:

C R Y P T O
L G A B D E
F H I J K M
N Q S U V W
X Z 0 1 2 3
4 5 6 7 8 9

116

Plaintexts containing any numerical values
such as, contact number, house number, date
of birth, can be easily enciphered using this ex-
tended method (Ravindra Babu et al., 2011).

2.1 Cryptanalysis of Playfair Ciphers
Different cryptanalysis methods have been in-
vented to break Playfair ciphers using com-
puter methods. An evolutionary method for
Playfair cipher cryptanalysis was presented by
Rhew (2003). The fitness function was based
on a simple version of dictionary look-up with
the fitness calculated based on the number of
words found. However, results obtained from
this method were poor with run-time requiring
several hours. A genetic algorithm was pro-
posed by Negara (2012) where character uni-
gram and bigram statistics were both used as
a basis of calculating the fitness function. The
efficiency of the algorithm is affected by differ-
ent parameters such as the genetic operators,
ciphertext length and fitness function. Five
initial keys out of twenty were successfully rec-
ognized in less than 1000 generations and ten
out of twenty were fully recovered in less than
2000 generations. Two ciphertexts were ex-
amined in this paper: one with 520 charac-
ters and the other with 870 characters. Ham-
mood (2013) presented an automatic attack
against the Playfair cipher using a memetic
algorithm. The fitness function calculation
was based on character bigram, trigram and
four-gram statistics. A ciphertext of 1802 let-
ters was examined in this paper and 22 letters
out of 25 were successfully recovered using this
method.

Simulated annealing was successful at
solving lengthy ciphers as reported by
Stumpel (2017). However, he found that short
Playfair ciphers of 100 letters or so were un-
able to be solved. Simulated annealing was
also used with a tetragraph scoring function
for the automatic cryptanalysis of short Play-
fair ciphers by Cowan (2008). Cowan man-
aged to solve seven short ciphertexts (80-130
letters) that were published by the American
Cryptogram Association.

In summary, several different cryptanalysis
methods have been proposed aiming to break
Playfair ciphers with varying degrees of suc-
cess. However, most of these methods were
focused on long ciphertexts of 500 letters or
more, except Cowan’s method (2008). A large
amount of information that is provided by long
ciphertexts makes breaking them easier while

short Playfair ciphers are extremely difficult
to break without some known words. In our
paper, even Playfair ciphertexts as short as
60 letters (without a probable crib) have been
successfully decrypted using our new univer-
sal compression-based approach. We use simu-
lated annealing in combination with compres-
sion for the automatic decryption. Moreover,
we have also effectively managed to break ex-
tended Playfair ciphers that use a 6× 6 key
matrix.

2.2 Playfair’s Weaknesses
The Playfair cipher suffers from some major
weaknesses. An interesting weakness is that
repeated bigrams in the plaintext will create
repeated bigrams in the ciphertext. Further-
more, a ciphertext bigram and its reverse will
decipher to the same pattern in the plaintext.
For example, if the ciphertext bigram “CD”
deciphers to “IS”, then the ciphertext “DC”
will decrypt to “SI”. This can help in recognis-
ing words easily, especially most likely words.
Another weakness is that English bigrams that
are most frequently occurring can be recog-
nised from bigram frequency counts. This can
help again in guessing probable plain words
(Smith, 1955; Cowan, 2008).

Breaking short Playfair ciphertexts (less
than 100 letters) without good depth of knowl-
edge of previous messages or with no prob-
able words has proven to be a challenge.
Past research has often used much longer
ciphertexts—for example, Mauborgne (1914)
developed his methods by deciphering a Play-
fair ciphertext of 800 letters. Also, the Play-
fair messages that were circulating between
the Germans and the British during war had
enough depth with many probable words to
make them easily readable between these two
sides, with no predictor of decrypting suc-
cess for short messages on anonymous top-
ics (Cowan, 2008). However, the two con-
ditions that the message is short with lit-
tle depth (no probable words) apply to cryp-
tograms published by the American Cryp-
togram Association.

3 Our Method
This section describes our new method for
the automated cryptanalysis of the Playfair
cipher. The problem of quickly recognising
a valid decrypt in a ciphertext only attack
has been acknowledged as a difficult prob-
lem (Irvine, 1997). What we require is a com-

117

puter model that is able to accurately predict
natural language so that we can use it as a
metric for ranking the quality of each possi-
ble permutation (Al-Kazaz et al., 2016). The
PPM text compression algorithm provides one
possibility since it is known that PPM com-
pression models can predict language about
as well as expert human subjects (Teahan and
Cleary, 1996).

Hence, the main idea of our approach de-
pends on using the PPM method to com-
pute the compression ‘codelength’ for each pu-
tative decryption of the ciphertext with the
given key. The codelength of a permutation
for a cryptogram in this case is the length of
the compressed cryptogram, in bits, when it
has been compressed using the PPM language
model. The smaller the codelength, the more
closely the cryptogram resembles the model.
Experiments have shown that this metric is
very effective at finding valid solutions auto-
matically in other types of cryptanalysis (Al-
Kazaz et al., 2016). In this paper, we show
how to use this approach to quickly and auto-
matically recognise the valid decrypt in a ci-
phertext only attack specifically against Play-
fair ciphers.

In the PPM compression algorithm, the
probability of the next symbol is conditioned
using the ‘context’ of the previously transmit-
ted symbols. These probabilities are based
on simple frequency counts of the symbols
that have already been transmitted. The pri-
mary decision to be made is the maximum
context length to use to make the predictions
of the upcoming symbol. The ‘order’ of the
model is the maximum context length used
to make the prediction. Many variants of
the original Cleary and Witten approach have
been devised such as PPMA, PPMB, PPMC
and PPMD. These differ mainly by the maxi-
mum context length used, and the mechanism
used to cope with previously unseen or novel
symbols (called the zero frequency problem).
When a novel symbol is seen in a particular
context, an ‘escape’ is encoded, which results
in the encoder backing off to the next shorter
context. Several escapes may be needed before
a context is reached which predicts the sym-
bol. It may be necessary to escape down to
the order 0 (null) context which predicts each
symbol based on the number of times it has
occurred previously, or for symbols not previ-
ously encountered in the transmission stream,
a default model is used where an order ‘-1’

context predicts each symbol with equal prob-
ability.

Most experiments show that the PPMD
variant developed by Howard (1993) produces
the best compression compared to the other
variants. The probabilities for a particular
context using PPMD are estimated as follows:

p(s) =
2c(s)−1

2n
and e =

t

2n

where p(s) is the probability for symbol s, c(s)
is the number of times symbol s followed the
context in the past, n is the number of times
the context has occurred, t denotes the num-
ber of symbol types and e is the probability as-
signed to perform an escape. For example, if a
specific context has occurred three times pre-
viously, with three symbols a, b and c follow-
ing it one time, then, the probability of each
one of them is equal to 1

6 and escape symbol
probability is 3

6 .
As PPM is normally an adaptive method,

at the beginning there is insufficient data to
effectively compress the texts which results
in the different permutations producing sim-
ilar codelength values. This can be overcome
by priming the models using training texts
that are representative of the text being com-
pressed. In our experiments described below,
we use nineteen novels and the Brown corpus
converted to 25 letter English by case-folding
to upper case with I and J coinciding for the
5×5 grid and 36 alphanumeric characters for
the 6× 6 grid to train our models. Also, un-
like standard PPM which uses purely adaptive
models, we use static models which are not
updated once they have been primed from the
training texts.

Our new method is divided into two main
phases. The first phase (Phase I) is based
on trying to automatically crack a Playfair
ciphertext using a combination of two ap-
proaches, which is the compression method
for the plaintext recognition and simulated
annealing for the search. The second phase
(Phase II) is based on achieving readability by
automatically adding spaces to the decrypted
message produced from phase I, as the spaces
are omitted from the ciphertext traditionally.

A variation of an order 5 PPMD model with-
out update exclusions has been used in our ex-
periments for both Phase I and Phase II. This
variation is where symbol counts are updated
for all contexts unlike standard PPM where
only the highest order contexts are updated

118

until the symbol has been seen in the context.
In our experiments, this variation has proven
to be the most effective method that can be
applied to the problem of automatically recog-
nising the valid decryption for Playfair ciphers,
but also in other experiments with transposi-
tion ciphers (Al-Kazaz et al., 2016).

Simulated annealing is a probabilistic
method for approximating the global optimi-
sation of a given function in a large search
space. It is a descendant of the hill-climbing
technique. This latter technique is based on
starting with a random key, followed by a ran-
dom change over this key such as swapping two
letters, to generate a new key. If this key pro-
duces a better solution than the current key,
it replaces the current one. Different n-graph
statistics were used as the scoring function to
judge the quality of solutions. After millions
of distinct random changes, this technique at-
tempts to discover the correct key.

The weakness of this approach lies in the
possibility of being stuck in local optima,
where the search has to be abandoned and it
is necessary to restart all over again. Simu-
lated annealing (inspired by a process similar
to metal annealing) is similar to hill-climbing
with a small modification that often leads to
an improvement in performance. In addition
to accepting better solutions, simulated an-
nealing also accepts worse solutions in order to
avoid the local optima. This approach permits
it to jump from local optima to different loca-
tions in order to find new optima. The proba-
bility of the acceptance of the specific solution
is dependent on how much the score value is
worse. The formula for calculating the accep-
tance probability is PA = 1

e(
d/T) where e is the

exponential constant 2.718, d denotes the dif-
ference between the score of the new solution
and the score of the current solution, and T is a
value called temperature (further details con-
cerning this parameter are described below).
Whenever the difference is small, the probabil-
ity of accepting the new solution is high, while
if this solution is much worse than the current
one (the difference is large in magnitude), the
probability becomes small. The probability
value is also influenced by the temperature T .
Initially, the algorithm starts with a high tem-
perature value, then it is reduced (‘cooled’) at
each step according to some annealing sched-
ule, until it reaches zero or some low limit. As
the temperature drops, the probability of ac-
ceptance also decreases and when T is set to

zero, the simulated annealing becomes identi-
cal to the hill climbing technique.

The main idea of using simulated annealing
for the breaking of Playfair ciphers is to mod-
ify the current key in the hope of producing
a better key. This is based on an approach
proposed by Cowan (2008). This can be done
by randomly swapping two characters. How-
ever, this random change is not enough to ef-
fectively break the Playfair cipher by itself. It
will usually result in a long search process that
often gets stuck within reach of the final solu-
tion. So other modifications are needed such
as randomly swapping two rows, swapping two
columns, reversing the key, and reflecting the
key vertically and horizontally (flipping the
key top to bottom and left to right). Using a
mix of these modifications can lead to the valid
solution. For example, swapping two rows will
help rearrange rows if they are out of order,
as it is very important that rows be in the
correct order according to the encipherment
rules (Lyons, 2012).

During the whole search process, the hope is
that the best plaintext solution that appears
is also the correct plaintext. Alternatively, the
whole process must be restarted all over again
and the value of the temperature should be
reset to its original high value (Cowan, 2008).
An important aspect of this whole process is
the metric that is used to rank the different
plaintexts (such as our PPM method). A good
metric needs to be able to distinguish effec-
tively between good and poor plaintexts.

Algorithms 1 and 2 present the pseudo code
for the first phase of our method. In a prepro-
cessing step prior to the applications of these
algorithms, all non-letters including spaces,
numbers and punctuation were removed from
the ciphertext if a grid of 5× 5 is chosen. If
a 6× 6 grid-width is selected, all non alpha-
betic letters and numbers were removed from
the ciphertext instead. According to selected
grid-width, a random key is generated (line 1)
and the deciphering operation is initiated us-
ing this key. In order to rank the quality of
the solutions, the PPM compression method
is used by calculating the codelength value for
each possible solution (lines 3 and 4). For each
iteration, a sequence of changes is performed
over the generated key in order to find a so-
lution with a smaller codelength value which
represents the valid decryption (lines 5 to 33).
The greater the number of iterations, the more
likely a solution will be found, but longer ex-

119

ecution time will be needed. It is important
to note here that we have used negative scores
based on the PPM codelengths values in or-
der to maximize rather than minimize scores
for the simulated annealing process as per the
standard approach adopted in various solu-
tions (Cowan, 2008; Lyons, 2012).

The temperature for the simulated anneal-
ing based algorithm is initially set to 20 and
reduced by 0.2 in subsequent iterations. (The
smaller this amount is, the more likely a so-
lution will be found but this will also result
in longer execution time). The initial tem-
perature value is essentially dependent on the
cryptogram’s length. The shorter the cipher-
text, the lower the temperature will be needed
and vice versa. We have found in experi-
ments with different length ciperhetexts that
for cryptograms of a length of around 70, an
initial temperature will need to start at around
10, but for the cryptogram of 700 characters,
a temperature at 20 or so is effective.

For each temperature, 10,000 keys are tested
then a reduction in the temperature is per-
formed (see lines 9 to 32 in the algorithm). A
loop is executed 10,000 times (lines 10 to 31)
that modifies the key in the hope of finding
a better key with a smaller codelength value.
A sequence of different modifications over the
key is performed in lines 11 to 17. The en-
crypted text is then deciphered using the mod-
ified key and the codelength value is calculated
using the PPM compression method (lines 19
and 20). Then, the difference is calculated be-
tween the new codelength value and the pre-
vious one. If the new value (line 21) is bet-
ter (that is, the codelength value is smaller),
then the maximum score is set to the new score
(line 22), otherwise a probability of acceptance
is calculated (line 24) if the temperature is
greater than 0 (line 23). In this case, a random
number between 0 and 1 is generated, and if
the calculated probability is greater than this
number, the modified key is accepted (see lines
26 to 27). If we have a new best score, then
the old one is replaced (line 29) and system-
atic rearrangements are performed by calling
Algorithm 2. These include mutations (lines
4 to 10 in the new algorithm), row swapping
and column swapping (lines 11 to 17) and an
exhaustive search over all 4! possible permu-
tations of each group of four symbols (lines 18
to 24). Swapping single pairs of letters results
in the search getting stuck in local maxima too
often, so we added the swapping of all possi-

ble combinations of 4 symbols to try to avoid
that. Trying 3, 5, or even more combinations
of symbols is possible, but of course the higher
the number, the search starts getting very ex-
pensive, so 4 provides a reasonable compro-
mise. Finally, the deciphered text is returned
with the smaller codelength value which rep-
resents the best solution found (line 34). This
has proved adequate for the solution of most
ciphers, but if necessary, it is still possible to
iterate the attack several more times.

Algorithm 1: Pseudo code of the main
decryption phase ‘Phase I’.

Input : ciphertext, Playfair grid-width to be either 5×5
or 6×6

Output: deciphered-text
1 generate a random key according the Playfair grid-width

selected
2 currentBestKey← randomKey
3 decipher the ciphertext using the currentBestKey and

calculate the codelength value using the PPM
compression method

4 currentBestScore←− PPM-codelength score (decipher-text)
5 for Iteration← 0 to 99 by 1 do
6 maxKey← currentBestKey
7 decipher and calculate the codelength value using

the PPM compression method
8 maxScore←− PPM-codelength score (decipher-text)
9 for Temp← 20 downto 0 by 0.2 do

10 for Count← 0 to 9999 by 1 do
11 modify maxKey by choose a random

number between (1,50):
12 if the number is 0 then swap two

rows, chosen at random
13 if the number is 1 then swap two

columns, chosen at random
14 if the number is 2 then reverse the

key
15 if the number is 3 then reflect the

key vertically, flip top to bottom
16 if the number is 4 then reflect the

key horizontally, flip left to right
17 if any other number then swap two

characters at random
18 newKey← modi f ied-maxKey
19 decipher and calculate the codelength

value using the PPM compression method
20 newScore←

− PPM-codelength score (decipher-text)
21 calculate di f f ← newScore−maxScore
22 if di f f >= 0 then {maxScore← newScore;

maxKey← newKey}
23 else if Temp > 0 then
24 calculate probability← exp(di f f/Temp)
25 generate a random number between

(0,1)
26 if probability > randomNumber then
27 {maxScore← newScore;

maxKey← newKey}
28 if maxScore > currentBestScore then
29 currentBestScore← maxScore;

currentBestKey← maxKey
30 Make systematic

rearrangements(ciphertext,
currentBestKey, currentBestScore)

31 end
32 end
33 end
34 return the deciphered text with the best key

Concerning the second phase of our ap-
proach, Algorithm 3 illustrates the pseudo
code for this phase. The main idea of this
phase, as stated before, is to try to insert
spaces into the deciphered text outputted from

120

Algorithm 2: Make systematic rearrange-
ments

Input : ciphertext, currentBestKey, currentBestScore
Output: currentBestKey, decipher-text

1 f lag← true
2 while flag do
3 f lag← f alse
4 perform systematic mutations over the

currentBestKey:
5 decipher and calculate the codelength value

using the PPM compression method
6 newscore←

− PPM-codelength score (decipher-text)
7 if newscore > currentBestScore then
8 f lag← true
9 currentBestScore← newScore;

currentBestKey← newKey
10 continue outer While loop
11 perform systematic row-swaps and column-swaps

over the currentBestKey:
12 decipher and calculate the codelength value

using the PPM compression method
13 newscore←

− PPM-codelength score (decipher-text)
14 if newscore > currentBestScore then
15 f lag← true
16 currentBestScore← newScore;

currentBestKey← newKey
17 continue outer While loop
18 perform swapping of four characters:
19 decipher and calculate the codelength value

using the PPM compression method
20 newscore←

− PPM-codelength score (decipher-text)
21 if newScore > currentBestScore then
22 f lag← true
23 currentBestScore← newScore;

currentBestKey← newKey
24 continue outer While loop
25 end
26 return currentBestKey, decipher-text

Phase I in order to achieve readability. PPM
is again applied to rank the solutions. The
Viterbi algorithm is used in this phase to find
the best possible segmentation. In this algo-
rithm, looping over the deciphered text (that
was produced as output from Algorithm 1) is
performed in line 2. A word segmentation al-
gorithm based on the Viterbi algorithm (Tea-
han, 1998) is then used to search for the best
performing segmentations to keep in a prior-
ity queue, and those which showed poor code-
length values are pruned (see lines 3 to 5). The
best segmented deciphered text is returned in
the last line (line 6).

Algorithm 3: Pseudo code for Phase II
Input : the deciphered text from Phase I
Output: segmented deciphered text

1 maximum size of Q1 (priority queue) ← 1;
2 do
3 use the Viterbi algorithm to search for the best

segmentation sequences;
4 store the text that have the best segmentation

which present in Q1;
5 while the end of the deciphered text;
6 return the best segmented deciphered text from Q1;

4 Experimental Results
In this section, we discuss the experimental
results of our approach. As stated, in our

method the order-5 PPMD model has been
trained on a corpus of nineteen novels and the
Brown corpus using 25 English letters (when
a 5× 5 grid is used) and 36 alphanumeric
characters (when a 6× 6 grid is used). Af-
ter this training operation and during crypt-
analysis, these models remain static. Regard-
ing the cryptograms test corpus, 70 different
cryptograms were chosen at random from dif-
ferent resources including cryptograms pub-
lished by the American Cryptogram Associ-
ation, cryptograms published by geocache en-
thusiasts, and two cryptograms that were also
experimented with by Negara (2012). Cryp-
togram lengths ranged from 60 to 750 letters.

A sample trace of a decryption is
shown in Figure 1 for the cryptogram:
‘dohrxnwpscqusfrwchrnpctsehagvpstsfaprdtuipwol-
acgqupfwptslaqsizbedxqusfwscosfraevstngqu’.
This shows the best score as it changes during
the execution of Algorithm 2 for the main de-
cryption phase. The scores are increasing (i.e
the codelengths are decreasing). The solution
of this ciphertext is a proverbial wisdom that
has been attributed to Damon Runyon: “It
may be that the race is not always to the swift
nor the battle to the strong but that is the way
to bet”. This ciphertext is one of the short
cryptograms (82 character long) that have
been published by the American Cryptogram
Association, which usually publishes 100
ciphertexts every two months including one
or more Playfair ciphers, as a challenge to its
members (Cowan, 2008). Cowan has stated
that it is extremely difficult to break short
messages of 100 letters or so, especially when
there are no suspected probable words or cribs
and very little depth of knowledge of previous
messages. However, our method is able to
solve the following examples in addition to
the other cryptograms that were listed by
Cowan as well as even shorter ciphertexts of
60 letters or so.

A second example in Figure 2 illustrates
the robustness of our compression approach
by showing how it is able to solve a very
short cryptogram. The ciphertext is a
60 letter sentence (a quote by Garrison
Keillor): Cats are intended to teach us
that not everything in nature has a pur-
pose. The best solution for this exam-
ple is ‘catsareintendedtoteachusthatnotexeryt-
hinginxnaturehaoapurposew’ with the best code-
length value -137.68 resulting in only two er-
rors: x→v in ‘exerything’ and o→d in ‘hao’.

121

Iteration:35
Mutation
gain:

-221.66 ridaybetoktxtherkdeconotalwaystothescru-
fyorthebrtxtletothestucngmitxthatoithewaytobetx
Key:zkbncwagerfhmlduvxyitsqpo

Mutation
gain:

-220.15 ridaybetvstxthersaeksnotalwaystotheskru-
fyorthebatxtletothestukngmitxthatksthewaytobetx
Key: zcbnkwagerfhmlduvxyitsqpo

Mutation
gain:

-215.91 ridaybetvstxthersaemsnotalwaystothesmru-
fyorthebatxtletothestumngkitxthatmsthewaytobetx
Key: zcbnmwagerfhklduvxyitsqpo

Mutation
gain:

-207.60 rmdaybetvstxthersaeisnotalwaystothesiru-
fnorthebatxtletothestningkmtxthatisthewaytobetx
Key: zcbniwagerfhklduvxymtsqpo

Mutation
gain:

-204.66 itzaybetvstxthersaeisnotalwaystotheswiu-
fnorthebatxtletothestorngbutxthatisthewaytobetx
Key: dcbniwagerfhklzuvxymtsqpo

Mutation
gain:

-195.04 itmaybetvstxthersaeisnotalwaystotheswiu-
fnorthebatxtletothestomngbutxthatisthewaytobetx
Key: dcbniwagerfhklmuvxyztsqpo

Row-swap
gain:

-184.98 itmaybethvtxthervaeisnotalwaystotheswif-
tnorthebatxtletothestzongbutxthatisthewaytobetx
Key: dcbniwagerfhklmtsqpouvxyz

Row-swap
gain:

-162.46 itmaybethatxtheraceisnotalwaystotheswif-
tnorthebatxtletothestrongbutxthatisthewaytobetx
key: dcbnifhklmtsqpouvxyzwager

Figure 1: Example cryptogram of 82 letters
from the American Cryptogram Association.

Iteration:89
-164.32 catsareintencectoteakiusthhonotexerythi-
nginxnaturehatapurposid

Mutation
gain:

-161.21 catsareintencectoteakiusthaonotexerythi-
nginxnaturehatapurposid

Mutation
gain:

-160.36 pltsapeintencectoteadbusthahnotexerythi-
nginxnatureoatapurposid

Mutation
gain:

-159.28 pltsapeintendedtoteacbusthahnotexexbthi-
nginxnatureoatapurposic

Mutation
gain:

-156.08 datsareintendedtoteakiusthaonotexexfthi-
nginxnaturehatapurposic

Mutation
gain:

-155.29 katsareintendedtoteakiusthatnotexexythi-
nginxnaturehaoapurposic

Mutation
gain:

-154.12 ratsakeintendedtoteakiusthatnotexeocthi-
nginxnaturehasapukposic

Mutation
gain:

-150.31 ratsileintendedtotealausthatnotexeokthi-
nginxnaturehasapudiospc

2-Mutation
gain:

-149.97 ratsileintendedtotealhusthatnotexevcthi-
nginxnaturehasapudiosev

Mutation
gain:

-143.16 ratsaceintendedtoteachusthatnotexelvthi-
nginxnaturehasapucposev

Mutation
gain:

-138.52 catsareintendedtoteachusthatnotexerythi-
nginxnaturehaoapurposev

Mutation
gain:

-137.68 catsareintendedtoteachusthatnotexerythi-
nginxnaturehaoapurposew

Figure 2: Example short 60 letter cryptogram.

A third example is a puzzle cryptogram
of 96 letters from the geocache world
(https://bcaching.wordpress.com/2008/08/08/
puzzles-part-3/): ‘sa cb av hm ka do st th ps
mn qs fr hm sx bt su tw tg wg mh mc ok sd oz
ts fy tw ts vc ec gs gt wl dl sr oz tb tl ps
tg ex cm co dl kh wl wg mh ex av’. Figure 3
presents the intermediate results and the
final solutions produced by each iteration for
this cryptogram. According to this example,
iteration 89 produced the best solution with
the best score with a compression codelength
value of 215.81 and is the valid decrypt.

Our method was also able to solve a 6× 6
Playfair cipher with a few minor errors. The
next sample is a cryptogram that was posted
on a puzzles forum originating from geo-
cache enthusiasts (http://members2.boardhost.
com/barryispuzzled/msg/1500564217.html):

Iteration:0
Mutation
gain:

-311.85 tuemuirecolstaurytrtforxreafmstoopanile-
rcekqbsulatydopatiekedanalondtfulsmonytancheck-
andeqloilerchui

. . .
Iteration:2

-311.01 adpcdhowwhsvalarcaucedofowleyldmailiumw-
oseheatrelarbailaonmemlilgatstorelylscalikeese-
ctswpgaumwokedh

. . .
Iteration:24

-309.15 hkxepmmaskbitesratokhdtvmabasedaeferela-
mlamntbinetnrefetlpgwhereeceithinesevaterbcalx-
leismecelambcpm

. . .
Iteration:30
Row
swap
gain:

-304.26 amsegplaysonasarealmcarblaterstcrustita-
lsniymeinsahirusaezkstatsorodtbinsrmreastpensn-
kodyboritalpegp

. . .
Iteration:89
Row
swap
gain:

-215.81 thecoxordinatesarenorthfortydegrexeszer-
opointfivethrexetwowestseventyfivedegreestwopoi-
ntfivezerotwox

. . .
Iteration:100

Figure 3: Solutions produced during selected
iterations for a puzzle cryptogram of 96 letters.

lpqtj zfpvf ndsvb joamd j4mva nrfeu nbhis nhcru
chhfs otb1e kbueg qejtv kgscn kq3ez kgwix eavej
nstda usbfj cvkgs cbtqz 5nmqa nc0jc xeiue nhtnb
rbwhg krabz 1j0mn dierf rabfq vjvkf dnrbk nkd0u
cbwhn dsdlv vpvha gvucb bnyjc vtzpf brrab gtmqa
j4fmt ryjbu vldtq fsnts awfhl pvthc 0hpvv obvmd
jvra7 zhfew irgh3 8qpck r5z7r gaw1k biyjg h3w8w
qfau3 v7dra bfnbe jgkke kvhfc 0dsjy raghx bjbqm
bhhgc hnwyj bxgkk ekvhf dcvjo uebxr rsch1 jwmvu
bxlbi nmraw ckbnh g1jrn dtchl vfpur raihj 4fmoq
jbrbj zfmtr yjbur acjck vughh tchjv rauxc hrzkc
hchff elnob mvvjh cgerf rgawu xchrz uxvfb fcqbt
mdfjh chgrf sujep qbrej yjrgy jchmv eseue ckgau
ejrbr uvlej mq1jv mh0mv txhz
Part of the execution trace is shown in Fig. 4.

Iteration: 1
-1604.59 jolxlygoodandwelldoneyouhavecrackedanextendedpl-
ayfaircipherusingasixbysixgridtheadvantageofusingall30sl-
phanumericxcharactersisthatyoucangivethecoxordinatesasnu-
mbersandnotwordsbutbecarefultogetthefullkeycorxrecttoavo-
idawastedjourneynowofftonorthztdegrexesx3poinwytzwest3de-
grees5x9xoint1x2athecacheishidxdenunderthestilepleaseens-
ureitishidxdenfromviewxwhenyouputitbackjustincaseyouhave-
notgotxthekeycompletelycorxrecttheminutesarenorthtwentyn-
inedecimalfouronefivewesttwentytwodecimaloneonesevenweho-
petherewereenoughcribsinthetexttohelpyouonyourway
-1594.57 jolxlygoodandwelldoneyouhavecrackedanextendedpl-
ayfaircipherusingasp5bysixgridtheadvantageofusingall50kl-
phanumericxcharactersisthatyoucangivethecoxordinatesasnu-
mbersandnotwordsbutbecarefultogetthefullkeycorxrecttoavo-
idawastedjourneynowofftonorthztdegrexesw3poinxytzwest5de-
greeswp3point1w2athecacheishidxdenunderthestilepleaseens-
ureitishidxdenfromviewxwhenyouputitbackjustincaseyouhave-
notgotxthekeycompletelycorxrecttheminutesarenorthtwentyn-
inedecimalfouronefivewesttwentytwodecimaloneonesevenweho-
petherewereenoughcribsinthetexttohelpyouonyourway

Figure 4: Example solutions produced for a
6×6 Playfair cryptogram.

The experimental results of Phase I, when
the order 5 PPM method without update ex-
clusions is used, showed that most of the cryp-
tograms are successfully decrypted with no er-

122

rors. Table 1 presents the results from testing
ciphertexts for various lengths. The results
overall showed that we are able to attain very
high success rates and 60 ciphertexts out of 70
were efficiently solved. Also, 100% of ciphers
of length greater than 120 were decrypted.

Cipher 60-79 80-99 100-119 120-149 150-199 200-750
Length
No. of 9 21 15 11 8 6

Ciphers
Success 67 81 80 100 100 100

Rate (%)

Table 1: Results when testing ciphertexts with
different lengths.

Referring to the second phase of our
method, as the spaces are omitted from the
ciphertext traditionally, this phase focuses on
segmenting the decrypted messages that are
outputted from the first phase. The edit dis-
tance (or Levenshtein distance) metric is used
to qualify how the decrypted message is differ-
entiated from the original message by count-
ing the minimum number of the removal, in-
sertion, or substitution operations required to
transform one message into the other (Leven-
shtein, 1966). In almost all cases, the correct
readable decryptions were efficiently found as
the illustrated in Figure 5.

Ciphertext byntlbneonnuimmzqnhpbkxnqmfqoqnmugclqmeuersuqp-
nzigqbqyipilqtku

Decrypted
text

cats are intended to teach us that not
exerything in nature ha o a purpose

Ciphertext kuinbrnuikcnqmhuvgtnnmybkgbromruknqmmnknqdmpvg-
niignkoneumokgpgxytqsu

Decrypted
text

experience is the worst teacher it gives the
test before presenting the lesson

Ciphertext pqghqncnndqyhfqugqqmeusxqmfqdpkgqbitqdkunurqio-
innlpgvqvpbmlwhuqoimigbzka

Decrypted
text

a n egotist is a man who thinks that if he hadnt
been born people would have wondered why

Ciphertext qmghblxytkyfihogkunugiqoqmgnqmgincimtlqmmpnuik-
iwszqmgiknliqrbhafgtigtldnnqgtxz

Decrypted
text

the grass may be greener on the other side of
the fence but there s probably more of it to
mow

Ciphertext hmfnuwfntufdbgushmtuqmckqnutfpmatuzfmbfntylxqp-
thrkucnrkrmcqdamibarurntumucoffdummbrnki

Decrypted
text

the likeliness of a thing happening is inversely
proportional to its desirability fin agles
first law

Ciphertext dohrxnwpscqusfrwchrnpctsehagvpstsfaprdtuipwola-
cgqupfwptslaqsizbedxqusfwscosfraevstngqu

Decrypted
text

it may be that the race is not always to the
swift nor the battle to the strong but that is
the way to bet

Figure 5: Example of solved ciphertexts with
spaces inserted after Phase II.

The number of space insertion errors for
each testing cryptogram is plotted in Figure 6.
We can see that the number of errors for most
cryptograms are very low and the correct seg-
mentations are obtained in most cases. The

average space insertion errors for the cipher-
texts that were experimented with in Phase II
is less than one error.

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

o
f

e
rr

o
rs

String length

Figure 6: Segmenting errors produced as a re-
sult of the Phase II algorithm.

Table 2 lists the high recall and precision
rates and the low error rate produced by our
segmentation algorithm. The recall rate is cal-
culated by dividing the number of successfully
segmented words over the number of words in
the original testing texts, the precision rate by
dividing the number of successfully segmented
words by the number of words which are cor-
rectly and incorrectly segmented and the er-
ror rate by dividing the number of unsuccess-
fully segmented words by the number of words
in the original testing texts (Al-Kazaz et al.,
2016).

Recall (%) Precision (%) Errors (%)
96.72 96.12 3.28

Table 2: Recall, precision and errors rates for
our method for word segmenting the decrypted
output produced from Phase I.

The execution times required to decrypt a
number of Playfair ciphertexts by our method
are presented in Table 3. This table shows the
decryption time in seconds for Phase I of our
method. The results indicate that our method
produces reasonable decryption times, and in
most cases the successful decrypts of longer
ciphertexts were obtained after only one or two
iterations.

Ciphertext 60 71 86 100 124 185 235 526 730
Length (Letter)
Time (Sec) 457 539 507 93 36 17 135 107 101

Table 3: Decryption times for Phase I for dif-
ferent ciphertexts.

123

5 Conclusion
An automatic cryptanalysis of Playfair ciphers
using compression has been introduced in this
paper. In particular, a combination of sim-
ulated annealing and PPM compression was
used in the automatic decryption method.
The compression scheme was found to be an ef-
fective method for ranking the quality of each
possible permutation as the search was per-
formed. In 60 of the 70 ciphertexts that were
experimented with (without using a probable
word) for different lengths (from as short as 60
letters up to 750), almost all the correct solu-
tions were found. The exception was just two
very short ciphers which resulted in two mi-
nor errors in the decrypted output. Moreover,
we have also managed to decrypt an extended
Playfair cipher for a 6×6 key matrix.

In addition, a compression-based method
was used to segment the decrypted output by
insertion of spaces in order to improve read-
ability. Experimental results show that the
segmentation method was very effective pro-
ducing on average less than one space inser-
tion error with a recall and precision of over
96% for the ciphertexts that were tested.

As PPM provides a different type of scor-
ing function compared to the standard n-gram
analysis (such as update exclusions, the es-
caping back-off mechanism for smoothing the
models), it is not clear whether using longer
context for n-grams might lead to better re-
sults. It is also not clear how PPM compares
to the standard n-grams approach and fur-
ther experimentation (for example with hex-
agrams) needs to be done.

References
Noor R Al-Kazaz, Sean A Irvine, and William J Tea-

han. 2016. An automatic cryptanalysis of transpo-
sition ciphers using compression. In Int. Conference
on Cryptology and Network Security, pages 36–52.
Springer, Springer Int. Publishing.

Timothy C Bell, John G Cleary, and Ian H Witten.
1990. Text compression. Prentice-Hall, Inc.

John Cleary and Ian Witten. 1984. Data compression
using adaptive coding and partial string matching.
IEEE Transactions on Communications, 32(4):396–
402.

Michael J Cowan. 2008. Breaking short playfair
ciphers with the simulated annealing algorithm.
Cryptologia, 32(1):71–83.

Dalal Abdulmohsin Hammood. 2013. Breaking a play-
fair cipher using memetic algorithm. Journal of En-
gineering and Development, 17(5).

Swati Hans, Rahul Johari, and Vishakha Gautam.
2014. An extended playfair cipher using rota-
tion and random swap patterns. In Computer and
Communication Technology (ICCCT), 2014 Inter-
national Conference on, pages 157–160. IEEE.

Paul Glor Howard. 1993. The design and analysis of
efficient lossless data compression systems. Ph.D.
thesis, Brown University, Providence, Rhode Island.

Sean A Irvine. 1997. Compression and cryptology.
Ph.D. thesis, University of Waikato, New Zealand.

Richard E Klima and Neil P Sigmon. 2012. Cryptology:
classical and modern with maplets. CRC Press.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

James Lyons. 2012. Cryptanalysis of the play-
fair cipher. http://practicalcryptography.
com/cryptanalysis/stochastic-searching/
cryptanalysis-playfair/.

Joseph Oswald Mauborgne. 1914. An advanced prob-
lem in cryptography and its solution. Fort Leaven-
worth, Kansas: Leavenworth Press.

Packirisamy Murali and Gandhidoss Senthilkumar.
2009. Modified version of playfair cipher using lin-
ear feedback shift register. In Information Manage-
ment and Engineering, 2009. ICIME’09. Interna-
tional Conference on, pages 488–490. IEEE.

G Negara. 2012. An evolutionary approach for the
playfair cipher cryptanalysis. In Proc. of the Int.
Conference on Security and Management (SAM),
page 1. The Steering Committee of The World
Congress in Computer Science, Computer Engineer-
ing and Applied Computing (WorldComp).

K Ravindra Babu, S Uday Kumar, A Vinay Babu,
IVN S Aditya, and P Komuraiah. 2011. An exten-
sion to traditional playfair cryptographic method.
International Journal of Computer Applications,
17(5):34–36.

Benjamin Rhew. 2003. Cryptanalyzing the playfair
cipher using evolutionary algorithms. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.129.4325&rep=rep1&type=
pdf.

Laurence Dwight Smith. 1955. Cryptography: The
science of secret writing. Courier Corporation.

Shiv Shakti Srivastava and Nitin Gupta. 2011. Se-
curity aspects of the extended playfair cipher. In
Communication Systems and Network Technologies
(CSNT), 2011 International Conference on, pages
144–147. IEEE.

Jan Stumpel. 2017. Fast playfair programs. www.
jw-stumpel.nl/playfair.html. last accessed De-
cember 13, 2017.

William J Teahan and John G Cleary. 1996. The en-
tropy of English using PPM-based models. In Data
Compression Conference, 1996. DCC’96. Proceed-
ings, pages 53–62. IEEE.

William J Teahan. 1998. Modelling English text.
Ph.D. thesis, University of Waikato, New Zealand.

124

