The DLR EtherCAT Library
A template based code-generation scheme for accessing real-time
hardware from Modelica

Tobias Bellmann

1

Fabian Buse!

nstitute of System Dynamics and Control , German Aerospace Center (DLR), Germany,
{Tobias.Bellmann,Fabian.Buse}@dlr.de

Abstract

In this paper, a new concept to access real-time hard-
ware from within Modelica via the EtherCAT bus is in-
troduced and the implementation of a prototype library is
demonstrated. The DLR EtherCAT library uses the open
source EtherCAT library EtherLab to gather information
about the connected bus slaves. Thereupon, the slave in-
formation is used in a code generation process to build
native Modelica blocks providing the interfaces to their
hardware counterparts. These blocks subsequently can be
used to build real-time models, running on a Linux based
real-time system and therefore controlling the hardware
directly from the model. The application of the library
is shown in a robotic testbed where a motor drive is con-
trolled via EtherCAT.

Keywords: Real-time, EtherCAT, Code-Generation

1 Introduction

Using Modelica models in real-time embedded applica-
tions can be achieved via a multitude of interface tech-
nologies. In most cases, the Modelica model is compiled
into C-code or FMU and integrated in a wrapping simu-
lation software like e.g. Mathworks Simulink Real-Time.
It is then executed on a dedicated real-time platform, e.g.
vxWorks (Hofmann et al., 2015), dSPACE RT Hardware
(Ritzer et al., 2016), xPC Target (Richard Kuchar and An-
dreas Klockner, 2015), etc. providing the interfaces to the
field devices like motor drives or sensors via an indus-
trial bus system. However, the interfaces to the controlled
hardware are in the domain of the simulator software, and
can not be accessed directly via Modelica code. Further-
more, most of these solutions are costly industrial prod-
ucts, generating licence fees. With EtherCAT (The Ether-
CAT Technology Group, 2017), a real-time capable indus-
trial bus is available, compatible to standard PC Ethernet
components. It is possible to use open-source solutions
like EtherLab (Florian Pose, 2013) or SOEM (Open Ether-
CAT Society), to communicate with EtherCAT field de-
vices from a Linux PC with real-time kernel, achieving
cycle times sufficient for many (control-) applications.

By integrating such open source solutions in a Mod-
elica library, it becomes possible to communicate di-

rectly with the field devices from within Modelica mod-
els. The approach to integrate hardware interfaces directly
into Modelica models and communicate with the hard-
ware from within the Modelica Developer Tool is known
from the Modelica DeviceDrivers Library (Thiele et al.,
2017),(Bellmann, 2009). However, the Device Drivers li-
brary uses static interface models to communicate with the
hardware.

In this new DLR EtherCAT library, we use a template
based code-generation scheme to automatically generate
the interface blocks from the EtherCAT slaves informa-
tion, containing the also auto-generated communication
interface C-Code. Generating Code from structured tem-
plate files by replacing placeholders with often changing
code is a helpful technique, applied in several Modelica
projects (e.g. in (Nytsch Geusen et al., 2017)).

1.1 Basics of EtherCAT

EtherCAT is a field-bus communication protocol, defined
in the IEC-Standard 61158 (International Electrotechni-
cal Commision, 2014). It has been initially developed by
Beckhoff and is an industry norm since 2005. The Ether-
CAT Master is the only participant in the EtherCAT Net-
work, who sends data packages actively. The master can
run on consumer PC hardware and uses a standard Ether-
net media-access-card (MAC) to send and recieve the data
packages. All EtherCAT slave controllers (ESC) only ex-
tract and insert their data at predefined locations in the data
package, normally using a pure hardware implementation
with an emphasis on short processing times. EtherCAT
components make use of standard Ethernet cables and al-
low cable lengths up to 100 meters, whereas topologies as
daisy-chain, star or trees are supported.

1.2 EtherCAT communication process

At boot time of the master, the topology of the bus is
determined and information about the attached slaves is
gathered. There are two possible types of communica-
tion between the master and its slaves: On the one hand,
data can be exchanged with asynchronous datagrams (so
called Service Data Objects, SDOs), addressing a slave by
its position in the bus or a fixed address (which is defined
by the master when connecting a new slave). These pack-
ages can be used for event-based communication. On the

130

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

DOI
10.3384/ecp18148130

other hand, in cyclic operation, a so called process im-
age is defined by the master, to be sent up and down the
chain of slaves. It is up to the master to update and read
the information in the process image. This can be done
in different sample times for different data objects, col-
lected in so-called domains. The data is organized in so
called Process Data Objects (PDOs). PDOs represent the
I/O channels of the attached bus hardware (e.g. a digital
output or a motor controller’s reference speed) and can be
used to receive (Rx-PDO) or transmit data (Tx-PDO) from
a device to the master. At the beginning of operations the
accessible memory addresses for each slave are defined by
the master.

1.3 The EtherLab EtherCAT Master

In this work, the open-source EtherCAT Master of the
EtherLab package is used, however, the principles can as
well be transferred to be used with other EtherCAT Mas-
ters. The EtherLab EtherCAT Master is installed under
Linux as a kernel module and interacts with the MAC ei-
ther via a generic interface or via direct memory access
with modified drivers for chosen network card chipsets
from Realtek and Intel. However, the generic interface
does not have exclusive access to the network interface
card and therefore can not be used in hard real-time en-
vironments. Nevertheless, in practice, sample times suf-
ficient for control applications (1-2 kHz) can be achieved
with the generic driver even under a "‘soft-realtime"” low-
latency kernel.

The EtherLab EtherCAT Master provides a set of
command-line instructions, e.g. to print out XML format-
ted information about the connected bus slaves or active
domains. It is also possible to write out the C interface
code providing address information about the PDOs of the
single slaves. The derived C code can then be used in the
software in order to access memory pointer information
for read-/write-operations. However, every time the con-
nected EtherCAT bus is changed in composition or order,
the memory addresses also change, resulting in the need
for auto generated code on the user-software side. The
master is available as open source licensed under the GPL
Version 2, whereas the interface library is licensed under
LGPL Version 2.1, allowing the linking of closed source
components.

2 Library overview

The DLR EtherCAT library primarily consists of only a
few blocks, as the variety of the hardware is then re-
flected by auto-generated Modelica libraries implement-
ing the slaves’ hardware interfaces. Figure 1 shows the
most important library blocks.

The important function generateConfiguration starts
the code-generation process, and takes the new plant li-
brary name and path as input. The EtherCATMaster block
controls aspects as active EtherCAT domains and their I/O
sample times, as well as the initialization and cleanup of
the EtherCAT master. It is implemented as an inner/outer

s o= Ethercat

if: generateConfiguration
lj EtherCatMaster

[j SampledReadSDO
E TriggeredReadSDO
™ sampledwritesbo

,{j TriggeredWriteSDO

E] Components
D Conversions

4 Internal
RootDir
maxEntryCount
: G CodeGeneration

: D Types

[j BaseClasses

D Functions

- fog) PDO

: @ Master

: @ Domain

> SlaveConfiguration
EI baselcon

Figure 1. Overview of the available library blocks.

construct to allow the single slave interface blocks access
to the master. Blocks to write and read Service Data Ob-
jects (SDOs) are provided as sampled and triggered ver-
sion. In order to organize the slave data and to provide the
building blocks for the code generation, several External
Objects as the Master, Domain, PDO and SlaveConfigu-
ration are available. These are not directly available to
the library user but used as building blocks in the code-
generation process.

3 The EtherCAT C/Modelica code-
generation process in Modelica

The implementation of the EtherLab EtherCAT master re-
quires several hard-coded address structures provided by
the user program accessing the master. As they are chang-
ing every time the bus composition is modified, it would
be cumbersome and error-prone to update the according
Modelica and C Code fragments by hand. In the following
section, the EtherLab communication procedure will be
described in detail and the code-generation process pro-
viding the necessary Modelica and C code will be out-
lined. Figure 2 shows an overview of the code-gerneration
and model execution process.

DOI
10.3384/ecp18148130

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

131

Automatic code-generation

Modelica Model

User programming

Model excecution

User runs
generateConfiguration
function

>

Extract I/O information
from XML file and
generate plant library

—

User builds custom
model with components
from the plant library

Simulated user model
initializes the EtherCAT
master with address data

of the plant library

Simulated user model
calls the Code-generated
Interface functions to
access the HW

EtherCAT Master ¢

i

Master writes slave
interface description as
C and XML file

v 1

Master configures process
data image, registers
PDOs and assigns
them to domains

Master sets/gets
process data in/from the
process data image
and sends/recieves it

EtherCAT Slaves T

Slave informations
become available
at master start-up

v i

Slaves providing and
accepting data for/from
the process data image

Figure 2. Overview of the code-gerneration and model execution process.

3.1 Communication procedure with EtherLab

Every user program using the EtherLab EtherCAT master
has to follow this procedure to establish the communica-
tion cycle with the attached slaves:

1. Initialize the EtherCAT master

2. Register at least one domain (to organize the slaves’
PDOs)

3. Retrieve configuration for slave /...n from the master

4. Configure the PDOs of slave /...n using their mem-
ory address image (provided by the master as C-
Struct)

5. Register the single PDOs of slave /...n and assign
them to their domain

6. Start the communication cycle with the slaves by ac-
tivating the master

7. Periodically read and write from and to the PDOs and
send/receive the process image

Once the communication is running, the user program has
to produce and consume the data in real-time.

3.2 Using Modelica’s External Objects to or-
ganize the master/slave data

In order to organize all the necessary information to set
up and run the communication cycle, several External Ob-
jects are used to store for example data and pointers used
by EtherLab interface. External Objects enable the user to
control the use of C-Source Code with a guaranteed exe-
cution in a constructor and destructor routine. This is the
standard way to administrate the allocation and freeing of
external resources as memory or hardware in C-code used

by Modelica models, as the constructor and destructor are
guaranteed to be called pairwise during the simulation.
Normally the constructor is called during the initialization
of the External Object and the destructor is called at the
end of the simulation run, cleaning up used resources.

In Listing 1, the implementation of the master external

object is shown as an example for the typical hardware ini-
tialization and cleanup process.
In total, four different External Objects are used to han-
dle the process data and pointers from the EtherLab API
(see Figure 3). The Master class handles the initialization
of the EtherLab EtherCAT master. The Domain Exter-
nal Object is used to register a domain, and can be pro-
vided as input for the PDOs collected in that domain. The
SlaveConfiguration External Object makes the informa-
tion about the slave available for the EtherCAT master,
e.g. the bus position of the slave, vendor data and hard-
ware name. Every slave on the bus has to be registered
with the master in order to provide it with the overall bus
topology. Additionally, a record, SlaveConfiguration, is
used to store this general information about the slave in
Modelica. The PDO External Object holds the informa-
tion about the PDO address in the process image (index
and subindex) as well as its corresponding domain. Every
PDO of every slave has to be registered with the master
to be accessed periodically, this is performed in the con-
structor of the PDO class.

3.3 Generating the plant library

By executing the generateConfiguration function of the
library, the user starts the code-generation process, as de-
scribed in Table 1. The function subsequently calls the
master’s shell commands to write out the respective bus
interface control document (ICD) as XML-based file and
the process image memory addresses as C header file.
The generateConfiguration function uses standard Mod-

132

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

DOI
10.3384/ecp18148130

Master (E.O.) PDO (E.O.)

input Integer masterID input Master master

input SlaveData slaveData

Cf)n.StrUCtOt input Domain domain
initEtherCatMaster(...) input Integer index
destructor:

input Integer subIndex
closeEtherCatMaster(...)

constructor:
registerPDO(...)

destructor:
unregisterPDO(...)

Domain (E.O.)

input Master master

input Integer domainID

input Boolean active
SlaveConfiguration (E.O.)

constructor:
registerDomain(...) input Master master
destructor: input SlaveData slaveData
unregisterDomain(...) constructor:
registerPDO(...)
destructor:

SlaveData (record)

unregisterPDO(...)

Integer masterID

Integer domainID
Integer busPosition
Integer vendorID
Integer hardwareID

Figure 3. External Objects and Data structures, used by the
EtherCAT library and the generated plant library.

Listing 1. The External Object EtherCAT.Internal. Master

class Master "External Object handling the
ethercat master creation"

extends ExternalObject;

function constructor
import EtherCAT;
import EtherCAT.Internal.Master;
input Integer masterID "ID of the
master, normally it should be 0";
output Master master;
external"C" master =
EtherCAT_initEtherCATMaster (masterID)
7
annotation (...);
end constructor;

function destructor
import EtherCAT;
import EtherCAT.Internal.Master;
input Master master;
external "C"
EtherCAT_closeEtherCATMaster (master
)
end destructor;

end Master;

elica String functions to parse the XML file. With this
information, code-fragments for every slave are gener-
ated individually using the External Objects described in
the last section. These code blocks, for example the in-
put/output interface definitions and their according PDO
objects are then inserted in a slave model template file.
In this template file (Listing 2), placeholders in the for-
mat $(IDENTIFIER) are replaced with the code generated
by the generateConfiguration function. At the end of the
code-generation process, the new plant library is written
out as file at the user-defined disk location and loaded into
the Modelica editor using the vendor specific API func-
tion.

Table 1. The code-generation process.

Code-generation steps

Write slave information as XML-file and
C-interface code to disk

Parse XML file for number of slaves
attached to the bus

For each slave:

Parse XML file for vendor ID, product
code, number of Rx—- and Tx-PDOs

For each PDO:

Extract PDO’s sub-index, bit
length, data type and name

Generate a Modelica External
Object definition to handle the
PDO

Generate Modelica code accessing
the PDO

Generate Modelica code defining
the inputs and outputs

Insert the code generated parts
into a prototype file

Save modified prototype file as
new Modelica model of the slave

An example of a generated plant library can be seen in Fig-
ure 4. In this plant configuration, an ELMO motor drive
(slave 0), a Beckhoff EtherCAT Coupler (slave 1), a Beck-
hoff 8-channel digital input terminal (slave 2), a Beckhoff
8-channel digital output terminal (slave 3), two Beckhoff
8-channel analog input terminals (slaves 4 & 5) as well as
two master/slave terminals for CANopen (slaves 6 & 7)
are attached to the EtherCAT master. In this example, the
slaves 1, 6 and 7 have no input or output connectors; slave

DOI
10.3384/ecp18148130

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

133

1 is a passive bus coupler with no physical inputs or out-
puts besides its connectors to other rail attached Ethercat
slaves. Slave 6 and 7 are CANOpen Adapters and do not
communicate via PDOs but with the CAN over EtherCAT
protocol, which is not supported by this library yet.

» I] Slave_4
> I] Slave_5

» |:| Slave_ &
» |:| Slave_7

Figure 4. Example for a code-generated plant library.

4 Usage of generated blocks

Figure 5 shows a simple example model using the slave
interface blocks from the bus configuration in Figure 4.
In this example, the ELMO motor drive receives its refer-
ence torque signal as integer value from the block forque-
Source. A state machine provides the values for the initial-
ization of the motor drive via the block startUpStates. The
digital input and output terminals ELL1018 and EL2008
are also easily accessed via integer values. In order to
synchronize the model with real-time the SynchronizeRe-
altime block from the Modelica Device Drivers library is
used. This block also changes the priority level of the sim-
ulation process to "‘real-time"’ to avoid process interrup-
tion by other processes.

ne

forqueSource
etherCatMaster

- EtherCAT. ™
; Domain 1:0.00

% \"/E startUpStates
s

e
statelachine.y [

Realtime

synchronizeRealtime slave_0_1

!

torquelnt [~

ELMO

slave_2_1 slave_3_1

voltageSource[]

EL1018 EL2008

Figure 5. Example model, communicating to external systems
via EtherCAT.

5 Application example: The TROLL
terramechanics testbed

The Terramechanics Robotics Locomotion Lab (TROLL)
is a novel testbed with the goal of automated terrame-
chanics testing (see Figure 6) for planetary rover applica-
tions. Its main components are an ingress protected indus-
trial robot, a force torque sensor and a ELMO motor con-
troller driving the wheel drive unit. Additional application
specific sensors can be mounted and used if needed. To
unify the communication setup EtherCAT has been cho-
sen. The most important component that is currently con-
nected with EtherCAT is the ELMO motor controller of
the drive unit. The control architecture of the TROLL

Figure 6. Side view of the TROLL showing the robot, force
torque sensor, drive unit with wheel and a soil bin filled with
lava sand.

uses a combination of conventional robot programming
and a Modelica model running on a real-time Linux sys-
tem (Linux Ubuntu 14.04, kernel-3.16.077 low-latency).
The Modelica model manages the process control, unifies
the communication between the different sensors via the
DLR EtherCAT Library and is directly driving the robot
during experiments. All auxiliary motion, like moving
to start position or similar are taught to the robot and
can be executed on command. The DLR EtherCAT Li-
brary is necessary in this context to build a plant library of
the connected elements. The generated models within the
plant library are then used where needed within the Troll
Control model. More complex elements, like the ELMO
are embedded within an interface model to enable com-
fortable standalone use of the component. In case of the
ELMO controller interface, conversions for the input and

134

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

DOI
10.3384/ecp18148130

output values envelop the code-generated ELMO Ether-
CAT block, as well as a Modelica state machine setting up
the internal state machine of the controller (see Figure 7).

Figure 7. ELMO interface model that is generated by the Li-
brary with auxiliary elements to generate a standalone model
with automated start-up secquence.

To initialize the controller correctly, the ELMO slave is
configured by sending SDO commands from the Model-
ica state-machine during start-up of the simulation. The
model and the EtherCAT communication are executed at
a sample rate of 1000 Hz, whereas the robot controller is
provided with data every four simulation steps at a sample
rate of 250 Hz. The model is synchronized with the robot
using a blocking network call, waiting for the input data
from the robot. In between these synchronization cycles
the SynchronizeRealtime block from the Modelica Device
Drivers library is used to adjust the simulation rate for the
EtherCAT communication. This setup allows the simulta-
neous communication with the robot and motor controller.

synchronizeRealtime

ptp
q
qd
qdd
moving
enableAt05s
[
0.5

Figure 8. Simple Modelica model, generating a PTP movement
for the ELMO motor controller from Figure 7.

In Figure 8 a simple Modelica test model is depicted show-
ing a PTP source as generator for a reference velocity. The
reference velocity is sent to the ELMO EtherCAT slave via

the DLR EtherCAT library, driving a synchronous motor
with a rover wheel attached (no ground contact). The re-
sulting motor speeds and currents are shown in Figure 9,
demonstrating that the velocity controller on the ELMO
controller is working properly. The model is run directly
from Dymola under Linux Ubuntu 14.04 (kernel-3.16.077
low-latency).

20

— motor.w_m — motor.w_ref

[rad/s]

0.5+

0.01

05§ 1) 3 3 3 6
3.0
2.5
2.04
1.54
1.0
0.5
0.0+
,0_5_

108 i 3 3) 5 6

——motor.i_m

[A]

Figure 9. Motor speed (w_m) and current (i_m) from the ELMO
controller as well as reference speed (w_ref) from the Modelica
model. Motor is controlled in real-time with 1000 Hz sample
rate from within Dymola under Linux Ubuntu 14.04 (kernel-
3.16.077 low-latency).

6 Conclusion

In this paper, a new method to control EtherCAT based
hardware in real-time and directly from within Modelica
models has been shown. The DLR EtherCAT library en-
ables the user to easily read out the EtherCAT bus con-
figuration and to auto-generate interface code for the con-
nected EtherCAT slaves. The generated interface blocks
are integrated by the user to form models controlling and
reacting to EtherCAT components. No additional licences
are necessary, as the EtherCAT master from EtherLab is an
open source project. The next steps in development should
focus on including support for CAN over EtherCAT to
control CAN-bus hardware attached via a CAN/EtherCAT
coupler. For now, the library remains an internal DLR
tool, but in the future a release as part of the Modelica De-
viceDrivers library or as a commercial library is planned.

Acknowledgments

The authors would like to thank the Ingenieurgemein-
schaft IgH for creation and maintaining the open-source
EtherCAT master EtherLab, as well as Dipl.-Ing. Johann
Heindl for providing the test motor for the library devel-
opment.

DOI
10.3384/ecp18148130

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

135

Listing 2. The template for slave models

model $ (MODELNAME)
extends EtherCatSlave (
slaveData (
domainID=domainID,
busPosition=$ (BUSPOS),
vendorID=$ (VENDORID),
hardwareID=$ (HWID))) ;
parameter Integer domainID=1
"Id of PDO domain (1..5)";
protected
outer EtherCatMaster etherCatMaster;
SlaveConfiguration slaveConfiguration=
SlaveConfiguration (etherCatMaster.master,
slaveData) ;
Integer ret=configurePDOs (
slaveConfiguration);
String hwName = "$ (NAME)"
hardware";
//PDO Definitions:
$ (PDODEF)
public
//Inputs and Outputs:
$ (IODEF)
equation
when etherCatMaster.sampled[domainID]
etherCatMaster.ddo[domainID] then
$ (TXRXCALLS)
end when;
annotation (...);
end $ (MODELNAME) ;

"Name of Slave

and

References

Tobias Bellmann. Interactive simulations and advanced visu-
alization with modelica. In Proceedings of the 7th Inter-
national Modelica Conference; Como; Italy; 20-22 Septem-
ber 2009, number 043, pages 541-550. Linkoping University
Electronic Press, 2009.

Florian Pose. IgH Master 1.5. 0 Documentation. Ingenieurge-
meinschaft IgH, 2013.

Andreas Hofmann, Nils Menager, Issam Belhaj, and Lars Mikel-
sons. Integrated Engineering based on Modelica. In Pro-
ceedings of the 11th International Modelica Conference, Ver-
sailles, France, September 21-23, 2015, number 118, pages
893-901. Linkoping University Electronic Press, Linkopings
universitet, 2015.

International Electrotechnical Commision. Industrial communi-
cation networks - Fieldbus specifications - Part 1: Overview
and guidance for the IEC 61158 and IEC 61784 series. 5
2014. ISBN 97828322163009.

Christoph Nytsch Geusen, Alexander Inderfurth, Werne Kaul,
Katharina Mucha, Jorg Ridler, Matthis Thorade, and Car-
les Ribas Tugores. Template based code generation of Mod-
elica building energy simulation models. In Proceedings of
the 12th International Modelica Conference, Prague, Czech
Republic, May 15-17, 2017, number 132, pages 199-207.
Link6ping University Electronic Press, 2017.

Open EtherCAT Society. SOEM Reference manual. URL
https://openethercatsociety.github.io/.

Richard Kuchar and Andreas Klockner. Automatic flight code
generation from multi-physics models. In ODAS 2015, 2015.
URL http://elib.dlr.de/100124/.

Peter Ritzer, Michael Panzirsch, and Jonathan Brembeck. Robo-
tisch bewegt-Interaktive Bewegungssimulation. dSPACE
Magazin, (1/2016):52-57, 2016.

The EtherCAT Technology Group. EtherCAT - the Eth-
ernet Fieldbus. Online, 7 2017. URL https:
//www.ethercat.org/download/documents/
ETG_Brochure_EN.pdf.

Bernhard Thiele, Thomas Beutlich, Volker Waurich, Martin
Sjolund, and Tobias Bellmann. Towards a Standard-Conform,
Platform-Generic and Feature-Rich Modelica Device Drivers
Library. In Proceedings of the 12th International Modelica
Conference, Prague, Czech Republic, May 15-17, 2017, num-
ber 132, pages 713-723. Linkoping University Electronic
Press, 2017.

136

Proceedings of the 2nd Japanese Modelica Conference
May 17-18, 2018, Tokyo, Japan

DOI
10.3384/ecp18148130

https://openethercatsociety.github.io/
http://elib.dlr.de/100124/
https://www.ethercat.org/download/documents/ETG_Brochure_EN.pdf
https://www.ethercat.org/download/documents/ETG_Brochure_EN.pdf
https://www.ethercat.org/download/documents/ETG_Brochure_EN.pdf

	Introduction
	Basics of EtherCAT
	EtherCAT communication process
	The EtherLab EtherCAT Master

	Library overview
	The EtherCAT C/Modelica code-generation process in Modelica
	Communication procedure with EtherLab
	Using Modelica's External Objects to organize the master/slave data
	Generating the plant library

	Usage of generated blocks
	Application example: The TROLL terramechanics testbed
	Conclusion

