
The 15th Scandinavian International Conference on Fluid Power, SICFP’17, June 7-9, 2017, Linköping, Sweden

Cloud-Based System Architecture for Driver Assistance in Mobile Machinery

O. Koch , B. Beck , G. Heß*, C. Richter*, V. Waurich*, J. Weber , C. Werner**, and U. Aßmann**

Chair of fluid-mechatronic systems, Technische Universität Dresden, Dresden, Germany
E-mail: benjamin.beck@tu-dresden.de, oliver.koch@tu-dresden.de, mailbox@ifd.mw.tu-dresden.de

*Chair of construction machinery, Technische Universität Dresden, Dresden, Germany
E-mail: georg.hess@tu-dresden.de, christian.richter1@tu-dresden.de, volker.waurich@tu-dresden.de

**Chair of software technology, Technische Universität Dresden, Dresden, Germany
E-mail: uwe.assmann@tu-dresden.de, christopher.werner@tu-dresden.de

Abstract

Using the example of a wheel loader, this paper presents a cloud-based system architecture
enabling intelligent machine behavior. In order to achieve the final goal of a fully automated
bucket filling routine, while controlling the loaders engine, travel drive and attachment, dif-
ferent levels of automation are processed gradually. As a first step towards automation, driver
assistance can be considered. The paper explains the design choices for a cyber-physical-
system architecture in the context of construction machinery. This comprises the commu-
nication framework and the cloud-application for self-adapting systems (i.e. the MAPE-K
loop). As a validation of the architecture and as a demonstrator, a driver assistance func-
tionality has been implemented. Calculations from the cloud-application give the operator
feedback about efficiency, loads and task status. A developed visualization app on a tablet
serves as user-interface. Concurrent simulation allow an optimization of control algorithms
for the machine control and the trajectory planning. Besides changing the parametrization of
the underlying models, a solution to change ECU-code at run-time without interrupting the
operation is presented. The developed system architecture is the basis for further implement-
ations of adaptive algorithms that improve future machine operation.

Keywords: cloud computing, smart metering, IIoT, construction machinery, systems archi-
tecture

1 Introduction

Applications in the field of automation and cyber-physical
systems (CPS) are still a recent topic of research. For mo-
bile machinery, the development tendencies in this direction
are obvious, both in industry and academia.

Besides the typical challenges of control engineering in hy-
draulic systems and the abstraction of operating processes for
automation purposes, new challenges arise, i.e. to design a
suitable system architecture for CPS applications in the do-
main of construction machinery.

Within this paper, a proposal for a cloud-based architecture to
operate an automated wheel loader is described. The goal is
to implement an assistance function to automatically fill the
wheel loader’s bucket and design an appropriate driver inter-
face. As the working conditions for a wheel loader are rarely
constant and predictable, a self-adaptable and experience-
based automation strategy is feasible. This means, that the al-
gorithms for detecting the pile, computing a target trajectory
as well as controlling the loaders engine and hydraulic sys-
tem are parametric and can vary throughout various operation
cycles. Increasing flexibility and guaranteeing self-adaption

in combination of optimization requires to change the ma-
chines control algorithms. An interruption of the machine us-
age for changing a control strategy will not be accepted by the
operator. Therefore, a run-time exchange of machine software
is necessary. To collect, store and process the required data, a
cloud-based network architecture has been implemented.

The availability of a comprehensive network that is able to
monitor the machinery and to manipulate its operating logic,
reveals new fields of applications. As a typical practice, ad-
ditional information of the machine and its working condi-
tions can be provided for the driver. The processing of raw
data to meaningful information (i.e. called smart metering)
integrates well with the proposed architecture and creates ad-
ditional value for the driver as well as for the monitoring site
operator. These assistance features are the first steps to ap-
proach the goal of an automated machine and it serves as a
proof-of-concept for the implemented network architecture.

The following chapters will describe the implemented system
architecture in detail. Chapter 2 describes the initial situation
and the state-of-the-art in the field of CPS in construction ma-
chinery. Chapter 3 gives an overview of the applied architec-

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 81 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

ture and chapter 5 deals with the software adaption strategy
on run-time. In chapter 4, the driver assistance functionality
is described and finally, chapter 7 summarizes the paper and
gives an outlook.

2 State of the Art
2.1 Levels of Automation

Designing a completely autonomous construction machine
from scratch demands enormous efforts. In order to ap-
proach this goal gradually, a development starting from a non-
automated system seems much more realizable. The levels of
automation of decision and action selection by [1] can serve
as a guidance on the way to an automated construction ma-
chine. A coarse classification, based on the SAE-standard
J3016 [2] transferred to mobile machinery depicts as follows:

• No Automation
The driver monitors and controls the system at all times
and is fully responsible to move into a safe state.

• Driver Assistance
The system partly sets the controls whereas the driver
has to monitor the system at all times and is able to con-
trol it manually.

• Partial Automation
The system sets the controls partly over a certain period
of time whereas the driver has to perform the remaining
tasks at all time.

• Conditional Automation
The system sets the controls completely over a certain
period of time whereas the driver has to monitor the sys-
tem and needs to be ready for control at all times.

• Highly automated
The system sets the controls completely over a certain
period of time whereas the driver has to take the control
after automated operation.

• Fully automated
The system sets the controls completely whereas the
driver does not need to monitor the system. The driver
can take control but the system is able to go into a safe
state at any time.

In industrial hydraulic applications, the boundary conditions
like temperatures, process forces and duty cycles are mostly
good known. Furthermore, there is a less cost pressure be-
cause investments into plants recoup early due to large quant-
ities of produced products. This results in a higher level of
automation like shown on an example of a hydraulic power
unit in [3]. But the task of monitoring and analyzing data
is application independent. Concerning mobile hydraulic ap-
plications, just a few assistance functions like a return-to-dig
routine in a wheel loader are integrated in mobile machines
(Driver Assistance), nowadays. Most of the tasks are operator
controlled (No Automation). This is mainly due to the di-
verse working tasks, the harsh environmental conditions like

vibrations, dust and a wide temperature range in combination
with a required high availability of the machine. However,
the continously increasing demands on productivity and effi-
ciency require the steps of automation, because the operator
cannot have an overall comprehension of the process and ad-
ditionally has a decreasing productivity due to an increasing
tiredness. An example is the filling and dumping cycle, which
can be repeated sufficiently often in order to apply automa-
tion in a productive way. As stated in [4], the efficiency of
wheel loader bucket filling strongly depends on the trajectory
of the bucket. Inexperienced drivers are likely to move too
much soil through the pile and hence, the filling is expensive
in terms of energy. An energy-efficient trajectory would be to
slice a thin chip of soil until the bucket is filled [5]. Therefore,
the bucket filling is a worthwhile task for automation.The key
challenges in automation and tele-remote operation of earth-
moving machines concerning these levels of automation are
summarized in [6]. Especially, the short-loading cycle of a
wheel loader with an in-depth review of different automatic
bucket loading strategies is analyzed. The authors also ad-
dress the problem of material description as well as commu-
nication aspects. As a result, they suggests semi-automation
as short to mid-term solution for earth moving machines. For
integrating the levels of automation into mobile machinery,
the following tasks have to be solved:

• Path planning for driving
• Collision detection, avoidance and navigation
• Path planning for the work equipment

Thereby the following requirements have to be taken into ac-
count [6]

• Performance of the work task (fill factor and cycle time)
• Fuel efficiency
• Safety

According to [6] there are many publications on modeling
for control, automatic loading, pile characterization, localiz-
ation and navigation as well as path planning. Volvo has re-
searched on autonomous machines for more than one decade.
In [7] they demonstrated how an autonomous wheel loader to-
gether with an autonomous articulated hauler reached 70% of
a skilled operator’s performance during a predefined cycle in
an asphalt mine. The autonomous control algorithm and the
autonomous bucket control are described by [8, 9]. However,
the paths are predefined, there is no communication between
the machines and no process optimization. Furthermore, an
industrial PC along with a Simulink-based control algorithm
is used [8], which are suitable for prototyping but not for com-
mercial applications. This example shows possibilities in the
development of mobile machines. Additional, autonomous
functionalities or services offer novel innovations. The vari-
ety of the applications is almost unlimited. Today, it is easily
possible to adapt a parameter in a control algorithm without
interrupting the machine. It guarantees a little flexibility. Un-
fortunately, it is nearly impossible to foresee all eventualit-
ies within the design of the control algorithms. There are
research approaches dealing with machine learning to con-
sider the uncertainties. It needs a lot of computer resources
that are not available on a mobile machine. The communic-

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 82 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

ation technologies offer a solution. Implementing a wireless
network structure and bundling powerful computer resources
in a cloud architecture that is able to change algorithms on
a mobile machine enables a flexible and adaptable machine
control structure. Learning algorithms, optimizations or con-
dition monitoring can be executed within that cloud. The
machine itself performs the specific working tasks. If a new
task requires a completely new functionality that the machine
is currently not able to perform, the cloud-based supervisor
will learn and modify the machine’s algorithms. This concept
leads to the question of changing software algorithms on run-
time that are currently not available on the embedded device.
At the time of publication, there are no contributions to cloud-
based hardware and software architectures for realizing adapt-
ive control algorithms for mobile machines.

2.2 Cloud Solutions

Cloud platforms play a big role in the IoT world. They offer
many advantages to create large IoT applications e.g. pre-
defined analyzing functions, on demand extendable data stor-
age, and a variable amount of computational power. Im-
portant cloud providers in this area are Amazon’s AWS IoT-
Platform, the Google Cloud Platform, Microsoft’s Azure IoT
Suite, Bosch IoT, ThingWorx IoT Platform, and IBM’s Wat-
son IoT, which are presented in [10]. All of them present
different implemented modules, which internally fit perfect
together to a larger IoT solution for a variety of applications.
The modules offer data storage, analyzing features, and visu-
alization interfaces. In the year 2005, IBM published a pa-
per called "An architectural blueprint for autonomic comput-
ing" [11]. There, they present the control loop called MAPE-
k. Figure 1 shows the loop in the proposed system architec-
ture consisting of the four MAPE phases and the k represent-
ing the data storage as knowledge base. In the monitoring step
all incoming data is collected and saved. The analyze phase
offers functionality to correlate the data and to create high
level information. Then, in the planning step, the information
from the analyze step is used to compare the incoming data
with the predefined objectives that should be reached and to
adapt the system if necessary. The last part comprises the exe-
cution phase, which distributes new information to connected
applications. This loop is integrated in most processes to cre-
ate adaptable software.

IBM named its cloud architecture "open cloud architec-
ture" [12] to create interfaces for open source standards, pro-
jects, and applications. This generates an mechanism to easily
extend applications and connect them to related open source
frameworks. They also implemented e.g. OASIS, W3C,
IETF, and OMG standards and thereby have integrated the
MQTT-Protocol. The MQTT-Protocol [13] offers existing
open implementations for a lot of programming languages
like C++, JAVA, or Python. It provides a publish/subscribe
service with different quality metrics. On the lower level the
MQTT-Protocol implements sockets that enables a fast con-
nection and the possibility to use different data formats.

3 Overall System Architecture
Figure 1 illustrates the basic concept of the chosen system ar-
chitecture consisting of the main modules wheel loader, com-
munication interface, cloud application and user interface (i.e.
a tablet).

User interface

Cloud-computing

MQTT-Broker

KnowledgeMonitor

Analyse Plan

Execute

publish subscribe

Cloud-application

Wheel loaderAdditional Clients

Figure 1: Overall System Architecture

3.1 Cloud Structure and Applications

The cloud is the central node which collects data from con-
nected clients and performs the overall optimization and ana-
lysis. A client represents a specific device, a machine or a
software component within the cloud which sends and/or re-
ceives data to/from another client. The MQTT-Broker plays
a central role and manages all inter-communication processes
between different clients. The broker itself takes only an in-
termediary role and routes all data messages.

All cloud-applications implementing the concept of the
MAPE-k loop [14] in different abstraction levels covering
the four phases: monitoring, analyzing, planning, and exe-
cution, which is depicted in fig. 1 and introduced in sec. 2.2.
The data-flow between these phases is visualized by a bold
line. In the monitoring phase, the cloud application collects
all incoming sensor and machine data from the wheel loader
over the communication interface, converts it into a object
oriented data format and sends it to depending analyze al-
gorithms. Furthermore, this phase saves all information into
the connected database. This first implementation uses SQL-
ite. All processes own read and write access to the know-
ledge database. With arrival of a certain devices first message
the application creates a new database table. All following

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 83 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

messages will be written into this table. Subsequently, the
analyzing phase creates high-level information by connecting
recent data with historical data. In this first implementation
step, the analyzing phase only computes the Smart Metering
data for the wheel loader application. Additionally, the ex-
ecution of Modelica-based simulation models are integrated
to test this opportunity as well. They will be used for later
optimization and the basis for generating changed algorithms
for the wheel loader’s control unit. The planning phase com-
pares actual data with the target data and decides whether an
algorithm has to be modified. Basically, two different options
are possible. While modifying a control model’s parameter-
ization does not necessarily afford an software exchange, a
replacement of a complete strategy requires downloading an-
other software version. The last step in the cloud covers the
execution phase. Modifications will be propagated to clients.
Therefore, an FTP connection transfers the generated code to
the machine and for parameterization the MQTT infrastruc-
ture is used directly.

Currently, the cloud executes every service for the implemen-
ted smart meetering application in a separate thread. It en-
ables an independent development and test of all routines.
Furthermore, all services inherit an application prototype.
This already realizes basic functions to gather data from and
commit data to the knowledge base. Python 3.5 serves as
programming language. To reduce the amount of commu-
nication overhead and redundant software parts, merging all
services in just one major cloud application is recommended
and will be realized in further developments. A suitable plu-
gin concept then allows an easy addition of new programmed
services.

3.2 Network Communication

The connection between the cloud and the machine is man-
aged by a communication interface based on the MQTT-
Protocol [15]. It guarantees the creation of an adaptable,
secure and scalable communication structure. Clients have
to authenticate themselves to the server. The messages are
encrypted by SSL/TLS. In order to add a new functionalit-
ies without changing the clouds overall implementation, the
connections to services can be accomplished on the fly (Fig-
ure 1). An MQTT-Broker with a publish/subscribe interface
is responsible for the clients communication. Different clients
can connect themselves to the broker an subscribe and publish
messages for related topics. It only requires implementing the
MQTT-Client interface. For the prototypical implementation,
the open source MQTT-Broker Mosquitto [16] is used.

According to individual machines, an initialization message
is required to register a specific machine client. Within this
initial handshake, the message protocols are exchanged. It
considers varying communication processes and guarantees
a certain flexibility. Reconfiguring the protocol only requires
an update through a new configuration message. JSON serves
as exchange format and contains application-depended key-
value pairs.

3.3 Wheel Loader as a Network Client

Figure 2 illustrates the machine’s control architecture consist-
ing of two levels. The Machine Level represents the basic
wheel loader functionality as it could be developed for ordin-
ary operating tasks. The Adaptive Control Level implements
additional control functionality that is used for automation
and optimization during an operation.

System States

Travel Drive

Engine

Hybrid Attachment

Maschine
Control

Flash

Adaptive
Controller 1

Adaptive
Controller 2

Teleservice
Module

System Control
Maschine Interface

Machine Level

Adaptive Control Level

Figure 2: Wheel loader’s system architecture

Therefore, the Machine Level represents a master-slave con-
trol system with three different CAN-networks. Operator
devices communicate over the Machine-Interface bus with the
Machine Control. This central unit interprets the operator in-
puts and generates the subsystems’ set values according to
the implemented operating strategy. Additionally, it handles
functions such as control of peripheral systems, monitoring
and calibration routines. Each subsystem comprises a separ-
ate controller for realizing the machine controller’s demands
from the System-Control bus by controlling the subsystem’s
integrated actors. Furthermore, subsystem-specific data ac-
quisition and monitoring functions are implemented. They
are transfered via the System-States bus.

Today, a typical mobile control unit does not usually allow
changing software parts of a control algorithm on run-time.
It almost always needs a reboot to start the internal flash-
loader. This loader program expects getting a new complete
control software from an interface and stores it in its desig-
nated memory. From there, the program will be loaded into
the RAM and executed after starting the device. Operating
systems usually offer a mechanism for an easy program ex-
change without the need for rebooting the device. Unfor-
tunately, they cannot be installed on a today’s mobile con-
trolling unit. But novel developments usually designed for
multimedia applications generate powerful embedded devices
which allow running an operating system that provides this
needed functionality.

This leads to two major opportunities depending on the se-
lected embedded control unit. Using a typical mobile control
device requires a control architecture consisting of at least two

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 84 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

redundant devices. While one controller executes the current
algorithm the other unit is ready for rebooting and flashing
a new program. A handshaking protocol handles switching
the control units’ responsibilities that the devices will change
their operating state. After a software update, the recent up-
dated control unit executes its algorithm while the other goes
of and waits for a flash demand. If an embedded device with
operating system shall be installed, only one device is neces-
sary. Then, the handshake process happens between two pro-
grams on the unit itself.

The implemented Adaptive-Control-Level architecture con-
sists of a teleservice device and two additional adaptable mod-
ules. The teleservice module acts as interface to the cloud. It
handles flashing and monitoring the adaptive control units as
well as gathering cloud-relevant machine data. The adapt-
ive controllers are responsible for automated tasks that shall
be modified during machine operation. They are connected
to the machine interface to send control values to the mas-
ter. These modules are typical mobile control units with an
additional Linux board installed. It enables using both soft-
ware change strategies and therefore a high flexibility. A
separate installed CAN-bus (flash) handles the communica-
tion between teleservice module and adaptive control units.
It shall guarantee a certain independence that an error within
the adaptive control level does not directly affect the main ma-
chine behavior. All three modules listen to the System-State
bus to get necessary machine information.

4 Analysis Modules in the Cloud Application
Besides several other cloud applications like on-board dia-
gnostic (OBD), smart-metering, slip and fatigue computation
will be described in the following chapters.

4.1 Smart Metering

In the context of industrial applications like mobile ma-
chinery, smart metering describes the intelligent evaluation
of machine data provided by the installed sensors in combin-
ation with an appropriate visualization for the operator so that
he can improve his control. Thereby the following questions
have to be answered:

1. Which information or which value would improve the
operator’s control?

2. How can an appropriate visualization look like?

3. Which algorithms are needed to provide this data from
the installed sensors?

Ideally, the algorithms should come along with the already
installed sensors which are needed from the functional view.
The wheel loader demonstrator already contains a variety of
sensors to measure, e.g.:

• The angles in the joints of the work equipment,
• The swash plate angle of the pumps,
• The cylinder pressures and
• The shaft torque and rotational speeds at the gear output.

This application can be seen as an outlook for future develop-
ment opportunities. Although this demonstrator is just a pro-
totype and does not represent a today’s commercial vehicle,
the trend of installing electronic and software into mobile ma-
chines also expects an increase of sensors to detect various
system states. According to the provided data for the oper-
ator, the vehicle’s tire slip and a wear computation will be
exemplary described in this paper.

4.2 Slip Computation

The illustration of the tire slip value λ can be divided into
an optimal slip section and a section with an expected in-
crease of tire wear. The operator shall recognize an un-
necessary high tire wear and be able to reduce the wheel
loader’s output torque via its drive pedal. The optimum varies
between 5 - 20 % depending on the environmental conditions
like weather or ground conditions. This is expressed by the
tire slip - friction coefficient curve displayed in fig. 3.

Figure 3: λ -µ-curves for different surfaces according to [17]

Because the machine only provides the output torque and ro-
tational speed of the travel drive, there are two tasks for estim-
ating the actual tire slip. First, an calculation algorithm is re-
quired and secondly, the machine’s slip-free velocity vmachine
has to be measured. The calculation of the longitudinal tire
slip λx is given by eq. (1), whereas nwheel and Dwheel are the
rotational speed and diameter of the wheel.

λx =
π ·nwheel ·Dwheel − vmachine

max(π ·nwheel ·Dwheel ,vmachine)
(1)

In the case of deceleration the numerator causes a negative
velocity difference and the maximum function in the denom-
inator becomes vmachine resulting in a negative slip. On the
other hand, an accelerating wheel has a positive numerator.
The denominator becomes π ·nwheel ·Dwheel and a positive slip
is returned. Furthermore, the ratios of the differential gear and
the wheel hubs as well as the dynamic wheel diameter must be

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 85 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

taken into account. Because these values are specific machine
parameters, they have to be transferred from a machine client
to the cloud application during the subscription process. The
tire slip calculation is implemented in the programming lan-
guage Python. It gathers the gear ratios, the dynamic wheel
diameter, the output torque and rotational speed of the travel
drive, the actual time as well as the machine velocity from
the knowledge data base. In return, the routine publishes its
actual tire slip estimation as a result to the data base. Due to
the wheel loader’s permanently coupled wheels, the algorithm
only generates one common slip value.

4.3 Fatigue and Wear Computation

With information about the current tire slip, it is possible to
estimate the tire wear. A simplified first implementation in
Python calculates the cumulative frequency Wtire if the tire
slip exceeds the deformity slip range. There, due to the glid-
ing slip, a higher wear is expected and can be estimated ac-
cording to eq. (2).

Wtire =
1

Tli f e

j

∑
i=1

ti, if λx ≥ λlimit (2)

Another exemplary feature is the monitoring of mechanical
damage based on the calculated stress and providing it to
the operator. To estimate the load acting on the structure,
it is necessary to solve the equations of motion as well as
the kinematics of the equipment. To reduce calculation time,
the nonlinear equation system of the kinematics has to be
avoided. Therefore, the angles are calculated with causal
equations instead of nonlinear systems of equations. With
those calculated values and the sensor data, the equation of
motion of all bodies becomes a linear problem with the un-
known joint forces. This system can be solved with a QR
decomposition algorithm. The execution of this calculations
is done in real time and thus the results can be saved in addi-
tion to the raw data on the cloud storage. To predict a failure
of a component, the joint forces have to be transformed to a
load spectrum. Afterwards, the fatigue can be derived. The
total fatigue accumulation serves as an indicator for failure or
wear.

4.4 Implementation

The algorithms have been virtually tested in a simulation en-
vironment. The next step includes the validation of the ser-
vices by means of the real machine. Therefore, a sensor to
measure the slip-free machine velocity must be installed. The
most important use case for optimizing the tire slip of a wheel
loader is presumable filling the bucket while driving into a
pile. This requires a good accuracy at lower velocities. Be-
cause GPS-sensors do not fulfill this requirement [18], altern-
ative techniques have to be discussed. Optical sensors address
this problem but are cost-intensive at the same time [19, 20].
Inertia measurement units are one promising technology for
mobile machines as shown in [21]. Additionally, they will
be needed to compensate dynamic effects in the calculation
of digging forces or loaded mass from the cylinder pressure
signals. On the basis of the slip calculation, traction control

algorithms can be developed in future work to reduce the tire
wear and to increase the driving behavior during an autonom-
ous loading cycle.

5 Planing Modules in the Cloud Application
5.1 Software Adaption on Run-Time

Figure 4 illustrates a basic software architecture that is applic-
able for both hardware variants (board with Linux operation
system and mobile controlling unit). It represents a state ma-
chine and an algorithm component. This approach allows a
separation of static code from variable software algorithms.
While the state machine implements algorithm-independent
software parts that usually do not vary between software up-
dates, the algorithm component realizes a specific changeable
strategy. The two interfaces StmInterface and Algorithm al-
low an interaction between them. A concrete algorithm has
to provide the interface Algorithm for updating and reseting
its output values. The architecture considers automated func-
tions that prohibit an interruption during the process as well as
interruptible semi-automated functions. Therefore, a concrete
algorithm uses the StmInterface to lock and unlock a deactiv-
ation or a shutdown process. The teleservice module is able
to send different commands to the adaptive control devices.
They will be redirected to the state machine. If an activate
command is received the state machine will execute the al-
gorithm logic by calling its update function. The deactivation
command disables updating the algorithm. A reboot com-
mand shuts down the controller. Restarting the device allows
flashing a new control software. A change request turns the
devices’ activation. The currently operating algorithm will be
disabled while the inactive algorithm will be enabled. Addi-
tionally, a kill command forces a reboot of the device.

currentstate

update()
change()
activate()
deactivate()
changed()
reboot()
kill()

Statemachine

update()
reset()

Algorithm

State

ConcreteAlgorithm

algorithm

lock()
unlock()

StmInterface
statemachine

update()
change()
activate()
deactivate()
changed()
reboot()
kill()
lock()
unlock()

Figure 4: Components

Figure 5 defines the state machine’s states and transitions.
Depending on the current state, a received command causes

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 86 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

a different change in state. There are eight states available.
After booting, the device stays inactive and the algorithm is
reseted. An activation command instantly activates the in-
stalled algorithm by switching the controllers state to pro-
cess whereas a change request leads to the intermediate state
change requested. This synchronizing state guarantees that
the currently operating algorithm turns inactive before an-
other strategy can be performed. The new algorithm stays
inactive until the device receives the notification changed
from its counterpart. The process state cyclically calls the
algorithms update operation. If an automated service is activ-
ated that shall not be interrupted, the algorithm can lock the
state machine and the current state switches to operate. From
there, various intermediate states are available. All also trig-
ger the current algorithm to update its values until they will
be unlocked. Depending on the previous command, the state
machine then changes over to its desired state.

Inactive

Process

Operate

Inactive
Requested

Change
Requested

Change
Requested

Shutdown
Requested

entry/
algorithm.reset()

do/
algorithm.update()

unlock() unlock() unlock()

lock() unlock()

deactivate()activate()

change()deactivate()reboot()

reboot()

reboot()

change()

changed()

do/
algorithm.update()

do/
algorithm.update()

do/
algorithm.update()

do/
algorithm.update()

change()

Figure 5: State machine

5.2 Flash Function

The flash function is the key point to change the run-time code
on control units. It is implemented on the Teleservice device
as an event based algorithm. It gets a new binary code file
from the cloud via ftp connection. A separate start command
initiates the flash sequence to download a new software ver-
sion to a machine’s control unit. It is shown in Algorithm 1.
At the beginning, the routine searches for the current inactive

slave module. If an inactive node is detected, the algorithm
will reboot and flash it. Otherwise, a failure will be repor-
ted to the cloud. After the node successfully changed its
software, restarted, and reported back its status, both control
nodes receive a command to change their current operating
state. From this point, the flash sequence waits for the active
control device to deactivate itself. Receiving a new binary file
from the cloud, again restarts the process.

Data: file = new binary flash file
Result: algorithm successful
inactive node = get inactive node;
if inactive node is null then

start error correction;
return f alse;

end
reboot (inactive node);
flash (inactive node with file);
while inactive node is not restarted do

wait;
end
send change activity command;
while active node is changed to inactive do

wait;
end
reboot (second node);
flash (second node with file);
while second node is not restarted do

wait;
end
return true;

Algorithm 1: Flash Algorithm

The flash memory’s write cycles are usually limited. It is use-
ful to reduce the need for flashing a controller. Two addi-
tional opportunities are implemented. If a modification only
consists of a changed parameter set, the Teleservice device is
able to pass a new set from the cloud to a control node without
changing the whole software code by the flash loader. There-
fore, the JSON-based messages are transformed into CAN-
based messages and sent to the specific node. Another pos-
sibility exists if more than one algorithm is implemented into
the current control software. The abstraction to a general al-
gorithm interface allows an easy exchange of the current lo-
gic by redirecting the state machine’s algorithm reference to
a new designated strategy.

6 Virtual Validation
6.1 Simulator

During the development process, it is necessary to test new
functions and services quickly and with little effort. Attempts
on a real machine are not always the easiest way to accom-
plish that. This has various reasons, e.g. a real machine is
not always available, ready for use or an experiment would
be to expensive. An alternative to experimental validation is
virtual validation, in which the real environment is replaced
by a virtual mock-up. For this purpose, a simulation tool has

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 87 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

been developed, which allows coupled simulations between
machine and process models. The structure of the software
tool is shown in fig. 6

Figure 6: Interactive Machine and Process Simulator

The machine (wheel loader) was created as a comprehens-
ive system model in the description language Modelica [22].
The model exists in different levels of detail, starting with a
simple mechanical multibody system up to complex variants
representing also hydraulic parts and control systems. The
simulation model is exported as an Functional Mock-up unit
(FMU) [23]. FMU is a tool-independent standard for the ex-
change of system models among both proprietary and non-
proprietary software tools.

The process model, which is designed to simulate the beha-
vior of the granular material, is based on the Discrete Element
Method (DEM) first mentioned by P. A. Cundall [24]. For
computation, the open source software LIGGGHTS R© [25]
has been applied. Due to the efficient use of multi-processor
architectures, as well as the large number of available con-
tact models, LIGGGHTS R© is considered to be particularly
powerful. In recent years, various methods to link and com-
municate among LIGGGHTS R© and Modelica Models [26] or
FMUs [27] have been developed. In order to correctly link the
machine and process model, the FMU require defined inputs
and outputs. Outputs are position, orientation and speed of the
wheel loader’s bucket. These values and necessary geometric
information are transmitted to LIGGGHTS R©, whereupon the
resulting normal and tangential forces on the bucket are calcu-
lated. The outcome is returned to the FMU via corresponding
input signals.

An extra simulation MQTT-client is responsible for the simu-
lation control. It guarantees the proper data exchange after
each calculation step and saves relevant results for post-
processing. Additionally, the simulation master interacts
with the cloud’s MQTT-broker and regularly transmits cur-
rent state values.

There are two possibilities for controlling the wheel loader
during simulation run-time. The first option is the applica-
tion of predefined trajectories. They can be calculated by al-

gorithms or originate from real measurements and stimulate
the machine model. The second option is an interactive user
control. Therefore, the Modelica_DeviceDrivers library [28]
is used. It contains models and functions for reading signals
from external control devices such as joysticks or keyboards.

6.2 Smart Metering Application

An Android application running on a separate tablet gives
the operator feedback about machine status, current working
tasks and performance values. The device is not directly con-
nected to the machine and needs an internet connection to
show the cloud services’ evaluations. Therefore, the tablet
application also inherits the MQTT-Client interface and sub-
scribes to its needed topics. The visual design consists of
different modularized views. Incoming messages triggers up-
dating all of them. Figure 7 represents an exemplary view.
This consists of five modules. The illustration (1) above left
shows the actual bucket’s position and reports its height and
the loaded mass as a numerical value. In the middle of the
upper line, the bar graphs (2) informs about the estimated tire
slip. Depending on the current values, the graphs change their
color. While operating in a green range means an optimal
traction, a yellow to red colored bar expresses a to high tire
wear. The list (3) above right tells the operator about its re-
maining tasks. They are prioritized, named and supplemented
with deadlines and objectives. The current progress status is
presented as well. On the left side of the lower line, the per-
formance graph (4) compares the efficiency of the last load-
ing cycles. Each value represent the amount of moved ma-
terial related to a cycle’s energy consumption according to
eq. (3). Thereby, the working efficiency Pwork is defined as
the weight of loaded material mmaterial devided by the total
amount of consumed energy within one working cycle Etotal
(loading a bucket starting at i.e. floating position ending in
with a defined bucket height for transportation) respective to
the cycle time span tcycle.

Pwork =
mmaterial

Etotal · tcycle
(3)

The last figure on the lower right illustrates the pile’s virtual
cross section (5) and its planed optimal bucket trajectory.

7 Summary and Outlook
The presented paper proposes an overall system architecture
for cyber-physical systems in the context of construction ma-
chinery. The IIoT messaging protocol MQTT is well suited
for these kinds of applications. Multiple clients can con-
nect to the cloud and are integrated in the cloud application
services. The cloud implementation follows the design of a
MAPE-K loop. The central knowledge base stores the data
history of the system. The analyse modules perform compu-
tations on raw data and the plan modules modify the logic for
client. This structure has been implemented in a prototype
and has been tested using a driver assistance user-interface.
Physical-based simulations emulates the machine’s behavior
and feed the current cloud application. A monitoring visual-
ization app on a tablet represents a service application inside

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 88 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

Figure 7: Application Screenshot

the CPS. The implemented cloud architecture enabled an ad-
aptable driver assistance and defines the basis for further de-
velopments achieving high level automation functionality in
mobile applications. Therefore, additional sensor technolo-
gies for environment detection are needed. With the help of
the simulation models, bucket filling strategies can be easily
tested but they have to be calibrated with real measurements.
For further developments, an assisted, partially automated
bucket filling process is obvious. In the long term, a highly
automated bucket filling procedure is desirable whereas the
operation of a fully autonomous wheel loader for a construc-
tion purpose seems less conceivable. The currently developed
cloud implementation will be extended to an adaptable fog
architecture. This means the use off more locally available
computational infrastructure to split time-critical algorithms
from the machine to near computational elements and not all
to the cloud. This decreases latency.

Nomenclature

Designation Denotation Unit

λ tire slip %
nwheel wheel’s rotational speed min-1

µ friction coefficient -
Dwheel wheel diameter m
vmachine slip-free machine velocity m/s
Wtire tire wear %
TLi f e life time h
ti time variable h
Pwork working efficiency kg/(l·s)
mmaterial weight of loaded material kg
Etotal energy consumption J
tcycle loading cycle time s

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 89 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

References
[1] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A

model for types and levels of human interaction with
automation. Trans. Sys. Man Cyber. Part A, 30(3):286–
297, May 2000.

[2] Sae j3016 - taxonomy and definitions for terms related
to on-road motor vehicle automated driving systems.

[3] Martin Laube and Steffen Haack. Condition monitor-
ing for hydraulic power units–user-oriented entry in in-
dustry 4.0. In 10th International Fluid Power Confer-
ence (10. IFK) March 8 - 10, 2016 in Dresden, volume 2,
pages 393–402. Dresdner Verein zur Förderung der Flu-
idtechnik e.V.

[4] Reno Filla. Evaluating the efficiency of wheel loader
bucket designs and bucket filling strategies with non-
coupled dem simulations and simple performance indic-
ators. pages 274–292, Dresden.

[5] Reno Filla. A study to compare trajectory generation
algorithms for automatic bucket filling in wheel loaders.

[6] S. Dadhich, U. Bodin, and U. Andersson. Key
challenges in automation of earth-moving machines.
68:212–222, 2016.

[7] Elisabet Altin and Brian O’Sullivan. Volvo construc-
tion equipment reveals prototype autonomous machines,
2016.

[8] Jonatan Björkman. Control of an autonomous wheel
loader.

[9] Anders Bergdahl. Autonomous bucket emptying on
hauler, 2011.

[10] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller. A sur-
vey of commercial frameworks for the internet of things.
In 2015 IEEE 20th Conference on Emerging Technolo-
gies Factory Automation (ETFA), pages 1–8, Sept 2015.

[11] Autonomic Computing et al. An architectural blueprint
for autonomic computing. IBM White Paper, 31, 2006.

[12] Angel Diaz and Chris Ferris. Ibm’s open cloud architec-
ture. IBM Corp., Armonk, New York, 2013.

[13] OASIS Standard. Mqtt version 3.1.1, 2014.

[14] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina
Gacek, Holger Giese, Holger Kienle, Marin Litoiu,
Hausi Müller, Mauro Pezzè, and Mary Shaw. Engin-
eering Self-Adaptive Systems through Feedback Loops,
pages 48–70. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[15] Vasileios Karagiannis, Periklis Chatzimisios, Francisco
Vazquez-Gallego, and Jesus Alonso-Zarate. A survey
on application layer protocols for the internet of things.
Transaction on IoT and Cloud Computing, 3(1):11–17,
2015.

[16] Roger Light. Eclipse mosquitto, 2010. An Open Source
MQTT v3.1/v3.1.1 Broker.

[17] Fredrik Gustafsson. Slip-based tire-road friction estim-
ation. 33(6):1087–1099, 1997.

[18] Heinrich Schneider and Peter Reitz. GPS zur
geschwindigkeitsmessung. 51(5):264–265, 1996.

[19] LUXACT - optical sensor for non-contact displacement
and speed measurement, 2013.

[20] Correvit s-motion - berührungslose optische sensoren,
2016.

[21] Chris C. Ward and Karl Iagnemma. A dynamic-model-
based wheel slip detector for mobile robots on outdoor
terrain. 24(4):821–831, 2008.

[22] Modelica R© - a unified object-oriented language for sys-
tems modeling language specification version 3.3, 2012.

[23] Torsten Blochwitz, Martin Otter, Johan Akesson, Mar-
tin Arnold, Christoph Clauss, Hilding Elmqvist, Markus
Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar
Neumerkel, et al. Functional mockup interface 2.0:
The standard for tool independent exchange of simula-
tion models. In Proceedings of the 9th International
MODELICA Conference; September 3-5; 2012; Mu-
nich; Germany, number 076, pages 173–184. Linköping
University Electronic Press, 2012.

[24] Peter A Cundall. A computer model for simulating pro-
gressive large scale movements in blocky rock systems.
In Proceedings Symposium Int. Soc. Rock Mech (ISRM),
volume 1, pages 8–11, Nancy Metz, 1971.

[25] Christoph Kloss and Christoph Goniva. Liggghts–open
source discrete element simulations of granular materi-
als based on lammps. Supplemental Proceedings: Ma-
terials Fabrication, Properties, Characterization, and
Modeling, Volume 2, pages 781–788, 2011.

[26] Christian Richter. A new approach for integrating dis-
crete element method into component-oriented system
simulations. In ASIM 2016 - 23. Symposium Sim-
ulationstechnik 07.-09.09.2016. Zusammenfassung der
Beiträge, pages 91–97, HTW Dresden, 2016.

[27] Günther Kunze, Andre Katterfeld, Christian Richter,
Hendrik Otto, and Christian Schubert. Plattform- und
softwareunabhängige simulation der erdstoff-maschine
interaktion. In 5. Fachtagung Baumaschinentechnik,
Dresden, 2012.

[28] Tobias Bellmann. Interactive simulations and advanced
visualization with modelica. In Proceedings of the
7th International Modelica Conference; Como; Italy;
20-22 September 2009, number 043, pages 541–550.
Linköping University Electronic Press, 2009.

Peer-reviewed Paper,Accepted for publication on 2017-04-13. 90 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

