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Abstract
The amount of wind and solar generation has seen

exponential growth during the recent decades, and the

trend is to continue with an increased pace. Due to the

intermittency of the resources, a threat is posed on grid

stability and a need created for regulation. One solution

to control the imbalance between supply and demand is

to store the electricity temporarily, which in this paper

was addressed by implementing a dynamic model of

adiabatic compressed air energy storage (CAES) with

Apros dynamic simulation software. Based on the

literature review, the existing models due to their

simplifications do not allow transient situations e.g.

start-ups to be studied, and despite of its importance,

part-load operation has not been studied with sufficient

precision. The implemented model was validated

against analytical calculations (nominal load) and

literature information (part-load), showing

considerable correlation. By incorporating the system

with wind generation and electricity demand, the grid

operation of CAES was studied. In order to enable this,

the start-up and shutdown sequences based on

manufacturer information were approximated in

dynamic environment, to the authors’ best knowledge,

for the first time. The initial results indicate that the

modularly designed model offers an accurate

framework for numerous studies in the future.

Keywords:  energy storage, compressed air energy

storage, dynamic simulation, numerical simulation

1 Introduction

The rise of variable renewable energy (VRE) has been

remarkably rapid during the past decades; not only it is

considered an integral part of the current energy

system, its importance in the future cannot be

highlighted enough (World Energy Council, 2013).

This new generation capacity mainly consisting of

solar and wind power lacks inertia and carries the

burden of intermittency, meaning that the availability

of the resource varies in both short and long term

(Barnhart et al., 2013). Both solar and wind have seen

the installed capacity increasing exponentially during

the recent decade, but the share of VRE generation in

the electricity grids of the large markets is still

considerably modest (REN21, 2015). Due to

intermittency, technical barriers e.g. disturbances in 

voltage magnitude and delivery frequency may create 

economic barriers in transition to greater share of VRE 

generation (Sundararagavan and Baker, 2012; SBC 

Energy Institute, 2013). For example, curtailment of 

around 40% of the total generation has been reported in 

the wind farms of China (Christiansen and Murray, 

2015).  

Solutions to counter the effects of intermittency 

range from demand side response e.g. time-of-day 

electricity pricing to utility side response, amongst 

which the compressed air energy storage (CAES) 

belongs. The operating principle of CAES is best 

described as mechanical conversion of electricity into 

the form of pressurized air. Electricity is stored during 

the hours of low consumption and supplied back to the 

grid once the demand has increased. CAES as a 

process is fundamentally dynamic, as the system is 

able to ramp twice or three times as fast as the 

conventional alternatives (Bradshaw, 2000) and is 

designed to accommodate multiple start-ups and 

shutdowns on a daily basis (Schulte et al., 2012). The 

two existing CAES systems are based on the needs of 

the conventional energy system. While the Huntorf 

CAES was initially constructed to provide black start 

capability for nuclear power plants (Succar and 

Williams, 2008), the McIntosh CAES fills the deficit 

between the capacity of a coal power plant and the 

demand (Arsie et al., 2007).  
The deficiency of diabatic CAES technology 

introduced above is the requirement of an external 
source of heat, typically natural gas, leading to carbon 
dioxide emissions. An alternative is to recover, store, 
and utilize the heat of compression, which is the 
working principle of the adiabatic configuration 
(Kreid, 1976). This approach is generally accepted to 
lead to notably higher cycle efficiency compared to 
diabatic CAES (Hartmann et al., 2012), but despite 
extensive research activities (Zunft, 2015), the 
technology is only nearing demonstration stage 
(Airlight Energy, 2016). In order to overcome 
challenges mainly related to temperature limitations in 
the compressor technology (De Biasi, 2009) and 
storing the thermal energy, low temperature concept 
has been recently proposed (Wolf and Budt, 2014). As 
the cycle efficiency is not governed by the Carnot 
efficiency, storing the heat at a lower temperature level 
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Figure 1. Apros and its various applications. 

leads to a relatively small efficiency penalty, but 
allows faster start-up due to lower thermal inertia 
(Freund et al., 2012). This, along the economic 
limitations (Zunft, 2015) and the required flexibility in 
the electricity market (Wolf and Budt, 2014), supports 
the idea of developing downscaled systems. 

2 Methodology  

As CAES is comparable to open Brayton cycle gas 

turbine, great understanding of the process and its 

components readily exists. However, the need for 

detailed dynamic simulations has recently been pointed 

out (Budt et al., 2016). This chapter presents the 

background for the model development of this paper.  

2.1 The lack of dynamic features in the 

existing models  

Although dynamic as term well describes the operation 
of CAES, the past efforts in literature have largely 
focused on the dynamic cavern operation (Nielsen and 
Leithner, 2009; Khaitan and Raju, 2013). Detailed 
studies related to turbomachinery have scarcely been 
conducted, even then typically on component level 
based on comprehensively studied analytical 
approaches (Luo et al., 2016). Furthermore, the use of 
constant material properties limits the accuracy of 
several of the models; although at times justified, the 
error in one property is also present in the other.  

As the idea of combining energy storage with 
intermittent generation is well understood, logic 
systems related to CAES have been presented in 
literature (Arsie et al., 2007; Zhao et al., 2015). The 
limitation in steady-state simulation is that the logic 
systems are often developed by assuming fixed time 
windows; a disturbance occurs whenever it is selected 
to take place. In reality, there is a clear need to operate 
the storage depending on the supply and demand while 
maintaining the system as efficient as possible. This is 
only achieved by means of control engineering, which 
seemingly has only been covered by Budt et al. (2012) 
so far.  

2.2 Apros dynamic simulation software  

Apros is a dynamic simulation tool and modelling 
software, which includes tools for design, evaluation 
and testing of various types of processes (Fortum and 
VTT). As suggested by Figure 1, Apros enables the 
possibility for detailed control and operation strategy 
development besides process simulation. Apros has 
commonly found applications in power plant 
simulations, but due to comprehensively validated 
component model library and the possibility for user-
defined components, the software has more recently 

been successfully extended to the field of energy 
storage (Tähtinen et al., 2016).  

The model hierarchy of Apros consists of three 
levels: diagrams, process component level and 
calculation level. The user often operates on the 
diagram level, constructing the model out of the 
process components such as pipes, valves and heat 
exchangers; each operating analogous to their concrete 
counterpart. When included in the model, the process 
component automatically creates its necessary 
calculation level objects, the nodes and branches. With 
these objects, the conservation equations for mass, 
momentum and energy are solved. Several accuracy 
levels for solving the thermohydraulic solution are 
available; for the composition AIR used in the dynamic 
model, representing ideal gas mixture of oxygen and 
nitrogen, only the homogenous flow model may be 
selected.  

2.3 Implementation of the dynamic model  

The dynamic model is developed according to the low-
temperature principles introduced by Wolf and Budt, 
(2014) leading to a system with a relatively low 
compression and expansion power. Most importantly, 
the goal is to create a flexible model, allowing easy 
scalability with future studies in mind. In order to 
validate the model, the initial conditions are based on 
thermodynamic analysis, for which the resulting 
parameters are shown in Table 1. Values for certain 
constants such as polytropic efficiencies and nominal 
storage pressure are obtained from literature (De Biasi, 
2009; Barbour et al., 2015). The layout of the model, 
simplified in Figure 2, can be considered to consist of 
the following subsystems:  

 

 Turbomachinery 

 Thermal energy storage (TES) 

 Compressed air storage (CAS) 

 Control and logic system 
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Table 1. Key input parameters of the model.  

Parameter Value 

General  

Nominal charging power 25.41 MW 

Nominal discharging power 14.96 MW 

Nominal cycle efficiency 58.87% 

Charging period ratio 1.0 

Compressor train  

Number of stages 4 

Nominal mass flow rate 35 kg/s 

Nominal pressure ratio, stage 1 4.33  

Nominal pressure ratio, stage 2–4  3.4 

Polytropic efficiency 85% 

Expander train  

Number of stages 3 

Nominal mass flow rate 35 kg/s 

Nominal pressure ratio, stages 1–3  4.87 

Polytropic efficiency 85% 

TES  

Nominal mass flow rate varies per stage 

Nominal heat transfer 

effectiveness 

75 – 85 % 

Nominal cold tank temperature 25ºC 

Nominal hot tank temperature 188.8ºC 

Storage capacity 4 h 

CAS  

Nominal temperature 40ºC 

Nominal pressure 155 bar 

Throttle pressure 120 bar 

Storage capacity 4 h 

 

 

 

Figure 2. Simplified illustration of the model layout 

and the flow schemes: air (black), thermal oil (blue 

and red) and water (light blue). 

As fixed-speed compressor trains have prevalently 

been used with CAES, variable guide vanes (VGV) 

have generally been selected for compressor capacity 

control (Dresser-Rand, 2015). In principle, the guide 

vanes allow load changes by shifting the operating 

point. After evaluation, the compressor map presented 

by Brasz (1996) was selected and introduced to the 

model as nominal polytropic efficiency and nominal 

mass flow rate as a function of guide vane angle. Each 

of the compressors is during periods of low mass flow 

rates effectively protected from surge by control 

principles presented by Brun and Nored (2008). 
The expander train of CAES can be operated with 

either fixed or varying inlet pressure (Weber, 1975). 
Similar to the existing systems, throttle valve placed 
upstream the expander train is selected to reduce the 
pressure of the air discharged from the storage, 
allowing capacity control with an increased efficiency 
at part-load. The turbomachinery is selected to be 
connected on a single shaft and to share the electric 
motor-generator unit, preventing charging and 
discharging from taking place simultaneously. The 
clutches, enabling the required loading and unloading 
of the electric machine, are implemented by using a 
number of switch and set dominant latch components. 

The TES is implemented based on the previous 
work of Hakkarainen and Tähtinen (2016), in principle 
solving the mass and energy balances in calculation 
level. Due to the approach, the tanks are assumed 
isothermal and only single-phase fluids can be 
realistically evaluated. Therminol VP-1 (Solutia, 1999) 
due to its suitable temperature range is selected as the 
heat transfer fluid. The heat exchangers are 
dimensioned with information about typical 
configurations and operating parameters (Freund and 
Moreau, 2012). During the charging process, heat 
considered as excess is left to the process. To 
overcome this issue, auxiliary heat exchanger applied 
by many including (De Biasi, 2009) is placed upstream 
to CAS. For the CAS representing an artificial storage 
tank, heat losses based on conduction and convection 
mechanisms are implemented. 

The combined control and logic system of the 
model has four primary tasks: to control both 

temperature and power, to actuate sequences, and to 
schedule the storage operation. Both the control tasks 
are implemented by using PI controllers, for which 
cascade loops are preferred due to smoother control 
action. For the power regulation, a limit is imposed on 
the controller set point gradient, which enables 
selecting the ramp rate based on actual concepts. The 
role of the sequences is to activate the individual 
control systems at the correct time during the start-up 
and shutdown, which are replicated using manufacturer 
information (Dresser-Rand, 2015). In addition, the 
storage operation is scheduled by using an interlocked 
predictive-reactive logic system. By applying a set of 
boundary conditions, the logic system allows the 
storage to be only operated at times when certain 
conditions e.g. deficiency in generation and sufficient 
storage pressure are met.  

2.4 Setup of the VRE framework  

As the existing CAES systems are based on predictable 
demand of storage operation, there is a need to develop 
more flexible storage operation strategies. For 
example, the daily and weekly cycles presented by 
Goodson (1992) are by no means viable for VRE. 
Furthermore, as the entire control system can only be 
effectively studied when combined with VRE, a simple 
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Figure 4. Simulated compressor power consumption 

compared to Zhao et al. (2016) over charging period. 
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Figure 3. Simulated compressor power consumption 

compared to the results of Budt et al. (2012) over 

charging period. 

wind farm model based on the fundamental equation of 
wind power (Manwell et al., 2009) and commercial 
wind turbine design (Vestas Wind Systems, 2004) is 
implemented in Apros.  

The validated wind turbine model receives the wind 
data retrieved from NREL (2015) at a temporal 
resolution of one minute as an input through a gradient. 
Realistic representation of hourly load variation is 
retrieved from Fingrid (2015). As scaling of the storage 
system according the load curve is important, the load 
data is scaled to match the nominal output of the 
system accordingly (Le et al., 2012). In addition, the 
wind data is scaled in order to evaluate each part of the 
control system and the transitions between the 
operation modes.  

3 Results 

The challenge in model validation is the lack of 
available reference data. One should hence consider the 
observation of trends and physical phenomena more 
important than the absolute results. In Figure 3 and 
Figure 4, the values are consequently presented as 
relative expression; for the model as a comparison to 
nominal value and for the reference data as a 
comparison to maximum value.  

Due to the implemented VGV component, the 
operation of the compressor train is first validated at 
the design point against the results of the 
thermodynamic analysis. The simulated power 
consumption and discharge temperature vary from the 
reference values for less than one percent for each 
compressor. At part-load, the created quadratic least 
squares polynomial fits at maximum create a relative 
error of 5% in both mass flow rate and polytropic 
efficiency. In addition, the start-up sequences are 
validated against the data of Dresser-Rand (2015), 
showing excellent correlation. 

3.1 Qualitative validation of the compressor 

train 

In order to validate the performance of compressor 
train, the results are compared to those of Budt et al. 
(2012) over the charging period. It should be noted that 
the reference model (ref) consists of eight compression 
stages, for which the detailed input parameters are not 
presented by the authors. The comparison is therefore 
done between the first and the last of the stages, and in 
addition, the fourth and the sixth stage of the reference 
model are visualized. In the developed model (sim), the 
compressor power consumption set point is fixed to 20 
MW and the storage is charged for approximately four 
hours from 120 bars to 155 bars. 

Figure 3 shows the comparison of compressor 
power consumption, from which two similarly shaped 
groups of curves can be observed. While the total 
power consumption remains constant, the relative 
power consumption of the first stages decreases. 
Simultaneously, the last stages show the greatest 
increase in relative power consumption, as indicated by 

both simulations. This is expected as the last stages 
also are subject to the relatively greatest increase in 
pressure ratio and hence are forced to operate farthest 
from the nominal point.  

3.2 Qualitative validation of the expander 

train 

The validity of the expander train is analyzed by 
comparing the relative pressure ratio at varied load rate 
against the results of Zhao et al. (2016) as shown in 
Figure 4. The authors study a system with two 
expansion stages, and explain that the decrease in 
pressure ratio is caused by the relationship between 
Stodola’s ellipse law (Cooke, 1985) and mass flow 
rate. As the only constant discharge pressure in the 
expander train is the final point representing ambient 
conditions, the pressure ratio of the last stage should 
decrease with load rate, which is confirmed by both the 
simulations. However, with fixed inlet pressure 
operation mode, both the inlet and discharge pressure 
of the first stage decrease when operating at part-load. 
Therefore, the pressure ratio should largely stay 
unaffected by the variation in load rate, which is not 
shown by the results of Zhao et al. (2016). 
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Figure 5. Grid operation of the dynamic model (upper subfigure) and the consequent variation in the state of 

CAS and TES. 

3.3 Dynamic operation of the model  

In order to demonstrate the control system and its 
ability to regulate the power consumption and 
generation according the demand, in Figure 5 the 
model is operated for six hours in dynamic conditions. 
The upper subfigure shows the power charged to or 
from the grid depending on the excess or deficiency in 
wind generation, while the lower subfigure illustrates 
the state of CAS and TES. The following operation is 
primarily expected from the model during each of the 
temporal segments:  

 Hour 1: charging 

 Hour 2: no operation 

 Hour 3: charging 

 Hour 4: no operation 

 Hour 5: discharging  

 Hour 6: discharging 
 

The results indicate that the expected operation is to 
large extent fulfilled. For example, during the first hour 
the lower subfigure of Figure 5 shows the CAS 
pressure steadily increasing, while thermal oil is 
transferred from the cold TES tank to the hot TES tank 
at elevated temperature level. The flat plateaus in the 
lower subfigure indicate that the system is not active, 
whereas the predominant flatness of the area curve in 
the upper subfigure suggests that the system is to large 
extent operated with nominal load rate. 

The capability for accurate load following is 
highlighted particularly after t = 2 h, where the system 
has to adjust the compressor power consumption nearly 

continuously. Furthermore, even though the operation 
is only scheduled by using ten-minute-ahead wind 
forecasts, the signals for unnecessary start-ups and 
shutdowns are largely avoided. Exceptions of this are 
visible for example slightly before t = 3 h, where the 
system is needlessly shut down and started up multiple 
times consecutively. If the operation was to be 
scheduled optimally, the problem could be solved with 
additional interlock mechanisms e.g. inclusion of 
longer-term forecasts. 

4 Conclusions 

The initial results show that a dynamic model of 
adiabatic CAES has been successfully implemented 
with proven Apros dynamic simulation software. Due 
to a variety of readily validated process components as 
well as analytically developed and validated user-
defined inclusions, both the steady-state and transient 
phenomena related to CAES can be studied in more 
detail than before. 

Despite the simple model structure, more advanced 
phenomena e.g. compressor surge can be readily 
studied in future research. Model predictive control as 
well as improved forecasts and economic boundary 
conditions can be easily included in the existing logic 
system in order to enable more comprehensive case 
studies. The current TES model does not include heat 
losses, which currently limits the possibility for 
extended simulations. This, however, is to be corrected 
with the upcoming version of Apros, also allowing 
more accurate implementation of user-defined heat 
transfer fluids. 
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