
Prediction of Dilute Phase Pneumatic Conveying Characteristics
using MP-PIC Method

K. Amila Chandra W.K. Hiromi Ariyaratne         Morten C. Melaaen
 

Faculty of Technology, Natural Sciences and Maritime Sciences – University College of Southeast Norway, Post box 235, 
N-3603 Kongsberg, Norway,{amila.c.kahawalage, hiromi.ariyaratne, 

morten.c.melaaen}@usn.no 
 
 
 
 

Abstract
Pneumatic conveying characteristics of a dilute phase
flow in a circular horizontal pipe was predicted using
MP-PIC method in OpenFOAM code. The geometry,
material and operating conditions are similar to some
experimental data in published literature. The pipe
diameter is 30.5 mm.  The solid particles are plastic
pellets which are having 1000 kg/m3 of density and 0.2
mm of particle diameter. The simulations were carried
out for 10 m/s of superficial air velocity and for different
solids mass loadings 0, 1, 2 and 3. The pressure drop, air
velocity profiles and solids distribution were analysed
and some of the results were compared with
experimental data from the literature.  The predicted
pressure drops and air velocity profiles show a quite
good agreement with the experimental data.

Keywords: MP-PIC, OpenFOAM, pneumatic conveying,
simulations, experimental data

1 Introduction
Pneumatic conveying systems are employed to transfer
powders, granules and other dry bulk materials through
pipes or tubes. The main attractive features of the
pneumatic conveying systems are; the flexibility,
completely enclosed system and having less moving
parts compared to the other mechanical transport
systems. One of the principal disadvantages of these
systems is the requirement of higher horsepower,
because the blower or compressor does the primary
work. For better system performance and optimal
energy usage, the selected blower or compressor
characteristics should be matched with the system
characteristics. In that scenario, the air flow rate and the
pressure drop through the system are the major key
factors when choosing a suitable blower or compressor.

There are two different ways of pneumatic
conveying; as dilute phase and dense phase. In the dilute
phase conveying, particles are fully suspended in the
conveying air. On the other hand in dense phase, the
particles are conveyed as fluidized dunes or as discrete
plugs of material without much suspension of the

material. The remarkable differences in the operational 
condition for the different modes are; the velocity and 
the pressure. In dilute phase conveying, relatively a high 
velocity and a low pressure are employed. Due to high 
operating velocity in dilute phase, the system requires 
excessive power. Moreover, operational problems may 
arise such as particle attrition and erosive wear of the 
pipelines. The pressure drops for pneumatic conveying  
systems have widely been measured experimentally by 
many researchers for different pipe configurations, 
particle sizes and solids loading ratios (Hyder et al., 
2000; Mason and Li, 2000; Tsuji and Morikawa, 1982).  

In last few decades, computational fluid dynamics 
(CFD) is intensively used in modeling, designing and 
optimizing of pneumatic transport systems. Quite many 
commercial and open source software programmes are 
available for that purpose (Bilirgen and Levy, 2001; Chu 
and Yu, 2008; Hidayat and Rasmuson, 2005; Huber and 
Sommerfeld, 1998; Laín and Sommerfeld, 2008; Lee et 
al., 2004; Levy and Mason, 1998; Mason and Levy, 
1998). 

In general, commercial CFD softwares are user 
friendly with respect to many aspects such as mesh 
generation, solution algorithms and visualization. 
Nevertheless, the modification of source code of those 
software packages according to user requirement is not 
very straight forward. Moreover, the costs of 
commercial licenses are also significant. OpenFOAM is 
an open source CFD simulation software package and 
can be used in wide variety of flow simulation 
applications. It is a finite volume solver. The CFD code 
can be developed according to the user requirements, as 
example for a certain specific application. And the code 
is also for free of charge. Due to the above reasons, 
OpenFOAM is popular in both academic and industrial 
sector. 

Currently, multiphase particle-in-cell (MP-PIC) 
method is widely employed in solving gas-solids flow 
systems. This is also referred as computational particle 
fluid dynamics (CPFD) in some literature. This is an 
Euler-Lagrange approach which treats the particles in a 
discrete manner. Particles are treated as parcels in MP-
PIC method and each parcel consists of a definite 

EUROSIM 2016 & SIMS 2016

639DOI: 10.3384/ecp17142639       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



number of real particles of the same properties such as 
size, density, temperature, etc. The method has been 
quite much used and verified for certain applications 
such as bubbling and circulating fluidized beds, 
fluidized bed gasifiers, fluidized beds for carbon capture 
and gas/liquid/solids fluidized beds (Chen et al., 2013; 
Karimipour and Pugsley, 2012; Liang et al., 2014; 
Parker et al., 2013). However, published information 
about use of this method in predicting pneumatic 
conveying characteristics is not found.  

The solid phase normal stress is used to compute the 
particle-particle interactions near the close pack limit, 
but not directly through modeling of particle collisions 
(Snider, 2001). Besides, the particle collisions are not 
considered implicitly in MP-PIC method, hence time 
step size can be increased. Due to that, particle and flow 
calculation can be computed  using  same  time step size 
and it reduces the computational time for the simulation. 
All these benefits make MP-PIC method more suitable 
for the simulation of the large-scale particulate flow 
systems. However, in dilute systems the instantaneous 
and binary contacts are more significant compared to 
enduring contacts which are modeled through normal 
stress model. In addition to solid phase normal stress, 
binary and instantaneous collisions are modeled through 
new terms developed by Snider and O’Rourke 
(O'Rourke and Snider, 2012; O’Rourke and Snider, 
2010). 

In the present study, some of the experimental data 
found in the literature are reproduced (Tsuji and 
Morikawa, 1982). Three dimensional simulations are 
carried out using MP-PIC method in OpenFOAM code. 
A horizontal circular pipe conveying plastic pellets in 
dilute phase is simulated. Pressure drop, air velocity 
profiles and solids distribution are analyzed and some of 
those results are compared with the experimental data. 

2 Model Formulation and 
Methodology 

2.1 Mathematical Model 
The mass and momentum equations are solved for the 
gas phase. For the solid phase, Liouville equation is 
solved for the distribution function which is a function 
of particle positions, velocities and sizes (Andrews and 
O'Rourke, 1996; Snider, 2001). In the equations,  refers 
to the gradient respect to the direction and  refers to the 
gradient respect to the velocity. The mass and 
momentum equation for the gas phase are shown in (1) 
and (2), respectively.  
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The gas phase stress tensor is given by, 
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Where   , g , gu
, p  , g , g  , eff

, I  are the gas 
volume fraction (or void fraction),  the gas density, the 
gas velocity vector, the gas pressure, the accerlation due 
to gravity, the gas stress tensor, effective viscosity and 
unit tensor, respectively. The turbulent viscosity is 
solved using the modified k-epsilon equation for 
multiphase flows (not presented here). The rate of 
momentum exchange per unit volume from the gas to 
the particle phase is denoted by   (13). The gas pressure 
and density are correlated by (4). 
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The particle phase is described by Liouville equation 
(5). where  tmvxf ,,,  is called the particle 

distribution function and x,v,m  and t represent the 
particle position, the particle velocity, the particle mass 
and the time, respectively. More detail about collision 
term (on the right hand side of (6)) can be found in 
elsewhere (O'Rourke and Snider, 2012; O’Rourke and 
Snider, 2010; Snider, 2001). 
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The particle velocity is given by, 

v
dt

dx
                      (7)

 

dt
dvA     is the particle acceleration which is given by  
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where D , s and  are the drag function, the particle 

density and the isotropic solids stress, respectively. Drag 
function is given by (9). 
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Where dC is drag coefficient which is modeled from 
Wen-Yu drag model (Shah et al., 2015) and R is particle 
radius. Expression for the isotropic solids stress has 
been taken from (Harris and Crighton, 1994) and shown 
in (10). 
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In (10), sP  is a constant with units of pressure and cp    

is the particle-phase volume fraction at close pack, 
respectively. β is a constant (2≤β≤5) and ω is a small 
number in the order of 10-7.The particle volume fraction  
is related to the distribution function  by, 
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Then   and   are related by, 

 1  (12)

To complete the equation, we need an expression for the 
interphase momentum transfer function F  and it is 
defined as (13). 
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2.2 Experiment and Simulation Procedure 
Tsuji and Morikawa (1982) have conducted  
experiments for gas-solids two phase flow in a 
horizontal pipe. The pipe diameter is 30.5 mm. The 
pressure drops and also particle and air velocities have 
been measured using laser-Doppler velocimeter (LDV). 
Plastic pellets  which  are having particle density of 1000 
kg/m3 have been used as the solid material.  

They have conducted experiments for two different 
mean particle sizes; 0.2 mm and 3.6 mm by varying 
superficial air velocity and solids mass loading. The 
velocities range from 6 to 20 m/s and the solids mass 
loadings range from 0 to 6. However in the present 
study, the simulations are conducted for mean particle 
size of 0.2 mm. The used air density and viscosity are 
1.225 kg/m3 and 1.46073×10-5 Pa s, respectively. The 
simulations are carried out for four different mass 
loadings; 0, 1, 2 and 3. The superficial air velocity for 

each case is 10 m/s. The Reynolds number of the flow 
is around 21000. Description of each simulation case is 
shown in Table 1. 

 

Table 1. Simulation case description. 

Case  Solids to 
air mass 
flow 
ratio 

Air 
mass 
flow 
rate 
(kg/s) 

Solids 
mass 
flow rate 
(kg/s) 

Particle 
volume 
fraction 
at inlet 
(%) 

Case_0 0 0.009 0.000 0.00 
Case_1 1 0.009 0.009 0.12 
Case_2 2 0.009 0.018 0.24 
Case_3 3 0.009 0.027 0.32 
 

2.3 Geometry and Meshing 
The computational domain is an 8 m long horizontal pipe 
having 30.5 mm of diameter. This is shown in Figure 1. 
Three-dimensional geometry was generated and meshed 
using SALOME 7.5.1. To obtain better accuracy and 
convergence, hexahedral type elements were selected. 
The grid is uniform and consists of 126000 elements 
(Figure 2). 
 

 
Figure 2. Mesh of pipe cross section. 

 

Figure 1. Sketch of the geometry of the computational domain (units are in meters). 
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2.4 Boundary Conditions and Solution 
Method 

 

Figure 4. Normalized pressure along the pipe centre line 
at 1.8 s. 

 
As shown in Figure 1, the system consists of three 

boundaries as the inlet, the outlet and the wall. Pressure 
at the outlet was defined as zero gauge pressure and 
superficial air velocity at the inlet was defined as 10 m/s. 
Particle-particle interactions nearby close pack limit are 
modeled using particle normal stress model.  

The isotropic solids stress was defined as (10) and sP

, cp , β and ω are specified as 1, 0.6, 3 and 10-8, 

respectively. Particle to wall interaction was modeled 
with restitution coefficients and its value is 0.95. 
Collisional return-to-isotropy of particle velocity fields 

which are important for dilute systems (O'Rourke and 
Snider, 2012) are modeled from time scale model. 
In that model, particle-phase volume fraction at close 
pack and particle-particle restitution coefficient are 
specified as 0.6 and 0.95, respectively. MPPICFoam was 
used as the solver in OpenFOAM. Simulation was run in 
transient mode at time step size of 0.0001 s until it comes 
to quasi-steady state which was confirmed by monitoring 
the pressure at certain points.  

3 Results and Discussion 
The pressure drop in a pneumatic conveying system is a 
very crucial property because it will affect to the 
performance of the blower or the compressor. Pressure 
drops along the horizontal pipe center line at 1.8 s 
(normalized by the air density) for four cases are shown 
in Figure 4. Case_0 which corresponds to only air flow 
shows quite stable pressure fall along the pipe length; 
however the pressure drop profiles start to fluctuate with 
the solids loadings. Moreover, the total pressure drop 
increases with the increase of solids loadings, which is 
physically reasonable for any dilute system. When the 
solids loading increases for a certain size of particles, the 
particle number density in the system increases 
accordingly. Higher number of particles in the system 
causes high frequent particle-particle and particle-wall 
collisions. This enhances the particle energy dissipation 
resulting in high drag force and also increased pressure 
drop. 

Table 2 shows the comparison of experimental data 
(Tsuji and Morikawa, 1982) with predicted quasi-steady 
time-averaged pressure drops in fully developed region 
along the pipe centre line for different cases. The 
simulation results show quite good agreement with the 
experimental data. However, it seems that the error is 
increased with an increase of solids loadings. It should 
be noted that the pressure drops are simulated with 

 
                                            (a)                                                                                             (b) 

Figure 3. (a) Air volume fraction and (b) Particle distribution at outlet after 1.8 s for the Case_2. 
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certain set of particle-particle and particle-wall collision 
coefficients in the present study and some of the 
literature emphasizes the high sensitivity of some of 
these coefficients on pressure drop results (Patro and 
Dash, 2014a, 2014b). However, the investigation of this 
effect is out of the present study.  

Table 2. Quasi-steady time-averaged pressure drop in 
fully developed region along the pipe center line. 

Case  Pressure drop (Pa/m) Error 
(%) Experimental Simulation 

Case_0 52.63 49.4 -6.1 
Case_1 59.6 53.0 -11.2 
Case_2 66.2 58.2 -12.1 
Case_3 73.5 62.4 -15.1 

 

Figure 3(a) and Figure 3(b) show the air volume 
fraction and solids distribution, respectively, at outlet 
after 1.8 s for the case 2. The air volume fraction is lower 
nearby bottom of the pipe (Figure 3 (a)) because more 
solids are dominated in that region (Figure 3(b)). 
Because of the gravity effect, the particles gradually 
pass off-axis and decline. Therefore, the particles tend 
to move to bottom side of the pipe. However, due to 
particle-wall collisions the particles bounce back to the 
core region of the pipe and are more scattered due to 
further particle-particle and particle-wall collisions 
(Figure 3(b)). Still the volume fraction of solids in 
bottom part of the pipe is higher compared to the upper 
part. 

Figure 5 (a) shows the air velocity profiles at outlet at
1.8 s for each simulated case. Case_0 which corresponds
to only air flow shows a symmetric profile. Also, it
seems that the model predicts the turbulent air velocity
profile quite accurately. With increase of solids
loadings, the profiles pronounce the asymmetry i.e. the
air velocity is getting lower in the bottom part of the pipe
compared to the upper part. This can be due to more
restriction for the air flow caused by high amount of
solids at the bottom. However, the results in the region
nearby the bottom (around 0.001m in Figure 5(a)), in
where the air velocities are higher for the solids loading
cases (case_1, Case_2 and Case_3) than only air case
(Case_0), is not as expected.

Figure 5(b) shows the comparison of experimental
and simulated velocity profiles for the case 2. The
agreement between two profiles nearby bottom part of
the pipe seems reasonable. However, the local minimum
and maximum of the experimental profile have not been
captured by the model.  This can be partly due to mono-
dispersed particles used in the simulations in contrast to
poly-dispersed particles used in the experiments.
Moreover, calibration of particle-wall collision
parameters might be necessary for more accurate
results.

4 Conclusions
The flow characteristics of a pneumatic conveying
system are predicted using MP-PIC method in
OpenFOAM. The flow is dilute and plastic pellets which
are having 0.2 mm mean particle size and 1000 kg/m3

 

 

(a)                                                                                        (b) 

Figure 5.  (a) Air velocity profiles for each case at outlet at 1.8 s  and  (b) Comparison of experimental and predicted 
air velocity profiles at outlet at 1.8 s for the Case_2. 
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are conveyed in 30.5 mm diameter pipe. The superficial 
air velocity was 10 m/s and predictions are performed 
for 4 different solids loadings as 0, 1, 2 and 3. Some of 
the predicted results were compared with experimental 
data. Predicted pressure drop results have reasonable 
agreement with experimental data for different loadings. 
The error ranges from 6-15%. The solids distribution 
also seems physical, however no real world data is 
available for the comparison. Asymmetry of the gas 
phase velocity of the profiles due to presence of the 
particles have been quite well predicted by the model, 
however the local minimum and maximum of the 
experimental profile has not been captured by the 
present model. The discrepancies may be partly due to 
mono-dispersed particles used in the model in contrast 
to poly-dispersed particles used in the experiments. In 
general, it can be concluded that the used MP-PIC model 
gives quite reasonable predictions for dilute phase 
pneumatic conveying systems. 
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Nomenclature 
A  particle accerlation (m/s2) 

DC  drag coefficient  
D  darg funnction (s-1) 

 D0 pipe diameter (m) 
F  rate of momentum exchange per unit volume 

from the gas to the particle phase (N/m3) 
f  particle distribution function (PDF) 

Df  PDF obtained by collapsing the velocity 
dependence f of  to a delta function centered 
about the local mass-averaged particle velocity 

Gf  equilibrium distribution 
 I unit tensor 
m  particle mass (kg) 
p   static pressure (Pa) 

sP  pressure constant (Pa) 
R  particle radius (m) 
 r vertical distance from pipe horizontal axis (m) 
 t  time (s) 

gu
 gas velocity vector (m/s) 

Ug axial gas velocity (m/s) 
Um superficial air velocity at inlet (m/s) 
v  particle velocity vector (m/s) 
x  particle position (m) 
  constant 
  constant 

  gas volume fraction 
  solids volume fraction 

cp
 particle phase volume fraction at close pack 

eff
 effective viscosity  (Pa s) 

g   gas density (kg/m3) 

s   particle density (kg/m3) 
   isotropic solids stress (Pa) 

D  collision damping time (s) 

g  gas stress tensor (Pa) 

G  relaxation time (s) 
  constant 
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