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Abstract
Method allows for modelling of the complex process of

laser pulse energy distribution over flat work surface.

The process of calculating the correct result does not

use common lasing formulas but instead employs the

mathematical model of matrix multiplication of three

input matrices representing a pulse model, a line

model, and a plane model. The pulse model represents

the distribution of planar energy densities within the

laser pulse. The line model represents the distribution

of pulses within the line. The plane model represents

the distribution of lines within the plane. Because

mathematical model is implemented within a

spreadsheet processor, its size can be adjusted as

needed and it can be instantiated multiple times for

simultaneous modelling of different input parameters.
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laser pulse, energy distribution, planar energy density,
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1 Introduction

The main goal of this research is to simplify the

process of understanding and visualizing the

distribution of laser pulse planar energy densities over

flat work surface.

Laser systems are widely used and provide some

spectacular capabilities in many different fields.

However lasers are complicated systems and operating

a laser system requires a very good understanding of

how lasing is actually done and how it can affect

surroundings.

In scientific literature and on the internet there is a

plenty of information about the laser systems. Such

information contributes to better understanding of the

lasing processes and includes some of the most widely

used formulas and concepts, such as distance between

two consecutive pulses, distance between two

consecutive lines of pulses, individual laser pulse

energy, and average lasing power (Bliedtner et al,

2013). However, the problem with such formulas and

concepts is that they do not necessarily help one

visualize the process being calculated. Another issue is

that lasing processes are expensive.

Laser system usually provides for its operator a set 

of technical parameters which can be adjusted to obtain 

the necessary results. Nevertheless, these technical 

parameters may not provide a clear understanding of 

how they affect the lasing results. Even though laser 

system's operator might use provided technical 

parameters in formulas, the results of such formulas 

per se do not ensure being sufficiently useful. 

In practice there are two main types of laser systems 

- pulsed lasers and continuous-wave (CW) lasers 

(Eichler, 1998). The former deliver energy to the work 

surface in discrete packets called pulses, while the 

latter emit photons continuously. Many of commonly 

used formulas are better suited for CW type laser 

systems, as these laser systems produce more 

predictable results. When such formulas are used in 

relation to pulsed laser systems, the results of formulas 

usually contain averaged values without local 

minimums and maximums. 

Local minimums and maximums occur during both 

pulsed and CW type lasing and play an important role 

on produced results, as regions of work surface that are 

exposed to higher planar energy densities would 

behave differently than other remaining regions 

(Laakso et al, 2009; Antonczak et al, 2014). This is 

especially the case when producing colour laser 

marking on metals, as formed thin oxide films differ in 

regions exposed to higher planar energy densities 

compared to those exposed to lower planar energy 

densities, and thus have different appearance which has 

its contribution to overall perceived colour of marking 

(Ming et al, 2008; Veiko et al, 2014). 

Pulsed laser systems emit pulses with some pulse 

repetition rate in the direction of scanning. Pulse 

repetition rate, scanning speed, the direction of 

scanning, pulse width, average lasing power, distance 

between two consecutive lines, and many other 

technical parameters are all set by laser operator. 

Because there are time periods between each two 

consecutive laser pulses, when no additional energy is 

delivered to the work surface, each two consecutive 

pulses may overlap in many different ways and thus 

distribute their energy over the work surface in many 

different forms. Each such distinct form of energy 

distribution in the end can affect work surface 

differently. 
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As already stated above, commonly used formulas 

do not allow for clear and instant understanding of how 

distribution of laser emitted energy over flat work 

surface would look like in practice and where its local 

maximums and minimums would be located. The best 

results common formulas can help to achieve, when 

given values of main technical parameters are known 

and laser construction specifics are taken into account, 

are to find distances between each two consecutive 

pulses and each two consecutive parallel lines of pulses 

as well as energy content of individual laser pulse and 

average lasing power that represents the rate of laser 

emitted energy delivery to the work surface. 

When one knows the total amount of laser pulses 

delivered to a unit area of work surface as well as the 

energy content of each individual pulse, one may 

further calculate average planar energy density for that 

unit area. However, just by using common formulas it 

would not be easy to obtain information about the 

actual distribution of different planar energy densities, 

as these can differ based on their position on the work 

surface due to the overlapping effects between each 

two consecutive pulses and each two consecutive 

parallel lines of pulses. 

The present mathematical model allows for 

modelling of laser pulse energy distribution over flat 

work surface. In particular, it is a novel method that 

deploys built-in spreadsheet processor's matrix 

multiplication function in order to automatically 

generate informative numeric data in form of a two-

dimensional histogram that can be further used for 

visualizing the actual distribution of laser pulse planar 

energy densities over flat work surface. 

2 Materials and methods 

Experiments were carried out using PowerLine F-20 

Varia series pulsed fiber laser system produced by 

Rofin-Sinar Laser GmbH. It emits photons of 

wavelength equal to 1064 nm, has maximum average 

lasing power of 20 W, pulse repetition rate of 2-1000 

kHz, adjustable pulse width of 4-200 ns. 

The colour palette shown in Figure 1 contains the 

yellow colour which is also called sample colour 4 

throughout the text. The image in Figure 2 was taken 

using optical microscope Meiji Techno MT and 

represents the sample colour 4. The stainless steel 

sample used for colour laser marking was 4301 18-9E 

2R. 

The sample colour 4 described is Figure 1, Figure 2, 

Figure 3, and Figure 4 has the following technical laser 

parameters associated with it: pumping power of 25% 

(equivalent of 2 W average power, given specified 

pulse repetition rate and pulse width), pulse repetition 

rate of 200 kHz, scanning speed of 200 mm/s, pulse 

width of 4 ns, and distance between two lines of 5 μm. 

 

Figure 1. Produced sample marking colours on stainless 

steel workpiece. 

 

Figure 2. Sample marking colour 4 under optical 

microscope. 

The method of modelling the distribution of laser 

pulse planar energy densities over flat surface allows 

for analysis of lasing processes by providing a 

mathematical model which consists of six related 

matrices. No common lasing formulas are used by the 

mathematical model, though any model's user can 

always derive necessary lasing formulas from the 

model by analyzing its state. The present method can 

provide different kinds of relevant information about 

laser pulse energy distribution over some flat surface, 

such as linear energy densities, linear pulse densities, 

distance between two consecutive pulses or lines of 

pulses, individual laser pulse energy. 

The aim of the method is to make the most 

prominent feature of laser systems easier to understand, 

define, quantify, visualize, teach, and simulate by 

referencing it to existing and usually commonly 

accepted knowledge and formulas. The method offers a 

new way of looking at what actually happens with laser 

pulses, as they are being accumulated on some work 

surface.
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Figure 3. Produced visualization of the distribution of laser pulse planar energy densities for sample colour 4. 

The method allows users to simulate actual 

distribution of planar energy densities over flat work 

surface. This is accomplished by interacting with 

model's input area consisting of numeric square matrix 

"P" (Figure 5), dedicated for defining distribution of 

planar energy densities within the pulse itself, as well 

as two perpendicular numeric vectors "y" and "x", the 

former allowing to define distribution of pulses within 

a line and the latter allowing to define the distribution 

of these lines within a work surface plane. Numeric 

input of column vector "y" is automatically copied into 

each remaining column vector of matrix "Y" and 

shifted along the length dimension of the matrix such 

that diagonal lines of identical numbers are formed. 

Numeric input of row vector "x" is automatically 

copied into each remaining row vector of matrix "X" 

(Figure 6) and shifted along the width dimension of the 

matrix such that diagonal lines of identical numbers are 

formed. 

The most important aspect of the method is that it 

correctly simulates the actual distribution of planar 

energy densities over flat work surface from the aspect 

of both – physics and mathematics. By multiplying 

three matrices "Y", "P", and "X" the mathematical 

model is able to calculate positions of delivery of every 

laser pulse relative to the flat work surface. The 

distribution of laser pulses is immediately displayed 

back in form of three output matrices "YP", "PX", and 

"YPX". The numeric information of matrix "YPX" can 

easily be visualized as a three-dimensional surface 
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chart to display the distribution of laser pulse planar 

energy densities (Figure 4). 

 

 

 

Figure 4. Three-dimensional surface chart of the 

distribution of laser pulse planar energy densities for 

sample colour 4.  

Figure 5. Example of pulse model "P". 

 

3 Results and discussion 

The method of modelling the distribution of laser pulse 

planar energy densities by the use of matrix 

multiplication is implemented by the mathematical 

model comprised of six related matrices - three input 

matrices and three output matrices (Figure 7). The 

input matrices accept user provided data in form of 

numbers. The output matrices update their numeric 

states every time user makes changes to the input 

matrices. 

The method always produces correct results because 

of its simple underlying logic that photons are both 

carriers and units of energy and that they are additive. 

Thus laser pulse is a representation of some quantity of 

photons, and laser pulse total energy is always 

proportional to the amount of photons it consists of due 

to energy being an extensive physical property. The 

mathematical model stores one such laser pulse as a 

model itself in a form of a square matrix "P". It 

consists of numeric data that represent arbitrary 

amounts of photons and their relative positions within 

that laser pulse's planar surface projection. The 

mathematical model then uses this user defined or 

default laser pulse model to copy and to distribute it 

over the flat work surface. 

 

Figure 6. Example of line model "X". 
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Figure 7. Schematic view of mathematical model 

implemented by the present method. 

Besides input matrix "P" there are two perpendicular 

input matrices "Y" and "X" representing line model 

and plane model respectively. Both input matrices "Y" 

and "X" serve identical functions of storing positions 

of where laser pulses or lines of pulses are to be 

delivered in relation to the work surface. Input matrix 

"Y" is associated with flat work surface's length 

dimension, while input matrix "X" is associated with 

its width dimension. When viewed, the input matrix 

"Y" appears to have vertical rectangle shape with its 

width equal to the side length of square matrix "P", 

while the input matrix "X" appears to have horizontal 

rectangle shape with its length equal to the side width 

of square matrix "P". The work surface is itself 

represented by an output matrix "YPX" with its length 

equal to the length of matrix "Y" and its width equal to 

the width of matrix "X". 

The mathematical model calculates three different 

matrix products and stores them in the output matrices 

"YP", "PX", and "YPX" to display the distribution of 

laser pulse planar energy densities from three different 

points of view: as two perpendicular to one another 

laser pulse lines "YP" and "PX", and as a matrix 

representation of work surface "YPX". 

Both input matrices "Y" and "X" are based on the 

idea of the identity matrix which is a special case of 

matrix in mathematics that does not change other 

matrices it is being multiplied with. Input matrices "Y" 

and "X" are not themselves identity matrices, yet they 

share some very important similarities - only diagonal 

lines of numbers are stored in them and each distinct 

diagonal line consists of identical numbers specified by 

mathematical model's user within the first column 

vector "y" of input matrix "Y" and the first row vector 

"x" of input matrix "X". 

 

 

 

Figure 8. Example sum of three partly overlapping laser pulses. 
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Such energy content addition is in accordance with the 

laws of physics and is provided by mentioned procedure 

of multiplication of input matrices. When three or more 

pulses are to be somehow overlapped on work surface, 

then matrix multiplication sums energy contents of all 

pulse overlapped areas based on how many pulses share 

that area simultaneously. 

All six matrices that constitute the mathematical model 

share one very important common property - each matrix 

consists of spreadsheet processor's cells. All the cells 

within the spreadsheet processor's worksheet which 

contains full instance of the mathematical model have 

square shape and the same area. This property allows one 

to refer to each cell as a unit area used throughout current 

instance of the mathematical model. Each such unit area 

has four sides of equal unit length. 

The ability to refer to mathematical model cells by 

their common unit area and unit length allows for the 

model user to measure processes and states within input 

and output matrices using any preferred arbitrary base 

unit of length. Because all data within model matrices are 

of a numeric type, user can select multiple adjacent cells 

within any of six matrices to see the sum, average, 

minimum, maximum, and other statistical values 

representing user selection with the help of spreadsheet 

processor's standard features. 

The sum of numeric content of all cells within input 

matrix "P" represents the total amount of user-defined or 

the model's default laser pulse energy which as well can 

be expressed by user in any preferred base units. By using 

standard spreadsheet processor function for counting all 

non-zero cells within matrix "P" one can quickly find the 

total area of laser pulse planar projection on work surface. 

By selecting any individual cell of output matrix "YPX" 

one can view the total amount of energy accumulated by 

the corresponding unit area of work surface. 

One can assume that there will always be potential for 

finding more new ways of extracting additional 

information about the distribution of laser pulse planar 

energy densities. The present method allows its users not 

only to model the distribution of laser pulse planar energy 

densities for both laser system types - pulsed and CW - 

but also to combine several different instances of 

mathematical model by summing all the necessary output 

matrices "YPX" throughout these open instances and 

outputting the sum into a new spreadsheet processor's 

worksheet. Such technique would allow the model user to 

render each consecutive step of laser pulse delivery to the 

work surface so that a complex animation can be 

produced. One can even model processes that are not so 

easily achievable with common laser systems and their 

technical parameters. 

The user of the mathematical model would often view 

output matrices zoomed out because of their size thus all 

numeric data in all the matrices are colour-scaled using 

spreadsheet processor's standard conditional formatting 

feature so that numbers are visually represented as colours 

depending on their relative magnitudes within their

corresponding matrices.

4 Conclusions

The user's overall understanding of how the present

method's mathematical model of matrix multiplication

works can help the user extract even more useful

information out of it. Therefore method can be used for

interactive teaching purposes or to assist advanced users.

Finally, the method can help its users better to interpret

and to test common lasing formulas as well as to produce

new ones, and no similar modelling method, which

allows that, yet exists.

During testing of the mathematical model it was found

that the better the distribution of planar energy densities

within pulse model is defined the more accurate results

are produced on the output. The same applies to the

resolution, as the smaller unit areas produce better results.

Before the final model was developed, its previous

version was implemented using HTML5 Canvas and

JavaScript technologies, and pulse overlapping was

achieved by visually combining semi-transparent circles,

though output results did not provide any numeric data.

Therefore final model is based on numeric data, and

visualizations are model's by-products. Nevertheless these

visualizations can help one spot many important patterns,

such as recurring rectangular patterns of length equal to

distance between pulses and width equal to distance

between lines within output matrix of flat work surface.
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