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Abstract
This paper presents the methodology for performance

optimization of a steam turbine cascade using CFD

techniques for ORC (Organic Rankine Cycle) application.

The steam turbine cascade is parameterized to achieve the

maximum efficiency while using different organic fluids.

The main objective of this work is to attain the

maximization Cl /Cd ratio from a preliminary design. The

approach to finding the maximum Cl /Cd ratio is based in

optimization algorithms. The CRSA (Controlled Random

Search Algorithm) was chosen for the optimization process.

The optimization algorithm (CRSA) is integrated with CFD

techniques, using automatic building schemes of

parameterized geometries and meshes via “script files”

with editing commands written in Tlc/Tk language, which

will be interpreted by the commercial software ICEM-

CFD®, in batch mode. Finally, for the numerical

calculation, the commercial software FLUENT® is used

with fluid properties, real gas model, turbulence model and

boundary conditions set through “journal files”. In this

paper, R245fa and Toluene are used as working fluids.

Results of drag, lift and pressure distribution are reported.

This methodology allows making corrections in the initial

project of the cascade shape.

Keywords:  ORC,  optimization,  CFD,  CRSA,  turboma-
chinery, real gas, equations of state

1 Introduction

The accelerated consumption of fossil fuels has caused

many serious environmental problems such as the

destruction of the ozone layer, global warming and air

pollution. Emissions of carbon dioxide related to energy

consumption have increased worldwide from 30.2 billion

metric tons to 35.2 billion metric tons in recent years and

will be around 43.2 billion metric tons in 2035.

Given that energy resources are becoming more valuable

due to the supply and demand relationship and that

environmental legislation is becoming stricter,

unconventional technologies for energy conversion are

necessary to ensure the future supply of electricity.  Low-

grade heat sources are considered as candidates for new 

sources of energy. 

The technologies for generating electrical power by 

recovering waste heat sources can be considered a well-

established and mature way of energy production; taking 

into account that the thermodynamic cycles being more 

exploited are those using steam turbines, with the 

conventional Rankine Cycle as the most used due to its 

advantages, such as price, availability and non-toxicity of 

the working fluid. However, for heat sources with 

temperatures below 400 0C, it is quite difficult to use water 

as the working fluid because of the need to apply vacuum 

in a large part of the plant, making it less efficient and 

increasing generation costs considerably. 

Accordingly, the Organic Rankine Cycle (ORC) is 

commonly used to generate energy from sources of low and 

medium temperature (geothermal, waste heat from 

processes, solar energy, etc.) and in recent decades has 

extended its use to sources of heat at high temperatures 

(biomass burning and exhaust gases from primary triggers). 

The majority of the researches conducted in this field is 

focused on extensive analysis of different thermodynamic 

cycles and working fluids, seeking to develop energy 

systems more efficient by selecting the most appropriate 

organic working fluid and an optimal set of operating 

parameters. 

However, the majority of these studies have different 

insights when defining the optimal set of criteria leading to 

an optimal configuration of the cycle according to the 

characteristics of the source of heat available. Furthermore, 

most of which rule out the possibility of analyzing the 

effects of the variation of various operating parameters of 

the cycle have on other indicators of interest, as the size 

and efficiency of the turbine, for example. 

In this sense, researchers have committed a lot of efforts 

to develop methods for optimal design based on genetic 

algorithms to find the best design point. Recently, (Lemort 

et al., 2009) dealt with a method of maximizing the 

efficiency of the steam turbine based on genetic algorithms 

(Qin et al., 2003). This method has a number of functions 

that are taken as constraints. Thus the optimal geometry 
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and aerodynamic parameters are solved using the genetic 

algorithm. 

Researchers are more and more using CFD techniques 

because through certain defined geometry and with the use 

of correct boundary conditions, it is possible to calculate 

the local and global variables of the flow field.   

The fundamental basis of almost every CFD problem is 

the Navier–Stokes equations, which define any single-

phase fluid flow. However, it is not possible to only use 

CFD techniques when dealing with a great number of 

geometric and flow parameters. Then, in order to attain the 

correct solution, it is best to use an optimization algorithm 

(OA).  

2 Organic Rankine Cycle  (ORC) 

The organic Rankine cycle (ORC) is similar to the 

conventional Rankine cycle power conversion. However, 

this system uses a high-density organic compound as the 

working fluid instead of water.  

Saturation curves for water and an organic fluid are 

presented in Figure 1. The advantages provided by water 

and the organic fluids in each application are directly 

related to the observed differences in their saturation 

curves. More specifically, the large difference between 

both types of fluid is in the slope of the saturation vapor 

curves, which directly influences the behavior of the fluid 

during its expansion through the turbine. In the case of 

water, the vapor curve displays a negative slope (Figure 

1a). However, the vapor curve of many organic fluids, 

exhibits a positive slope (Figure 1b). The expansion in the 

turbine takes place for the three types of fluid differently. 

In the case of water, the saturated vapor enters the turbine 

and undergoes an isentropic expansion to the condensing 

pressure of the cycle, the fluid output exhibits a high 

fraction of liquid (from the point of view of conservation of 

the internal structure of the turbine). Thus, the employment 

of overheating and reheat in the cycle becomes 

indispensable, in order to avoid the deterioration of the 

equipment, introducing complications to the system design. 

In the case of an organic fluid, superheated steam is 

obtained after expansion in the turbine, rather than a liquid-

vapor mixture. The absence of liquid along the turbine 

translates into a simpler system design, since there is no 

need for superheat and reheats in the cycle. Furthermore, 

because the fluid exiting the turbine is superheated, its 

temperature is higher than the condensing temperature, 

even though its pressure is identical to the condensing 

pressure. The appearance of the higher temperature, creates 

a potential heat transfer; enabling the use of part of the 

existing energy for preheating the fluid in the inlet of the 

steam generator. By harnessing the energy output of the 

turbine, it is possible to increase the cycle efficiency. 

 

 

Figure 1. T-s diagrams for water (a) and an organic fluid (b), 

showing the different inclinations of the saturation vapor 

curve (continuous line). 

 In the last two decades, the use and research on this 

technology have grown rapidly as an option for recovering 

heat from sources of low temperature and medium 

temperature, such as solar energy, geothermal energy and 

waste heat from industrial processes. Today has extended 

its use for small cogeneration plants using biomass as fuel. 

Currently, it is expected that applications in industrial 

processes and modular applications using solar energy will 

have a rapid development in the coming years. Figure 2 

shows one configuration of an ORC cycle, and the 

processes represented in a T-s diagram for two different 

flow as R245fa and Toluene. 

The market facilities ORC is growing apace. Since the 

installation of the first plants of ORC in the 80s, has been 

registered an exponential growth in the use of this 

technology and in Europe currently, there are between 120 

and 150 ORC plants (Crowe, 2011). According (Quoilin 

and Lemort, 2014), the growth in the number of projects 

and installed power of ORC in the last 20 years had an 

exponential character of which 48% corresponded to 
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biomass applications, 31% geothermal, 20% heat sources 

residual and 1% with solar energy installations.  

 The ORC system performance is strongly connected to 

the prime mover, which are classified into two types: 

positive displacement expanders and turbo machinery. 

They can be used both axial and radial turbines, being the 

radial the one that ensure greater isentropic efficiencies in 

small capacities. The choice of prime mover should be 

made according to the size of the system. For small 

applications are used screws and scroll expanders which are 

in a stage of research and development as seen in the work 

of (Quoilin et al., 2010; Lemort et al., 2009) and others. 

While in applications above 200 kW are used axial 

turbines, with a high degree of technology maturity, which 

can reach isentropic efficiencies of up to 85%.  

  

(a) 

 

(b) 

Figure 2. T–s diagrams showing the different inclinations of 

the saturation vapor curve to organic fluids, R245fa (a); and to 

organic fluids, toluene (b). 

3 Steam Turbine Design  

3.1 Preliminary Turbine Design 

The preliminary design of a turbine begins using one-

dimensional modeling techniques. The thermo-

aerodynamic design of a turbine involves handling a large 

amount of parameters associated with mechanical 

calculations to obtain the final geometry for the context in 

which the turbine is intended. In general, the design 

consists in the search of some basic geometrical parameters 

for the rotor blades - the design variables - in order to 

maximize the turbine efficiency.  

In this study, the preliminary design of the turbines was 

performed using an in-house code and following the design 

procedure established by (Saravanamutto et al., 2001). The 

general procedure implemented was to determine the 

overall dimensions of the machine along with blade and 

flow angles and isentropic efficiency by fixing the mass 

flow rate, inlet and outlet pressures as calculated by the 

cycle analysis and by assuming flow and loading 

coefficients (Table 1). 
 

Table 1. Turbine Initial Design Operating Conditions. 

Operating Conditions 

Mass flow  m = 20 kg/s  

Isentropic efficiency  ƞt = 0.9  

Inlet temperature  T01 = 1100 K  

Variation of temperature ΔT0=145 = T01-T03 K  

Variation of Pressure ΔP=1.873 = P01/P03  

Pressure inlet P01 = 4 bar  

Rotation n = 250 rps  

Peripheral velocity U = 340 m/s  

Loss coefficient in the stator   λN = 0.05  

Load Coefficient  ϕ = 0.8  

From the basic design specifications and the 

performance analysis, a refinement of the results was 

performed in order to optimize the geometry (Table 2). 

 

Table 2. Turbine Final Design Operating and Geometrical 

Conditions. 

 α1 α2 α3 β1 β2 

Root 0° 62.15° 12.12° 39.32° 51.13° 

Mean 0° 58.38° 10° 20.49° 54.96° 

Tip 0° 54.93° 8.52° 0° 58.33° 

 1 2 3 Unit 

P 3.54 2.49 1.856 bar 

T0 1067 982.7 922 k 

ρ 1.155 0.883 0.702 kg/m3 

A 0.0626 0.0833 0.1047 m2 

rm 0.216 0.216 0.216 m 

rt/rr 1.24 1.33 1.43 --- 
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h 0.046 0.0612 0.077 m 

 Stator 

 

 

Rotor 

 

 

 

s/c 0.86 0.83 

h(mean) 0.0536 0.0691 m 

h/c 3 3.00 

c 0.0175 0.0230 m 

s 0.01506 0.0191m 

zblade 90 71 

 

3.2 Linear Cascade Design  

Based on the defined geometry for the rotor, it is possible to 

generate a linear cascade which represents the axial rotor, 

considering a line on the average height of the blade, the 

relative velocity field on the cascade and the associated 

boundary conditions. Thus, the angles of incidence, stagger 

angle and pitch cascade are defined in the average height of 

the blade. Figure 3 illustrates the basic gas turbine cascade 

configuration. 

For the turbine cascade blade design, the camber line was 

estimated using the directions of relative velocities in the 

inlet and exit, obtained from the preliminary turbine design. 

This was done graphically by script written in Tcl/Tk 

language for interpreting by the software ICEM-CFD®. 

Given the chord length (c) and angles relative (β1) and (β2). 

 

Figure 3. Cascade turbine configuration. 

The tangents were brought to an intersection with each 

other and subdivided into equal distances. The envelope to 

the inner region of the connecting lines is the camber line. 

Once the camber line was constructed, a NACA 6519 

profile was superimposed and the new profile was 

generated. The camber line was constructed, a NACA 6519 

profile was superimposed and the new profile was 

generated. 

4  Integration Process CFD And 

Optimization 

CFD techniques have been developed over the past decades 

as a powerful analysis tool for quantification of flow fields 

in complex geometries, especially those found in 

Turbomachinery design. Such techniques have been used by 

the aeronautics industry since the 60ths, begging with the 

classical panel method with boundary layer interaction to 

account viscous effects. Nowadays, the use of 

computational fluid dynamics (CFD) for solving the full 

Navier-Stokes equations have become a common issue in 

several industrial design activities. Nevertheless, such 

computations may represent a bottleneck when a greater 

number of concurrent geometrical and flow parameters must 

be analyzed during the searching of good solutions for 

satisfying certain design objectives. Normally, such task is 

best accomplished by means of a suitable optimization 

algorithm (OA). But taking into account real life constraints 

- the available computational environment and budget - the 

number of comparative evaluations required by an OA may 

become prohibitive in a specific design situation (Praveen 

and Duvigneau, 2007).  

To overcome this drawback, several strategies have been 

conceived for accelerating the optimization task, such as: (i) 

use of multiprocessing; (ii) use of better optimization 

algorithms; (iii) use of metamodels (surrogate models) for 

reducing the number of calls to the true solver model. From 

a strict engineering point of view, the 3rd strategy seems to 

be more inexpensive and universal, since it does not rely on 

costly hardware improvements neither on technical 

advances in optimization algorithms (da Silva et al, 2012). 

4.1 Optimization Process 

This work was used as algorithm the optimization 

stochastic, population-set based algorithm, capable of 

performing global optimization tasks efficiently, the CRSA, 

it was first proposed by (Price, 1977) and later improved by 

(Ali et al., 1997). Further improvements were introduced by 

(Manzanares et al., 2005). 

The CRSA from an initial population of individuals over 

a consistent region of the problem promotes iterative 

substitutions of the worst individuals by the best, willing 

that the population shrink up around the global optimum. 

The points randomly generated in the space explored, 

following an iteration process converges to a global 

minimum by procedures purely heuristic  (Ali et al., 1997; 

Ali and Törn, 2004). 

1 
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4.2 Flow  Calculation in CFD  

The blade cascade analysis still represents a fundamental 

tool in Turbomachinery design context. Relying on 2-D 

flow models, cascade flow computations are much faster 

than 3-D models of similar physical complexity. For testing 

purposes, the CRSA methodology is applied now to a 

simple case of blade cascade design. 

Relevant resulting quantities include the pressure 

distribution on the blade surface, the flow deflection angle, 

energy losses, contours of number Mach, lift and drag blade 

forces. 

The flow computations were made using the CFD 

software FLUENT®. The required meshes were generated 

by the software ICEM-CFD, through the editing commands 

in Tcl/Tk. 

Prior to optimization process certain steps should be 

prepared, for example, the definition of a computational 

domain and mesh generation. The 2-D meshes are generated 

by a script written in Tcl/Tk language that can be modified 

by the optimizer and interpreted by the software ICEM-

CFD®. Care is taken in the refinement of the mesh near the 

wall in order to properly quantify the friction stresses. 

Figure 4 shows the computational periodic zone of linear 

cascade. 

The organic fluid type is defined based on the 

thermodynamic properties, density and dynamic viscosity. 

The initial hypotheses, the discretized forms of transport 

equations are solved iteratively, and the solution must 

converge. 

Real gases, as opposed to a perfect or ideal gas, exhibit 

properties that cannot be explained entirely using the ideal 

gas law. The NIST (National Institute of Standards and 

Technology) real gas model that use the Thermodynamic 

and Transport Properties of Refrigerants and Refrigerant 

Mixtures (Lemmon et al., 2006) as an ANSYS FLUENT® 

shared library (REFPROP v7.0) was used to evaluate the 

thermodynamic and transport properties of the working 

fluids.  

The REFPROP v7.0 database employs accurate pure-

fluid equations of state that are available from NIST. These 

equations are based on the following three models: 

Modified Benedict-Webb-Rubin (MBWR) equation of state, 

Helmholtz-energy equation of state and extended 

corresponding states (ECS).  

In this study will be used to model real gas proposed by 

Benedict - Rubin. Recently, (Colonna et al., 2006), was 

analyzed using CDF code, a cascade of a stator of a radial 

turbine with three different fluid models; the simple 

polytrophic ideal gas law,  the Peng-Robinson-Stryjek Vera 

cubic EoS and the state-of-the-art Span-Wagner EoS. 

According (Colonna et al., 2006) the fluid dynamic results 

are very similar for the computations employing the Span-

Wagner and Peng – Robinson Stryjek-Vera EoS. The 

proposed model MBWR, is very similar to the last. 

     

Figure 4. Periodic Channel and Unstructured mesh (40000 

cell) 

The mass flow or velocity is set at the cascade inlet and 

the pressure at the cascade outlet. Periodic boundary 

conditions are considered for reducing the computational 

domain to a unique periodic region around an airfoil. The 

turbulence model Spalart-Allmaras (SA) with wall functions 

is chosen since these enable realistic responses to 

aerodynamics problems (Azevedo et al., 2003; Spalart and 

Allmaras, 1992).   

The drag and lift coefficients are calculated with basis on 

the magnitude of the mean velocity vector. The drag 

coefficient is computed: first, the difference of total pressure 

between cascade inlet and outlet is evaluated and the 

following loss coefficient ζr is computed (Vavra, 1974). 


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The outlet mass average quantities are evaluated by 

control line (line/rake) located at a distance of a chord 

length from the trailing edge.  

Hence, the drag coefficient is computed by the following 

relationship:    


2

2

3
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
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d
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This methodology for calculation the drag coefficient 

avoids numerical errors associated with the integration of 

the blade surface forces.  

The lift coefficient is then computed: 

  


  tancostantan)/(2
21 dl

CcsC  

Several efficiencies are used to compare the performance 

of the turbine stage; the most common definition is the 

adiabatic efficiency.  However, in cases involving cascade 

can be used as criteria’s of efficiency as total pressure loss 
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coefficient and diffusion factor. On the other hand, the lift 

and drag ratio maximum (Cl /Cd), can be used as way 

evaluating the loading aerodynamic in the cascade. 

4.3 Process Integration Methodology 

According to (Quoilin and Lemort, 2014), to optimize 

complex systems, it is necessary to use methods of process 

integration, this is, CFD flow calculation and optimization 

algorithms. These methodologies contribute significantly to 

the development of engineering optimal designs. 

The CRSA was adopted as a direct optimizer, an initial 

population of 10 (n +1) individuals were adopted, where n is 

the number of design variables (Stagger angle ζ and pitch s). 

The convergence criterion was 1% (absolute difference 

between the function values in the worst and best parts of 

the population or a maximum number of evaluations equal 

to 500).  

The optimization process was obtained by integrating the 

CRSA with the CFD-Fluent® (CRSA → script.dat → 

ICEM-CFD
®
 → Journal.file → Fluent 

®
). Used, commands 

in DOS, for running in FORTRAN through the CRSA, a 

"script" of commands in Tcl/tk® is written to interpretation 

in ICEM-CFD, one computational mesh is generated with 

variations of stagger angle and pitch for a profile known. 

Through the script, also provides information about the 

parameters mesh in regions close to the wall, then a file 

"journal.jou", is edited with information for program 

execution Fluent: number iteration, criteria convergence, 

turbulence model, boundary conditions and the formulations 

for drag and lift coefficients (2)  and (3). 

 

Figure 5. Process Integration Structure. 

Have been considered critical temperatures of organic 

fluids in the boundary conditions at the input as: R245fa 

(154° C) and Toluene (318.64 °C).  

4.4 Optimization Process Results 

Table 3 presents the ranges for the generation of the plan of 

experiments considering the variables of the design: stagger 

angle and pitch cascade to two organic fluids: R245fa, 

Toluene.  

The optimization process was initiated with a population 

of 30, NPOP = 10 (n +1), n = 2 (stagger angle and pitch 

cascade) as criteria convergence was used the residual of  = 

0.0001, value between the two best values found of Cl/Cd in 

the optimization process. One first analyzes was defined the 

intervals for stagger angle and pitch cascade. 

Table 3. Intervals to the Population Generation 

Fluids organic ζ Stagger  angle s (m) pitch cascade 

R245fa and Toluene 41.00 – 44.66 0.0081-  0.015 

 

 

   Figure 6. Bubbles plot of Cl/Cd  to R245fa. 

 

Figure 7. Bubbles plot of Cl /Cd  to Toluene. 
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After the optimization process using the CRSA 

(Controlled Random Search Algorithm), and considering an 

initial population of 30 randomly design variable, with the 

aim of maximizing the relation Cl/Cd, is presented in 

Figures 6 and 7 in the bubble plot, values Cl/Cd inside the 

range of variation of stagger angle and pitch cascade for the 

R245fa and Toluene. 

Based on the maximum values of Cl/Cd presented in 

Figures. 6 and 7, was reduced search interval and also 

generated a new population with 30 design variables. Table 

4 shows the new ranges for the two organic fluids. 

Table 4. Intervals for the two Organic Fluids. 

 ζ Stagger  angle s (m) pitch cascade 

R245fa 42.40- 42.50 0.0081 -  0.015 

Toluene 42.00 – 42.60 0.0081 -   0.015 

 

Table 5 present optimum values of the coefficients of 

drag and lift, quantified by the aerodynamic load, Cl/Cd. 

Optimization processes are initialized based on the profile 

NACA 6519, gas turbine cascade.  

The results of aerodynamic coefficients are calculated 

using (2) and (3), where the values of the deflection angles 

of the flow cascade, and variations in total pressure has been 

calculated in the inlet and outlet regions of the cascade. 

Results obtained from the optimization process with CRSA. 

Table 5. Results of Optimization Process From CRSA. 

Fluid 

organic 

ζ 

Stagger  

angle 

s (m) 

pitch 

cascade 

Cl Cd Cl /Cd* 
Cl /Cd 

optimum 

R245fa 43.2630 0.01025 1.0128 0.0353 28.6931  

42.4710 0.01440 0.7003 0.0027  262.0300 

Toluene 43.2630 0.01025 1.4020 0.0667 21.0283  

42.4849 0.00860 0.3181 0.0016  198.5575 

 *Base cascade: NACA 6519; Stagger angle ζ = 43.2630o and pitch, s=0.01025 [m] 

  

In the results presented in Table 5, it is possible to 

observe that the pitch of the R245fa cascade has greater 

influence on the increase in the aerodynamic performance. 

However, the stagger angle, in both fluids, had little 

influence on the cascade efficiency.  

It should be noted also, that the cascade initial design, is 

based on the cascade calculation of a gas turbine flow 

(Price, 1977), therefore, a consequence of the values of 

Cl/Cd ratio has improved considerably from the initial 

design to the optimized for ORC. 

This analyze can be applied to axial rotor, if we consider 

the medium diameter Dm=0.432 m. then (Z=D/s), the rotor 

using R245fa it would have near 94 blades and for Toluene 

157 blades. Remember the design the gas turbine was the 71 

blades, considering the same relation s/c. This criterion to 

optimize the load aerodynamic using the Cl/Cd relation is 

used in cascade plane, but performance in rotor of turbine 

axial should be applied the isentropic efficiencies in the 

rotor. 

 
 

Figure 8. Contours of Viscosity Turbulent, R243fa (a); 

Contours of Viscosity Turbulent, Toluene(b). 

Figure 9. Contours of Mach number, R243fa (a); Contours of

Mach number, Toluene (b).

Figures 9a and 9b, shows the contours of viscosity

turbulent, where the maximum  values are concentrated in

the trailing edge region, the toluene cascade present major

intensity of vortices. In the Figures 10a and 10b, show the

differences in the Mach number, the Toluene cascade can

operate with Mach larger than one, frequently this machine

operates with high number mach.

5 Conclusions

Based on the design methodology of a gas turbine cascade,

it is possible, through optimization techniques and CFD

flow calculations, to find an optimum cascade to work with

different organic fluids. As a first approach, we analyzed

two fluids, with two design variables (pitch and stagger

angle). For the optimization process, we used a heuristic

algorithm CRSA (Controlled Random Search Algorithm),

being effective in finding the optimal solution. Results of a

Cl/Cd ratio showing the effects of the design variables (pitch

and stagger angle) for two organic fluids were reported. As
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can be seen, is necessary optimize the aerodynamic profile 

changes the configuration of NACA 6519, and introduce the 

function of camber to correct the separation of the boundary 

layer in the trailing edge.  

Future work will be carried out in order to introduce the 

tri- dimensional effects on the ORC turbine stator - rotor, 

aiming to optimize the isentropic efficiencies of this kind of 

machines. The optimization methodology allows to adapt 

the preliminary design of gas turbine for the design of 

cascades with different organic fluids, for analyzing the 

behavior of the aerodynamic forces and geometric 

variations in the cascade. 
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