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Abstract 
This paper presents the use of inverse artificial neural 
networks (ANNs) to develop and optimize a 
reconfigurable 5-fingers shaped microstrip patch 

antenna. New solutions are produced by using three 
accurate prior knowledge inverse ANNs with sufficient 

amount of training data where the frequency 
information is incorporated into the structure of ANNs. 
The proposed antenna can operate with four modes, 

which are controlled by two PIN diode switches with 
ON/OFF states, and it resonates at multiple frequencies 
between 2-7 GHz. The complexity of the input/output 

relationship is reduced by using prior knowledge. Three 
independent methods of incorporating knowledge in the 
second step of the training process with a multilayer 

perceptron (MLP) in the first step are demonstrated and 
their results are compared to EM simulation.  

Keywords:     artificial neural networks, reconfigurable 
microstrip antenna, prior knowledge input 

1 Introduction 

With the rapid development of wireless communication 
applications, especially in satellites, MIMO systems, 
radar and portable computers (Costantine et al., 2015). 

The choice of reconfigurable antennas comes in a large 
variety of different shapes and forms of the structure. 
Through change the structure of reconfigurable 

antennas different characteristics (desired operation) 
can be obtained (Jiajie and Anguo, 2018; Allayioti and 

Kelly, 2017). In addition, they have the nature and the 
capabilities of the reconfiguration mechanism (Aoad et 
al., 2014). In this application, only ON-ON state of the 

PIN diode switches is studied (Costantine et al., 2015; 
Aoad et al., 2014). In a previous study, the structure and 
results were different (Aoad et al., 2015). 

ANN models have been selected for developing 
new solutions of the proposed antenna. They have the 

opportunity for modelling and optimizing non-linear 
relationships between multiple outputs and inputs (Huff 
and Bernhard, 2008). Therefore, ANNs can be used in 

the design, development and optimization of antennas 
(Aoad et al., 2014), integrated circuit-antenna modules 

and microwave circuits (Wang and Zhang, 1997). The 

accuracy depends on sufficient training data presented 
during the training process. In this application, training 
data is generated by CST-EM simulator. 

In this study, two-steps of EM-ANN model is 
processed using MLP in the first step to model the 
geometrical dimensions (response) of the proposed 

antenna, followed by adding extra knowledge into 
neural networks (NNs) in the second step to correct the 

response that achieved from first step. Finally, the 
obtained from second step will be redesigned by EM-
simulator to be the developed new solution. 

2 Reconfigurable Antenna Design  

The studied antenna is a reconfigurable 5-fingers shaped 
microstrip patch antenna (R5SMPA). This R5SMPA 

consists of three layers and feeding system at the center 
of the middle patch. The radiating conductors (first 

layer) consist of three strips with different dimensions. 

The parameter of 𝐿1(1.35 cm) and 𝐿2(0.75 cm) are 

mirrored to the other side where 𝐿3 (1.05 cm) is the 

middle strip. All strips linked by 𝑊1(3.3 cm) where 𝑊2 

(0.3 cm) is the width of all strips. They are positioned 
on FR-4 dielectric board (second layer) with a thickness 
of 0.2 cm and ground plane (third layer) is printed on the 

back side of the dielectric (substrate).  𝑊3 (0.15 cm) is 

the unfilled space includes two PIN diodes (𝐷1 and 𝐷2) 

(ITTC, 2016). They are positioned to distribute the 
current paths on the microstrips depending on its bias 

state as shown in Figure  1. To realize the ON-ON state 
two resistors are used of the PIN diodes (ITTC, 2016). 
Each resistor has a resistance value of 5 Ohms. 

 

  
(a) (b) 

Figure  1. Reconfigurable antenna (a) Top view and  

(b) side view. 
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3 Inverse Artificial Neural Networks 

For testing the effectiveness of used methods, which 

were used in (Aoad et al., 2015). Same methods have 

been applied to the proposed antenna that has a different 

structure as shown in Figure  1. The proposed inverse 
ANNs consist of two-steps which is called knowledge 
based response correction (KBRC), followed by EM 

simulator to redesign the results of KBRC for obtaining 
new solutions of the R5SMPA. Input for KBRC model 

is only frequency sample points, while outputs are 
considered the new geometrical dimensions of the 
R5SMPA. It is important to notice that MLP response 

which is obtained from the first step of KBRC model is 
not corrected yet. However, SD, PKI-D and PKI models 
in the second step correct that response.             

3.1 Multilayer Perceptron (MLP) 

MLP (no extra knowledge) consists of three perceptron 
layers lined as an input layer, one or more hidden layers 

and finally an output layer (Zhang and Gupta, 2000) and 
is in the first step of KBRC model, corresponding to 
model Y and X variables respectively. The function of 

the input and the output vectors can be presented as 𝑋 =
𝑓(𝑌). In this study, the input parameter is  𝑌𝑓 = [𝑓]𝑇 (𝑌𝑓 

presents 200 samples of S-parameters) and the predicted 

output is 𝑋𝑐 = [𝐿1, 𝐿2, 𝐿3 ]𝑇. 

3.2 Source Difference Method (SD) 

The idea of SD (Simsek et al., 2010; Zhang and Gupta, 
2000) is in combining two training data sets to be the 
target of the network. These data sets are the EM 
simulation outputs of 𝑋𝑓 = [𝐿1, 𝐿2, 𝐿3 ]𝑇 which 

represents the fine data and the output response of MLP 

(𝑋𝑐) obtained from the first step. Thus, the input 

parameter of the SD is only the frequency samples 𝑌𝑓 =

[𝑓]𝑇, the predicted output 𝑋𝑆𝐷 = 𝑋𝐶 + 𝑋𝑀𝐿𝑃, while the 

target is ∆𝑋𝑆𝐷 = 𝑋𝑅𝐿 − 𝑋𝐶. SD is positioned in the 

second step of KBRC as shown in Figure 2. The 

function of the input and the output of the redesign case 
of EM-simulation is presented as 

𝑌𝑓−𝑆𝐷 = 𝑓𝐸𝑀(𝑋𝑆𝐷) (1) 

 

where 𝑌𝑓−𝑆𝐷 is the result obtained by the redesign of the 

predicted output (𝑋𝑆𝐷) of the second step. 𝑒𝑆𝐷 is the 

error measure computes the absolute difference between 

𝑌𝑓−𝑆𝐷 and  𝑌𝑓  which can be calculated by 

𝑒𝑆𝐷 = |𝑌𝑓−𝑆𝐷 − 𝑌𝑓| (2) 

Equations (1) and (2) are same as a general principle in 
the next methods. 

 
Figure 2. Two steps of KBRC model when SD is in 

2nd step of processing. 

3.3 Prior Knowledge Input Method (PKI) 

In this method (Zhang and Gupta, 2000), the output 
response of MLP (𝑋𝐶) is used as input to PKI, in 

addition to the original input of 𝑌𝑓. The target output is 

the fine output (𝑋𝑓). Therefore, the input/output 

mapping (in the first step) is between the output 

response of MLP (𝑋𝑐) and (𝑌𝑓). Thus, the input 

parameter for PKI is  𝑌𝑃𝐾𝐼 = [ 𝑌𝑓, 𝑋𝐶  ]𝑇. PKI is 

positioned in the second step of KBRC as shown in 

Figure  3. 

 
Figure  3. Two steps of KBRC model when PKI is in 

2nd step of processing. 

 

3.4 Prior Knowledge Input with Different 

PKI-D (Aoad et al., 2014; Zhang & Gupta, 2000) is 
developed to combine advantages of two knowledge 
based methods (PKI and SD) described previously. The 

prior knowledge obtained from the output response of 

MLP (𝑋𝐶) is used with the input of the fine model (𝑌𝑓) 

to be the input of PKI-D (𝑌𝑃𝐾𝐼−𝐷). Therefore, the input 

parameter is 𝑌𝑃𝐾𝐼−𝐷 = [𝑌𝑓, 𝑋𝐶  ]𝑇, when the target output 

is ∆𝑋𝑃𝐾𝐼−𝐷 = 𝑋𝑓 − 𝑋𝐶. PKI-D is positioned in the 

second step of KBRC as shown in Figure  4. 

 
Figure  4. Two steps of KBRC model when PKI-D is 

in 2nd step of processing. 
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4 Parameters of ANN Models 

Two data sets are initially proposed: 1) Training data 

and 2) extrapolation testing data sets. The training data 
generated by EM-simulator was 24800 samples for three 

geometric antenna parameters (𝐿𝑖
𝑘 , 𝑖 = 1,2,3 𝑎𝑛𝑑 𝑘 =

5), 𝑘 is the number of 𝐿𝑖 samples as shown below.  

𝑁𝑡𝑟 = 𝑓𝑠 ∏ |𝐿𝑖
𝑘|

3

𝑖=1

 (3)  

where 𝑁𝑡𝑟 is the number of training data samples and 𝑓𝑠 

is the number of frequency samples which is equal to 
200. The large amount of training data has been reduced 

to be 27 samples only (Bataineh and Marler, 2017). The 
reduction procedure depends on the selection of 
resonant frequency samples from the training data. The 

frequency sample points are 200 which are considered 
the input of the studied models and the outputs are three 

parameters which are the geometrical dimensions of the 
R5SMPA. In testing stage, two testing data sets are 
selected. The testing data sets are selected outside 

training data which are used to test the accuracy of the 
models for extrapolation (Simsek et al., 2010). The 
number of hidden layers is two for all methods. 

However, the number of neurons is (20-20) for MLP and 
(30-20) for knowledge based neural networks (KBNNs). 

Inverse ANN models are trained by using Levenberg-
Marguardt algorithm, with tangent-sigmoid transfer 
functions (TFs) in the hidden layers and a purely linear 

function in the output layer (Beale et al., 2013). The 
training parameters of the model are realized by 

adjusting the learning rate (𝜂) to 0.1 for MLP and 0.05 

for KBNNs, the performance goal to 0.000001 for MLP 

and KBNNs and momentum coefficient (µ) to 0.2 for 

MLP and 0.1 for others. The regularization coefficient 

of the network is chosen as 0.2.  

5 Results and Discussion 

The neural network models are repeatedly trained 50 
times and new geometrical dimensions of R5SMPA are 

developed. The accuracy of the models is presented by 
the optimum resonant frequency and return loss of the 

S-parameter curves which are the results of the 
simulating the new geometrical parameters that 
obtained by inverse ANN models for extrapolation 

testing data. Figure  5 shows the result of R5SMPA 
without training any ANNs as explained in section 2 and 
shown in Figure  1(a), followed results are by using 

inverse ANNs. 

 

 

 

 

 

 
Figure  5. S-parameter for R5SMPA modeled by 

EM-Simulator, at 3 GHz. 

Table 1. A Comparıson Between Results Obtaıned By 

Inverse ANNs. 

Parameters Test MLP SD PKI PKI-D 

𝐿1 (cm) - 1.4271 1.4738 1.3960 1.4377 

𝐿2 (cm) - 1.1115 1.0995 1.0818 1.1184 

𝐿3 (cm) - 0.8535 0.8496 0.8578 0.8340 

𝑓𝑜𝑝 (GHz) 2.44 2.71 2.68 2.74 2.71 

RL (dB) - -26.89 -32.00 -25.91 -25.73 

 

 
Figure  6. Top view of the developed solution for MLP 

only at 2.44 GHz. 

 

 
Figure  7. Comparison of S-parameters. The plots 

show results obtained by ANNs then designed by EM 

simulator, at 2.44 GHz. 

Table 2. A Comparıson Between Results Obtaıned by 

Inverse ANNs at 3.74 GHz Extrapolation Testing Data. 
Parameters Test MLP SD PKI PKI-D 

𝐿1 (cm) - 0.5521 0.5445 0.5905 0.5466 

𝐿2 (cm) - 0.7800 0.7923 0.7745 0.7900 

𝐿3 (cm) - 0.9486 0.9618 0.9647 0.9689 

𝑓𝑜𝑝 (GHz) 3.74 3.77 3.74 3.77 3.77 

RL (dB) - -21.05 -21.11 -22.47 -22.05 

 

 
Figure  8. Top view of the developed solution for MLP 

only, at 3.74 GHz. 

EUROSIM 2016 & SIMS 2016

542DOI: 10.3384/ecp17142540       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



 

 
Figure  9. Comparison of S-parameters. The plots 

show results obtained by ANNs then designed by EM 

simulator, at 3.74 GHz. 

Table 1 and Table 2 show the results of the redesigned 

physical parameters obtained by inverse ANN models, 
in addition to optimum frequencies and their return 
losses. The developed new solutions have new values 

and shapes for R5SMPA that differ from the original 
R5SMPA which is shown in Figure  1(a) and the result 
of Figure  5. Every solution obtained from ANNs 

operates successfully at a close resonant frequency band 
as shown in Figure  7 and Figure  9. Moreover, Figure  

7, and Figure  9 show that the bandwidths are around 
0.32 GHz and 0.41 GHz respectively, at a target of 

return loss of 𝑆11 ≤ −10 dB.  

From the results presented above, it is noticed that ANN 
models are reliable and accurate models. The antenna 

can be reconfigured to obtain new results as well at 
different extrapolation testing data sets and new 
switching states such as ON-OFF or OFF-OFF. By 

comparing results with obtained in (Aoad et al., 2015). 
The difference was in resonating frequencies, their 
optimum points, bandwidths, number of input samples 

and speed of simulations. 
 

6 Conclusions

The proposed inverse ANN methods have been applied
for developing new solutions of the reconfigurable
antenna. They consist of two steps of processing. MLP

is in the first step, SD, PKI-D and PKI are in the second
step to correct the response comes from MLP, then the
results obtained by the second step redesigned by EM

simulator. All methods is applicable to 2 hidden layers.
Finally, after applying the proposed inverse ANN
methods for developing new solutions of two different

shaped reconfigurable antennas. The antenna designers
can use same methods to design reconfigurable antennas

to reach new solutions and high accuracy.
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