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Abstract
This paper describes a new API for operating on Modelica
models in Python, through OpenModelica. Modelica is an
object oriented, acausal language for describing dynamic
models in the form of Differential Algebraic Equations.
Modelica and various implementations such as OpenMod-
elica have limited support for model analysis, and it is
of interest to integrate Modelica code with scripting lan-
guages such as Python, which facilitate the needed anal-
ysis possibilities. The API is based on a new class Mod-
elicaSystem within package OMPython of OpenModelica,
with methods that operate on instantiated models. Empha-
sis has been put on specification of a systematic structure
for the various methods of the class. A simple case study
involving a water tank is used to illustrate the basic ideas.
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1 Introduction
Modelica is a modern, equation based, acausal language
for encoding models of dynamic systems in the form of
differential algebraic equations (DAEs), see e.g. (Fritz-
son, 2014) on Modelica and e.g. (Brenan et al., 1987) on
DAEs. OpenModelica1 (Fritzson et al., 2006) is a ma-
ture, freely available toolset that includes OpenModelica
Connection Editor (flow sheeting, textual editor with de-
bugging facilities, and simulation environment) and the
OMShell (command line execution, script based execu-
tion). OpenModelica Shell supports commands for sim-
ulation of Modelica models, for use of the Modelica ex-
tension Optimica, for carrying out analytic linearization
via the Modelica package Modelica_LinearSystem2, and
for converting Modelica models into Functional Mock-
Up Units (FMUs) as well as for converting FMUs back
to Modelica models. A tool OMPython has been devel-
oped and communicates with OpenModelica via CORBA,
(Ganeson, 2012; Ganeson et al., 2012). Essentially,
OMPython is a Python package which makes it possi-
ble to pass OpenModelica Shell commands as strings to
a Python function, and then receive the results back into
Python. This possibility does, however, require good
knowledge of OpenModelica Shell commands and syn-
tax. A tool, PySimulator,2 has been developed to ease

1www.openmodelica.org
2https://pypi.python.org/pypi/PySimulator

the use of Modelica from Python, (Pfeiffer et al., 2012;
Ganeson et al., 2012). Essentially, PySimulator provides
a GUI based on Python, where Modelica models can be
run and results can presented. It is also possible to an-
alyze the results using various packages in Python, e.g.
FFT analysis. However, PySimulator currently does not
give the user full freedom to integrate Modelica models
with Python and use the full available set of packages in
Python, or freely develop one’s own analysis routines in
Python.

Modelica and OpenModelica Shell in themselves have
relatively little support for advanced analysis of models.
Examples of such desirable analysis capabilities could be
(i) study of model sensitivity, (ii) random number genera-
tion and statistical analysis, (iii) Monte Carlo simulation,
(iv) advanced plotting capabilities, (v) general optimiza-
tion capabilities, (vi) linear analysis and control synthesis,
etc. Scripting languages such as MATLAB and Python
hold most of these desirable analysis capabilities, and it is
of interest to integrate Modelica models with such script
languages. The free JModelica.org tool includes a Python
package for converting Modelica models to FMUs, and
then for importing the FMU as a Python object. This
way, Modelica models can essentially be simulated from
Python — Optimica is also supported. It is possible to do
more advanced analysis with JModelica.org3 via CasADi,
see e.g. (Perera et al., 2015a,b). However, the possibilities
in the work of Perera et al. use an old version of JModel-
ica.org. It would be more ideal if these possibilities were
supported by the tool developer.

It is thus of interest to develop an extension of
OMPython which enables simulation and analysis of
Modelica models with a better integration with the Python
language, and in particular that such an extension is pro-
vided by the OpenModelica developers. A Python API4

for controlling Modelica simulation and analysis from
Python was proposed in February 20155. Based on this
proposal, a first version of a Python API has been im-
plemented (Bajracharya, 2016), and has then been fur-
ther revised. This paper discusses the API, and illustrates
how it can be used for automatic analysis of Modelica
models from Python, exemplified by a simple water tank

3www.JModelica.org
4API = Application Programming Interface
5Python API for Accessing OpenModelica Models, by B. Lie, Febru-

ary 20, 2015, communicated to P. Fritzson at Linköping University.
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model. The paper is organized as follows. In Section 2,
an overview of the API is given. In Section 3, use of the
API is illustrated through simple analysis of a nonlinear
reactor model. In Section 4, the API is discussed, some
conclusions are drawn, and future work is discussed. Ap-
pendices hold details of the nonlinear reactor model.

2 Overview of Python API
2.1 Goal
Modeling and the use of Modelica with Python is of inter-
est to a wide range of engineering disciplines. The com-
puter science threshold of using Modelica with Python
should be low. Ideally, the OMPython extension should
work with simple one-click Python installations such as
Anaconda6 and Canopy7. Furthermore, the extension
should support both 32 bit and 64 bit OpenModelica,
work with both 32 bit and 64 bit Python, with Python
2.7 and Python 3.X, and on platforms Windows, OSX and
Linux. These requirements e.g. imply that results should
be returned as standard Python structures. However, it is
reasonable that the OMPython extension depends on the
NumPy package. Because Python has excellent plotting
capabilities e.g. via Matplotlib, the OpenModelica Shell
facility for plotting results should not be implemented —
this is more naturally handled directly in Python.

2.2 Installing the OMPython Extension
Under Windows, the new OMPython extension will be au-
tomatically installed in a file __init__.py in directory
share\omc\scripts\PythonInterface\OMPython
in the OpenModelica directory when OpenModelica
is downloaded and installed. In order to activate the
extension, the user must next run the command python
setup.py install from the command line in
the directory of the setup.py file, which is in the
PythonInterface subdirectory. It follows that in
order to activate the extension, the user must first install
Python on the relevant computer. Under Linux/OSX,
OMPython is part of pip (pypi) and is not shipped with
the OpenModelica installer.

2.3 Status
Currently, the Python API is in a development status and
has been tested with 32 bit Python 2.7 from the Anaconda
installation in tandem with 32 bit OpenModelica v. 1.9.4
under Windows 8.1 and OpenModelica v. 1.9.6 under
Windows 10, and a modified __init__.py file. Open-
Modelica uses CORBA for communication, and CORBA
compatibility needs some refinement. The code is some-
what unstable when run from the Spyder IDE used with
the Anaconda installation, but runs fine from Jupyter note-
books.

6www.continuum.io/downloads
7www.enthought.com/products/canopy

2.4 Description of the API
The API is described in the subsections below.

2.4.1 Python Class and Constructor
The name of the Python class which is used for opera-
tion on Modelica models, is ModelicaSystem. This class
is equipped with an object constructor of the same name as
the class. In addition, the class is equipped with a number
of methods for manipulating the instantiated objects.

In this subsection, we discuss how to import the class,
and how to use the constructor to instantiate an object.

The object is imported from package OMPython, i.e.
with Python commands8:

>>> from OMPython import ModelicaSystem

Other Python packages to be used such as numpy,
matplotlib, pandas, etc. must be imported in a sim-
ilar manner.

The object constructor requires a minimum of 2 input
arguments which are strings, and may need a third string
input argument.

• The first input argument must be a string with the
file name of the Modelica code, with Modelica file
extension .mo. If the Modelica file is not in the cur-
rent directory of Python, then the file path must also
be included.

• The second input argument must be a string with the
name of the Modelica model, including the names-
pace if the model is wrapped within a Modelica pack-
age.

• A third input argument is used if the Modelica model
builds on other Modelica code, e.g. the Modelica
Standard Library.

The result of using the object constructor is a Python ob-
ject.

Example 1 Use of constructor.

Suppose we have a Modelica model with name CSTR
wrapped in a Modelica package Reactors — stored in file
Reactor.mo:

package Reactors
// ...
model CSTR

/// ...
end CSTR;
//

end Reactors;

If this model does not use any external Modelica code
and the file is located in the current Python directory, the
following Python code instantiates a Python object mod:

8The Python prompt >>> is not typed, and does not appear in script
files, in iPython or in Jupyter notebooks.
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>>> mod = ModelicaSystem(’Reactors.mo’,
’Reactors.CSTR’)

The user is free to choose any valid Python label name for
the Python object.

All methods of class ModelicaSystem refers to the
instantiated object, in standard Python fashion. Thus,
method simulate() is invoked with the Python com-
mand:

>>> mod.simulate()

In the subsequent overview of methods, the object name
is not included. In practice, of course, it must be included
in order to operate on the object in question.

Methods may have no input arguments, one, or several
input arguments. Methods may or may not return results
— if the methods do not return results, the results are
stored within the object.

2.4.2 Utility Routines, Converting Modelica↔ FMU
Two utility methods convert files between Modelica files
with file extension .mo and Functional Mock-up Unit
(FMU) files with file extension .fmu.

1. convertMo2Fmu() — method for converting the
Modelica model of the object, say ModelName, into
FMU file.

• Required input arguments: none, operates on
the Modelica file associated with the object.
• Optional input arguments:

– className: string with the class name
that should be translated,

– version: string with FMU version,
“1.0” or “2.0”; the default is “1.0”.

– fmuType: string with FMU type, “me”
(model exchange) or “cs” (co-simulation);
the default is “me”.

– fileNamePrefix: string; the default is
\’className\’.

– generatedFileName: string, returns
the full path of the generated FMU.

• Result: file ModelName.fmu in the current
directory

2. convertFmu2Mo(s) — method for converting an
FMU file into a Modelica file.

• Required input arguments: string s, where s is
name of FMU file, including extension .fmu.
• Optional input arguments: a number of op-

tional input arguments, e.g. the possibility
to change working directory for the imported
FMU files.
• Result: Assume the name of the

file is fmuName.fmu. Then file
fmuName_me_FMU.mo is generated in
the current Python directory.

2.4.3 Getting and Setting Information

Quite a few methods are dedicated to getting and set-
ting information about objects. With two exceptions —
getQuantities() and getSolutions() — the
get methods have identical use of input arguments and re-
sults, while all the set methods have identical use of input
arguments, with results stored in the object.

Getting Quantity Information
Method getQuantities() does not accept input

arguments, and returns a list of dictionaries, one dictio-
nary for each quantity. Each dictionary has the following
keys — with values being strings, too.

• Changeable — value ’true’ or ’false’,

• Description — the string used in Modelica to
describe the quantity, e.g. ’Mass in tank,
kg’,

• Name — the name of the quantity, e.g. ’T’,
’der(T)’, ’n[1]’, ’mod1.T’, etc.,

• Value — the value of the quantity, e.g. ’None’,
’5.0’, etc.,

• Variability — ’continuous’,
’parameter’.

When applying the Pandas method DataFrame to
the returned list of dictionaries, the result is a conve-
niently typeset table in Jupyter notebooks. Modelica
constants are not included in the returned quantities.

Standard Get Methods
We consider methods getXXXs(), where XXXs is in

{Continuous, Parameters, Inputs, Outputs,
SimulationOptions, OptimizationOptions,
LinearizationOptions}. Thus, methods
getContinuous(), getParameters(), etc.

Two calling possibilities are accepted.

• getXXXs(), i.e. without input argument, returns a
dictionary with names as keys and values as ... val-
ues.

• getXXXs(S), where S is a sequence of strings of
names, returns a tuple of values for the specified
names.

Getting Solutions
We consider method getSolutions(). Two calling

possibilities are accepted.

• getSolutions(), i.e. without input arguments,
returns a list of strings of names of quantities for
which there is a solution = time series.9

9The reason why a dictionary with every name as key and time series
as values is not returned, is that the amount of data would be exhaustive.
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• getSolutions(S), where S is a sequence of
strings of names, returns a tuple of values = 1D
numpy arrays = time series for the specified names.

Setting Methods
The information that can be set is a sub-

set of the information that can be set.
Thus, we consider methods setXXXs(),
where XXXs is in {Parameters, Inputs,
SimulationOptions, OptimizationOptions,
LinearizationOptions}, thus methods
setParameters(), setInputs(), etc. Two
calling possibilities are accepted.

• setXXXs(K), with K being a sequence of keyword
assignments of type quantity name = value.
Here, the quantity name could be a parameter name
(i.e., not a string), an input name, etc.

– For parameters and simulation/optimization/-
linearization options, the value should be a nu-
merical value or a string (e.g. a string of ODE
solver name such as ’dassl’, etc.).

– For inputs, the value could be a numerical value
if the input is constant in the time range of the
simulation,

– For inputs, the value could alterna-
tively be a list of tuples (t j,u j), i.e.,
[(t1,u1) ,(t2,u2) , . . . ,(tN ,uN)] where the
input varies linearly between (t j,u j) and(
t j+1,u j+1

)
, where t j ≤ t j+1, and where at

most two subsequent time indices t j, t j+1 can
have the same value. As an example, [...,
(1,10), (1,20), ...] describes a
perfect jump in input value from value 10 to
value 20 at time instance 1.

– This type of sequence of input arguments
does not work for certain quantity names,
e.g. ’der(T)’, ’n[1]’, ’mod1.T’, be-
cause Python does not allow for label names
der(T), n[1], mod1.T, etc.

• setXXXs(**D), with D being a dictionary with
quantity names as keywords and values as described
with the alternative input argument K.

2.4.4 Operating on Python Object: Simulation, Opti-
mization

The following methods operate on the object, and have
no input arguments. The methods have no return values,
instead the results are stored within the object.

• simulate() — simulates the system with the
given simulation options

• optimize() — optimizes the Optimica problem
with the given optimization options

Figure 1. Driven water tank, with externally available quantities
framed in red: initial mass is emptied through bottom at rate ṁe,
while at the same time water enters the tank at rate ṁi.

To retrieve the results, method getSolutions() is
used as described previously.

2.4.5 Operating on Python Object: Linearization

The following methods are proposed for linearization10:

• linearize() — with no input argument, returns
a tuple of 2D numpy arrays (matrices) A, B, C and D.

• getLinearInputs()— with no input argument,
returns a list of strings of names of inputs used when
forming matrices B and D.

• getLinearOutputs() — with no input argu-
ment, returns a list of strings of names of outputs
used when forming matrices C and D.

• getLinearStates()— with no input argument,
returns a list of strings of names of states used when
forming matrices A, B, C and D.

3 Use of API for Model Analysis
3.1 Case Study: Simple Tank Filled with Liq-

uid
We consider the tank in Figure 1 filled with water.

Water with initial mass m(0) is emptied by gravity
through a hole in the bottom at effluent mass flow rate
ṁe, while at the same time water is filled into the tank at
influent mass flow rate ṁi.

Our modeling objective is to find the liquid level h. This
objective is illustrated by the functional diagram in Figure
2.

The functional diagram depicts the causality of the sys-
tem (“Tank with influent and effluent mass flow”), where
inputs (green arrow) cause a change in the system and is

10This part of the API is not completed at the moment, and may
change.
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Figure 2. Functional diagram of tank with influent and effluent
flow.

observed at outputs (orange arrow)11. Here, the input vari-
able is the influent mass flow rate ṁi, while the output
variable is the quantity we are interested in, h.

3.2 Model Summary
The model can be summarized in a form suitable for im-
plementation in Modelica as

dm
dt

= ṁi− ṁe (1)

m = ρV (2)
V = Ah (3)

ṁe = K

√
h

hO
. (4)

To complete the model description, we need to specify
model parameters and operating conditions. Model pa-
rameters (constants) are given in Table 1.

The operating conditions are given in Table 2.

3.3 Modelica Encoding of Model
The Modelica code describes the core model of the tank,
ModWaterTank, and consists of a first section where
constants and variables are specified, and a second section
where the model equations are specified.

model ModWaterTank
// Main driven water tank model
// author: Bernt Lie
// University College of
// Southeast Norway
// April 18, 2016
//
// Parameters
constant Real rho = 1 "Density";
parameter Real A = 5 "Tank area";
parameter Real K = 5 "Valve const";
parameter Real h_max = 3 "Scaling";
// Initial state parameters
parameter Real h_0 = 1.5
"Init.level";
parameter Real m_0 = rho*h_0*A
"Init.mass";
// Declaring variables
// -- states
Real m(start = m_0, fixed = true)

11Although Modelica is an acausal modeling language, it is useful to
think in terms of causality during model development.

Table 1. Parameters for driven tank with constant cross sectional
area.

Parameter Value Unit Comment
ρ 1 kg/L Density of liquid
A 5 dm2 Constant cross sectional area
K 5 kg/s Valve constant
hO 3 dm Level scaling

Table 2. Operating condition for driven tank with constant cross
sectional area.

Quantity Value Unit Comment
h(0) 1.5 dm Initial level
m(0) ρh(0)A kg Initial mass
ṁi (t) 2 kg/s Nominal influent mass

flow rate; may be varied

"Mass in tank, kg";
// -- auxiliary variables
Real V "Tank liquid volume, L";
Real md_e "Effluent mass flow";
// -- input variables
input Real md_i "Influent mass
flow";
// -- output variables
output Real h "Tank liquid level,
dm";

// Equations constituting the model
equation

// Differential equation
der(m) = md_i - md_e;
// Algebraic equations
m = rho*V;
V = A*h;
md_e = K*sqrt(h/h_max);

end ModWaterTank;

As seen from the first section of model
ModWaterTank, the model has 4 essential param-
eters (rho-h_max) of which one is a Modelica constant
(rho) while other 3 are design parameters, compare this
to Table 1. Furthermore, the model contains 2 “initial
state” parameters, where 1 of them can be chosen at
liberty, h_0, while the other one, m_0, is computed
automatically from h_0, see Table 2. The purpose of
the “free parameter” h_0 is that it is easier for the user
to specify level than mass. Also, free “initial state”
parameters makes it possible for the user to change the
initial states from outside of model ModWaterTank,
e.g., from Python.

Next, one variable is given with initial value — the state
m — is initialized with the “initial state” parameter m_0.
Then, 2 variables are defined as auxiliary variables (alge-
braic variables), V and md_e.12

12md is notation for m with a dot, ṁ , i.e., a mass flow rate.
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One input variable is defined — md_i — this is the
influent mass flow rate ṁi, see Table 2. Inputs are charac-
terized by that their values are not specified in model the
core model — here ModWaterTank. Instead, their val-
ues must be given in an external model/code — we will
specify this input in Python. Finally, 1 output is given —
h.

In the second section of model ModWaterTank, the
Model equations exactly map the mathematical model
given in Section 3.2.

For illustrative purposes, the core model
ModWaterTank is wrapped within a package named
WaterTank and stored in file WaterTank.mo,

package WaterTank
// Package for simulating
// driven water tank
// author: Bernt Lie
// University College of
// Southeast Norway
// April 18, 2016
//
model ModWaterTank

// Main driven water tank model
// ....
....

end ModWaterTank;
// End package

end WaterTank;

3.4 Use of Python API
First, the following Python statements are executed — we
did this in Jupyter notebook.

from OMPython import ModelicaSystem
import numpy as np
import numpy.random as nr
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
LW = 2

Here, we use NumPy to handle simulation results, etc.
The random number package will be used in a sensitivity/-
Monte Carlo study. The magic function %matplotlib
inline is used to embed Matplotlib plots within the
Jupyter notebook; to save these plots into files, simply
right-click the plots. However, more options for saving
files are available if the magic function is excluded, and
instead command plt.show() is added after the plot
commands have been completed. Pandas are used to illus-
trate presenting data in tables in Jupyter notebook. Finally,
label LW is used to give a conform line width in plots.

3.5 Basic Simulation of Model
We instantiate object tank with the following command:

tank = ModelicaSystem(’WaterTank.mo’,
’WaterTank.ModWaterTank’)

Figure 3. Typesetting of Data Frame of quantity list in Jupyter
notebook.

whereupon Python/Jupyter notebook responds that the
OMC Server is up and running the file. Next, we are inter-
ested in which quantities are available in the model. In the
sequel, Python prompt >>> is used when Jupyter note-
book actually uses In[*] — where * is some number,
while the response in Jupyter notebook is prepended with
Out[*].

>>> q = tank.getQuantities()
>>> type(q)
list
>>> len(q)
11
>>> q[0]
{’Changeable’: ’true’,
’Description’: ’Mass in tank, kg’,
’Name’: ’m’,
’Value’: None,
’Variability’: ’continuous’}
>>> pd.DataFrame(q)

The last command leads Jupyter notebook to typeset a
tabular presentation of the quantities, Figure 3. The results
in Figure 3 should be compared to the Modelica model
in Section 3.3. Observe that Modelica constants are not
included in the quantity list.

Next, we check the simulation options:

>>> tank.getSimulationOptions()
{’solver’: ’dassl’,
’startTime’: 0.0,
’stepSize’: 0.002,
’stopTime’: 1.0,
’tolerance’: 1e-06}

It should be observed that the stepSize is the frequency
at which solutions are stored, and is not the step size
of the solver. The number of data points stored, is
thus (stopTime-startTime)/stepSize with due
rounding. This means that if we increase the stopTime to
a large number, we should also increase the stepSize to
avoid storing a large number of information.

EUROSIM 2016 & SIMS 2016

712DOI: 10.3384/ecp17142707       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



Figure 4. Tank level when starting from steady state, and ṁi (t)
varies in a straight line between the points (t j, ṁi (t j)) given by
the list [(0,3),(2,3),(2,4),(6,4),(6,2),(10,2)].

To this end, we want to simulate the system for a long
time, until the level reaches steady state. Possible inputs
are:

>>> tank.getInputs()
{’md_i’: None}

where value None implies that the available input, md_i,
has yet not been set. We could use None as input, which
will be interpreted as zero. But let us instead set ṁi = 3,
simulate for a long time, and change “initial state” param-
eter h(0) to the steady state value of h:

>>> tank.setInputs(md_i=3)
>>> tank.setSimulationOptions\

(stopTime=1e4, stepSize=10)
>>> tank.simulate()
>>> h = tank.getSolutions(’h’)
>>> tank.setParameters(h_0 = h[-1])

Next, we set back to stop time to 10, and specify an
input sequence with a couple of jumps:

>>> tank.setSimulationOptions\
(stopTime=10, stepSize=0.02)

>>> tank.setInputs(md_i = [(0,3),(2,3),
(2,4),(6,4),(6,2),(10,2)])

Finally, we simulate the model with the time varying in-
put, and plot the result:

>>> tank.simulate()
>>> tm, h = tank.getSolutions(’time’,\

’h’)
>>> plt.plot(tm,h,linewidth=LW,
color=’blue’, label=r’$h$’)
>>> plt.title(’Water tank level’)
>>> plt.xlabel(r’time $t$ [s]’)
>>> plt.ylabel(r’$h$ [dm]’)

The result is displayed in Figure 4.
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Tank level sensitivity

h

Figure 5. Uncertainty in tank level with a 5% uncertainty in
valve constant K. The input is like in Figure 4.

3.6 Parameter Sensitivity/Monte Carlo Simu-
lation

It is of interest to study how the model behavior varies
with varying uncertain parameter values, e.g. the effluent
valve constant K. This can be done as follows:

>>> par = tank.getParameters()
>>> K = par[’K’]
>>> KK = K + (nr.randn(10)-0.5)*K/20
>>> tank.simulate()
>>> tm, h = tank.getSolutions(’time’,\

’h’)
>>> plt.plot(tm,h,linewidth = LW,
color = ’red’, label=r’$h$’)
>>> for k in KK:

tank.setParameters(K=k);
tank.simulate()
tm, h = tank.getSolutions\

(’time’,’h’)
plt.plot(tm,h,linewidth=LW,

color=’red’,linestyle=\
’dotted’,label=’_nolabel_’)
>>> plt.title(’Tank level sensitivity’)
>>> plt.xlabel(r’time $t$ [s]’)
>>> plt.ylabel(r’$h$ [dm]’)
>>> plt.legend()

The result is as shown in Figure 5.

4 Discussion and Conclusions
This paper introduces some ongoing work on extending
OpenModelica with a Python API, so that Modelica mod-
els can be run and analyzed from within Python. The new
Python API is briefly described, and the use of this API
is then illustrated by simulating a very simple model of a
water tank.

Future work will include further testing, e.g., with opti-
mization, extending the API so that it works on more plat-
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forms, and extending the API to include analytic model
linearization.
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