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Abstract
Leadframe packages are always adopted as the low-end

devices. When the low-cost channel including the

leadframe package and the two-layer PCB is required

for high-speed digital signaling over 1 Gb/s, the iteration

of full channel simulation and analysis with reliable

EDA tools should be taken before the device is rolled

out. Different channel designs were characterized in the

frequency domain using the 3-D full-wave

electromagnetic field solver to analyze the bottleneck of

channel performance. Comparison of the full channel S-

parameters, the channel with the proposed DDR3

memory controller package suffers less insertion loss.

The chip-package-board co-simulations in the time-

domain using the chip HSPICE netlists and full channel

S-parameters for the DDR3 data accessing at 1.2, 1.4,

and 1.6 Gb/s were taken and demonstrated that the

channel including the proposed package design had

larger timing and voltage margins, and less jitter,

overshoot and undershoot, which all conform to JEDEC

Standard. The waveform measurement also verified the

same prediction that the DDR3 memory controller

encapsulated in the modified E-pad LQFP package

achieved no cost impact and enough timing margin up

to 1458 Mb/s. The performance of mature leadframe

packages can be promoted if the careful package designs

are taken.

Keywords: DDR3, E-pad, LQFP, return path, S-pa-
rameters, jitter, eye diagram, JEDEC

1 Introduction

Before 2009, the year of DRAM transition from DDR2

to DDR3, several famous fabless semiconductor

companies predicted that the DDR3 memory controller

should be designed and encapsulated with the flip-chip

ball grid array (BGA) package because the wire-

bonding packages induce large inductance or impedance

that is harmful to the single-ended DDR3 signals

accessing over 1 Gb/s. The low price is always the king

for the consumer electronics market, such as LCD TVs,

BD players and broadband Wi-Fi routers, even though

the low-cost 2-layer PCB would be implemented. In the

following years, many design guides and studies have

been proposed to recommend wire-bonding or flip-chip

BGA packages for the DDR3 memory controller 

(Micron Tech., 2009; Texas Inst., 2014; Shah, 2012; 

Synopsys Inc., 2009). However, few papers presented 

the investigation of DDR3 memory controller 

encapsulated with the wire-bonding leadframe packages. 

In this paper, several passive channels were designed 

and studied whether the memory controller with the 

exposed die-pad (E-pad) low-profile quad flat package 

(LQFP) was acceptable to access data rate up to 1.6 Gb/s 

using the chip-package-board co-simulation in 

frequency and time domains. The effects of different 

return paths in the memory controller package were 

characterized with the 3-D full-wave electromagnetic 

field solver to demonstrate the bottleneck of channel 

performance. Finally, the DDR3 waveform 

measurement in the practical platform was taken 

matching the previous co-simulation prediction of 

signal integrity. The reliable simulation tools are very 

important to analyze the channel performance for 

different designs that can predict the effects of nonideal 

return paths correctly and is helpful to finalize the 

channel design and expedite time-to-market. 

2 Package Structures 

Leadframe packages are made of the single-layer 

copper-based alloys. Thus, they are cheaper but suffer 

worse electrical performance, including larger cross-

talk and energy loss due to longer parallel leads and 

bondwires, compared to the ball grid array (BGA) 

packages with at least two-layer substrate. Figure 1 

shows the structure of exposed die-pad (E-pad) low-

profile quad flat package (LQFP) with 256 pins. In order 

to increase the signal inputs/outputs interconnected 

between the chip and external devices on the PCB, all 

ground wires are bonded onto the ground bar, which 

connects with the E-pad through the bridges or the 

connecting bars. Then the E-pad soldered with the 

ground pad of PCB connects to the global ground. 

Another benefit for the E-pad is to promote the heat 

dissipation. If the ground wires are bonded onto the E-

pad top surface, moisture may easily penetrate into the 

package through the interface between the molding 

compound and the E-pad. In addition, there is a 

reduction in the coupling strength of the E-pad to the 
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molding compound. As a result, an interface peel-off 

phenomenon caused by thermal stress may occur (Choi, 

2002). Accordingly, the ground wires are disconnected 

from the E-pad. That is why all the ground wires from 

the chip shall be bonded onto the ground bar, which is 

elevated from the package bottom surface. 

 

Figure 1. Top and side views of 256-pin E-pad LQFP 

package. 

3 Co-Simulation Methodology 

The passive channel design is critical to maintain the 

signal and power integrity of high-speed digital signals, 

especially for the package design. In order to ensure the 

acceptable channel performance, the iterative co-

simulation using the reliable EDA tools were taken. 

Both the chip netlists of DDR3 memory controller and 

DRAM cascaded with the wideband channel S-

parameters including the power and signal nets are 

modeled for the transient analysis, as shown in Figure 2. 

The chip input/output buffer information specification 

(IBIS) models are not recommended because those 

behavior models are less accurate for the signal speed 

over 1 Gb/s. 

 

Figure 2. Channel models of DDR3 interface co-

simulation. 

4 Channel Analysis 

The low-cost DDR3 channel configuration includes the 

memory controller package, the PCB and the DRAM 

package, as shown in Figure 3. Two facts the fabless 

chip companies are unable to change. The first fact is 

that the DRAM package type and ball pins are defined 

by JEDEC Standard (JEDEC Std., 2012). The second 

fact is that many original equipment manufacturers 

(OEM) always choose the 2-layer PCB rather than the 

4-layer PCB due to 40% cost reduction, as listed in 
Table 1 (Chen, 2009). Finally, the fabless chip 

companies only can determine the memory controller 

package type. According to the package cost 

comparison listed in Table 2 (Chen, 2009), the adoption 

of leadframe packages can save up to 92−208% in 

package cost. The challenge is whether the full channel 

performance is acceptable for the data access over 1 

Gb/s. In order to realize the performance difference of 

the memory controller encapsulated in the leadframe 

and the BGA packages, both full channel S-parameters 

including the DDR3 signal and the I/O power net (1.5 V) 

were extracted using ANSYS HFSS, a 3-D full-wave 

electromagnetic field solver, and then cascaded with the 

chip netlists for the transient analysis in Synopsys 

HSPICE. As demonstrated in Figure 4 obviously, the 

channel with the conventional E-pad LQFP has larger 

skew and insufficient timing margin compared to that 

with the BGA package. How to improve the E-pad 

LQFP performance became a must. 

Table 1. Examples of PCB cost ratios in digital TV 

mother boards. 

Type 

 

Item 

Model-X TV Model-Y TV 

2-layer 

PCB 

4-layer 

PCB 

2-layer 

PCB 

4-layer 

PCB 

Cost Ratio Cost Ratio Cost Ratio Cost Ratio 

Controller chip 37.2% 34.7% 26.7% 24.9% 

PCB 9.3% 15.4% 9.1% 15.1% 

Other components 53.5% 49.9% 64.3% 60.0% 
 

Table 2. Cost ratio comparison among different package 

types. 

Package 

Type 

Size 

(mm) 

Cost 

Ratio 
Remarks 

E-pad LQFP216 26 x 26 0.77 216 pins. 

E-pad LQFP256 30 x 30 1.00 Comparison baseline. 

PBGA (2-layer) 

27 x 27 

1.92 With plating lines. 

PBGA (2-layer) 2.12 Without plating lines. 

PBGA (4-layer) 2.12 With plating lines. 

PBGA (4-layer) 2.31 Without plating lines. 

FC-BGA (4-layer) 3.08 Exclusive of bumping cost. 

5 Improved Leadframe Package 

Several simulations of full channel S-parameters were 

taken including the E-pad LQFP package with different 

ground bar widths, bridge widths and numbers. Figure 5 

shows the partial pictures of E-pad leadframe packages 

with different bridge numbers. Finally, the bridge 

number is the key factor to improve the channel 

performance. As package modeled with different 

numbers of bridge shown in Figure 6, the simulation 

results indicated in Figure 7 that the package with more 

bridges suffers less insertion loss than that with fewer 

bridges. The improved amplitude is 3 dB at 1.3 GHz. 

The bridges connected between the ground bar bonded 

with the ground wires from the chip and the exposed pad 

(E-pad). The more the bridges, the smaller return loop
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Figure 3. Low-cost DDR3 channel configuration. 

 
 (a) (b) 

Figure 4. Simulated DDR3 eye-diagrams of overlapping 1-byte signals on DRAM chip side for writing data at 1.6 Gb/s. 

(a) Memory controller in conventional E-pad LQFP. (b) Memory controller in BGA package. 

 

 
Figure 5. Modification of E-pad leadframe packages with different bridge numbers. 

 

 
 (a) (b) 

Figure 6. Simulation models of memory controller packages. (a) E-pad LQFP with few bridges. (b) E-pad LQFP with 

many bridges. 
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Figure 7. Insertion loss comparison of simulated channel 

S-parameters for DDR3 DO0-7 nets. Red curves are for the 

package with more bridges and blue curves are for the 

package with fewer bridges. 

 
Figure 8. Return paths of high-speed signals in E-pad 

LQFP package. 

 

 
Figure 9. Simulated DDR3 eye-diagrams of overlapping 1-byte signals on DRAM chip side for writing data at 1.2, 1.4, and 

1.6 Gb/s respectively. The E-pad LQFP with many bridges is in the upper charts and with few bridges is in the lower charts. 

 

 
Figure 10. The practical E-pad LQFP package and 2-layer test board for DDR3 waveform verification. 
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Figure 11. Measured DDR3 differential clock waveform at 729 MHz without data access (idle state) for 50.5% pulse width 

and tJIT (cc) for -59.4 to 56.9 ps. 

 

 

 

 

   
Figure 12. Measured DDR3 differential clock waveform at 729 MHz with specified data access (special test patterns) for 

50.5% pulse width and tJIT (cc) for -93.0 to 90.1 ps. 

 

 

 

 

   
 (a) (b) 

Figure 13. Measured DDR3 DQ14 writing waveform at 1458 Mb/s with 65 Ω drive strength for timing window. (a) 276 ps 

triggered by rising DQS. (b) 270 ps triggered by falling DQS. 
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or path is, as illustrated in Figure 8. Accordingly, the 

smaller the wire loop or area, the smaller the wire 

inductance or impedance is. That is due to high-speed or 

high frequency return currents follow the path of least 

inductance. The longer the return path, the more high-

frequency components filtered out it will slow the edge 

rate (Johnson, Graham, 1993; Hall et al, 2000; Young, 

2001). 

Less insertion loss of full DDR3 channel in the 

frequency domain would expect larger eye-open in the 

time domain. Figure 9 demonstrates the compared 

DDR3 eye-diagrams between before and after package 

modification. Improved timing window is obviously for 

the new E-pad LQFP, especially for the data rate at 1.6 

Gb/s. Reduced data jitter or skew achieves the larger 

timing margin due to less insertion loss causing less 

edge rate degradation. Based on the acceptable co-

simulation results, there was more confident to assemble 

the real chip for the following verification. Leadframe 

packages can be manufactured using the stamping or 

etching process. Therefore, increase of bridge number in 

the package is without any cost impact. 

6 DDR3 Waveform Verification 

The memory controller chip was made using tsmc 40-

nm process node, assembled with the modified E-pad 

LQFP256 package and mounted on the 2-layer test 

board, as shown in Figure 10. The test conditions are as 

follows: 

1) PCB: 2 layers, 1.6 mm thickness; signal trace 

width/space = 5/20 mils. 

2) Power supplies: 1.05 V for the core power (VCCK) and 

1.5 V for the I/O power (VCCIO). 

3) DRAM: Hynix DDR3-1600 1Gb (x16, 

H5TQ1G63BFR), FBGA96 package. 

4) Access rates: Clock/DQS at 729 MHz and DQ/DM at 

1458 Mb/s. 

5) Clock (parallel) termination: 100 Ω near the DRAM. 

6) Interface settings: 60 Ω ODT and 40 Ω drive strength 

for DRAM; 120 Ω ODT and 65 Ω drive strength for 

memory controller. 

Figure 11 shows the differential clock waveform 

measured on the parallel termination (100 Ω) when there 

is no data access (idle state). The measured pulse width 

(tCH) and cycle to cycle period jitter (tJIT, cc) are 

50.5% and -59.4 to 56.9 ps, respectively. When the data 

access with the special test patterns, the measured tJIT 

becomes worse, as shown in Figure 12, when all high-

speed data nets start to switch resulting in larger voltage 

droop on the I/O power due to simultaneous switching 

noise (SSN). Although adding more board capacitors 

would stabilize the I/O power, the result was 

insignificant due to the high power impedance with 

limited power leads assigned in the E-pad LQFP256 
package. The writing data (DQ14) waveform was 

measured near the DRAM on PCB without significant 

overshoot and undershoot as shown in Figure 13. This 

phenomenon is same with the co-simulation predicted in 

Figure 9. The measured timing window (setup + hold 

time) is around 270 ps. Eventually, All the measurement 

data conform to JEDEC Standard (JEDEC Std., 2012). 

7 Conclusions 

The co-simulation flow using the reliable simulation 

tools to predict the high-speed channel performance fast 

is presented. The modified E-pad LQFP256 package 

with more bridges was proposed resulting in shorter 

return path and achieved better timing window in the 

low-cost high-speed channel. All the measured 

waveforms meet JEDEC specification. In 2010, we 

rolled out the first digital TV SoC encapsulated in the E-

pad LQFP256 package accessing DDR3 data rate over 

1.3 Gb/s on the 2-layer PCB in the world. The next 

challenge is to study if the DDR4 channel could be 

implemented with the leadframe package. 
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