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Abstract
In the steel plate production process it is important to min-
imize the wastage piece produced when cutting a mother
steel plate to the size ordered by a customer. In this study,
we build classification and regression models to recognize
the steel plate side edge shape, if it is curved or not and
the amount of curvature. This is done based on time series
data collected at the manufacturing line. In addition, this
information needs to be presented in a way that enables
fast analysis and long-term statistical monitoring. It can
then be used to tune the parameters of the manufacturing
process so that optimal curvature can be found and the size
of the wastage piece can be reduced. The results show that
using the classification and linear regression methods, the
side edge shape can be recognized reliably and the amount
of curvature can be estimated with high accuracy as well.

Keywords: steel manufacturing, classification, regres-
sion, plate plan pattern control, plate side edge

1 Motivation
In the steel plate production process, the molten steel is
first converted into slabs which still are hot and glowing.
Then the thickness of the slab is reduced in the reversible
multi-pass rolling process. Plate rolling can be divided
in three main stages: sizing, broadside rolling and fin-
ishing rolling. In sizing stage the slab is rolled in lon-
gitudinal direction to produce required intermediate thick-
ness. Before broadside rolling the slab is turned around
90 degrees and then rolled in transverse direction to ob-
tain the required plate width. After broadside rolling the
slab is turned again 90 degrees and rolled to final thick-
ness (Ginzburg, 1989). After rolling the customer plates
are cut from the mother plate. As the steel material and
manufacturing are expensive, it is desired that the amount
of cutting wastage is as small as possible. The uneven
shapes at the plate end sides and lateral sides cause yield
loss, amounting to about 5% to 6% of a total tonnage of
slab used (Ruan et al., 2013). To minimize this loss, the
shape of the rolled mother plates needs to be optimized.

During the rolling process, inhomogeneous plastic de-
formation occurs as width spread at the plate edge regions.
There happens width spread at the plate side edge por-

Figure 1. Wastage of concave side is much smaller than of
convex side with same curvature but opposite direction,A1 >

A2+A3.

tions, which forms convex shape at the plate ends. Lat-
erally material spreads more at the both plate ends com-
pared to central portion thus having a tendency towards
concave plate side edge shape. However, because there is
also broadside rolling phase in addition to the longitudinal
rolling phase, the plate shape is dependent on the com-
bination of the longitudinal rolling ratio and the broadside
rolling ratio. The bigger the broadside rolling ratio is com-
pared to longitudinal rolling ratio, the more convex the fi-
nal plate side edge shape is formed. Width spread at the
plate edge regions is the prime cause of the uneven shapes
formed during the hot rolling process (Ruan et al., 2013).
There are techniques designed to produce a true rectan-
gular shape of rolled plate. One of the methods is MAS-
rolling which was developed by Kawasaki Steel Corpora-
tion (Yanazawa et al., 1980).

However, due to rolling inaccuracies the rectangular
shape cannot always be achieved even with MAS-rolling.
There is width deviation not only between plates but also
inside a plate. This results sometimes in convex and some-
times in concave plate side edge shape. However, the
amount of wastage from convex side is much bigger than
from concave side with same curvature, see Figure1. In
addition, concave shape increases the size of a rectangular
shaped plate in camber shaped plates. Usually the width
accuracy is as its best in the middle of the plate and weak-
ens towards the ends. For this reason the deviations in the
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ends are bigger and thus more extra material need to de
designed there, which also favors concave shaped plate.
Therefore, in order to minimize the amount of wastage,
a slightly concave edge shape of a steel plate should be
preferred. Using MAS-rolling, the target plate side edge
shape can be designed slightly concave in order to almost
completely avoid plates with convex edge shape. The de-
sired amount of curvature can be defined by adjusting the
process parameters. However, because of the uncertainty
related to the steel plate production process, exactly the
desired amount of curvature cannot be reached. In order
to optimize the MAS-rolling parameters and thus curva-
ture of a plate, the shape of the mother plates needs to be
monitored.

Our study is made for SSAB Europe, Raahe plate mill,
Finland, where the monitoring of the plate shape is cur-
rently done visually at the cooling banks by own eyes.
There is no camera based monitoring system available and
if plates that have already passed cooling banks needs to
be viewed, plate shape can be visualized by means of col-
lected process data. Plate shape information can be gath-
ered from thickness gauge data, see Section3 for more de-
tails. However this data is difficult to analyze making vi-
sual monitoring time consuming. In addition, conclusions
made using visual monitoring are always based on sub-
jective view. Furthermore, unlike our approach, this type
of monitoring does not allow the modelling of statistical
distribution of the curvature based on historical produc-
tion data, which can be used to understand the uncertainty
of the manufacturing process and to optimize process pa-
rameters to obtain the optimal curvature of plates. If the
plate shape can be optimized, the mother plates can be
manufactured by using smaller slabs which leads to better
yield.

In this study, we build models to define the shape of
a time series describing the steel plate side edge, if it is
curved or not and the amount of curvature, in such form
that they can be analyzed in a glance and enable long-term
statistical monitoring. The article is organized as follows:
related work is covered in Section2 and the used data set
is described in Section3. Our method is introduced in
Section4, and the method is validated in Section5. We
will discuss our results in Section6 and, finally, the con-
clusions are in Section7.

2 Related work
Many aspects of steel manufacturing have been mod-
elled and optimized using machine learning and data min-
ing methods which have been used for instance to esti-
mate impact toughness (Tamminen et al., 2010), to diag-
nose faults (Tian et al., 2015), to model the yield strength
(Koskimäki et al., 2007) and to model the rolling temper-
ature (Tiensuu et al., 2011).

In this study, we aim to define the curvature of a time
series describing the steel plate side edge, and use this in-
formation to build statistical distribution model to visu-

alize what kind of curve shapes the studied data set in-
cludes and how the amount of curvature is distributed in
the manufacturing process. In the literature the termplate
plan pattern controlis used to describe techniques and
methods that are designed to ensure that produced steel
plates have the desired shape and to minimize wastage
(NIIR Board of Consultants & Engineers, 2006). Most of
the studies related to plate plan pattern control concentrate
on improving the rolling process by installing new equip-
ment to the manufacturing line making them expensive,
such asZhang et al.(2015); Inoue et al.(1988), and there
are not many studies where plate view pattern is improved
by tuning the process parameters based on the data col-
lected in the manufacturing line as we do in our study.

Lee et. al. introduced a neural network based method
to predict the width of the mother steel plate based on
the size of a slab and different manufacturing parameters
(Lee et al.). Their method can be used to select parame-
ters to rolling process so that finished steel plate has the
desired width. Juutilainenet. al.predicted the steel strip’s
width rejection probability with statistical models and op-
timized the working allowance of the product based on
the results, material and rejection costs (Juutilainen et al.,
2012, 2015). While the width prediction of a steel plate is
closely related to our study, our approach differs from it in
a way that we study steel plates one side at a time. There-
fore, our study gives better understanding about the plate
plan pattern than studies which concentrate on the width
of a plate and, therefore, study both sides simultaneously.

The studies by Ruanet. al. (Ruan et al., 2014, 2015)
are the closest to our study. InRuan et al.(2014) regres-
sion analysis was used to build models to predict plate
plan view pattern based on slab size and rolling parame-
ters. Models were trained based on simulation results and
validated using industry tests. The study concentrates on
analyzing what causes convex and concave sides. In our
study we are not trying to predict the shape of a side or find
causes for certain shapes from the data collected during
the rolling process. Instead, our aim is to get better under-
standing about the manufacturing process by monitoring
the ratio of different shapes and the amount of curvature
from the plain view patterns measured from finished steel
plates. This enables better understanding about the uncer-
tainty related to the manufacturing process and how pro-
cess parameters should be selected to minimize the yield
loss caused by uncertainty.

3 Data set and pre-processing

The data were collected from steel plate production line
at SSAB Europe, Raahe plate mill, Finland. The mea-
surements were done using a thickness measurement sys-
tem from IMS Systems Inc. This measurement system
contains three radiation sources and radiation detectors.
When a steel plate moves through the production line, the
amount of detected radiation can be used to measure not
only the thickness of the plate but also its width. In this
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(a) Convex side (b) Convex side

(c) Concave side (d) Concave side

(e) Side without any particular form (f) Side without any particular form

Figure 2. The data were classified into three classes: convex, concave, and other. This figure shows examples of members of
different classes.

study these width measurements are considered as a time
series that describes the shape of a steel plate side edge.
The distance between two adjacent measurements is ap-
proximately 50 mm, so for an average plate of 20 m, each
side can be described as a time series containing 400 mea-
surements.

The data were collected from 399 plates, and therefore,
from 798 sides. The length of the plates varied from 4.0
meters to 27.5 meters and width from 1.3 meters to 3.3
meters. Based on this data, the aim of this study was to
build models to detect the direction of curvature and the
amount of curvature of a curve describing the side of a
steel plate. However, the data set did not include labels
or correct values about the amount of curvature. There-
fore, in order to build a model to recognize the shape of a
steel plate side edge, it was necessary to label the data set
by hand. When the data was visualized to label it, it was
noted that there are many cases where it is difficult to say
whether the curve describing the side is convex or concave
because plates can be over 20 meters long but still width
within the plate only differs a couple of millimeters. In
addition, sides are not regular or symmetric, and they can
contain features from both convex and concave shapes. It
was also noted that all edges are not convex or concave,
instead, due to uncertainty and errors in the manufactur-
ing process sides can have other shapes as well. Even-
tually, the data were labeled into three classes: ’convex’,
’concave’, and ’other’. There were 160 convex sides, 556

concave sides and 82 instances classified as ’Other’. Ex-
amples of instances from each class are shown in Figure2.
Note that because the data is hand-labeled it can contain
errors as in some cases it was difficult to conclude what is
the correct class label for the side.

Before the data were analyzed, pre-processing was
done. In the pre-processing stage, the measurements de-
scribing the head and tail of the side edge were removed
by removing 10 percent of the measurements from both
ends. This was done as typically the head and tail of the
side are rounded, and therefore, they are not indicative
of the shape of the rest of the side. In addition, when
the width of the steel plate is measured, the plate is not
necessary positioned fully straight at the manufacturing
line. This skewness caused by biased positioning was re-
moved from the measurements in the pre-processing stage
by straightening the time series describing the side of a
steel plate based on the line described by the first and last
measurement point of the side.

4 Defining the curvature of a steel
plate

Recognition of the direction and the amount of curvature
of a curve describing the steel plate side edge is basi-
cally a regression problem as the goal can be considered
as one continuous value where the sign of the value tells
the direction of curvature and absolute value describes the
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amount of curvature. However, it is very difficult to visu-
ally estimate the amount of curvature and give an accurate
continuous value of describing it. Therefore, the amount
of curvature of time seriesT describing a side edge of a
steel plate was estimated using the following equation:

curvatureestim(T) =
abs(max(T)−min(T))

‖T‖
. (1)

This means that curvature estimation was done by calcu-
lating the amplitude of a time seriesT describing the steel
plate side edge, and dividing this with the length of a steel
plate. When this information was combined with class la-
bels; defining whether the plate is convex, or concave; we
build a response vector where the sign of a response tells
the direction of the curvature, and the absolute value tells
the amount of curvature. By applying regression analy-
sis to this response vector and features extracted from the
measurements it was possible to built a linear regression
model to be used to define the shape of a plate, and to
define the curvature of a plate.

In addition to convex and concave sides, there are also
sides that are neither of these two options. Therefore,
these need to be recognized from the data set before re-
gression model can be trained. In this study, this was done
using a binary classifier that classifies instances into two
classes: the side is either curve (convex or concave) or not.

As a conclusion, the recognition of the direction and the
amount of curvature of the side of a steel plate is divided
into two tasks: (1) Classify instances into two classes: side
is either an curve or not, and (2) Using data from convex
and concave side’s, train a regression model using estima-
tion of the amount and direction of curvature as response.

In both tasks, the models were trained using the same
feature set consisting of the following features: polyno-
mials of degree 1, 2, and 4 were fitted to the time series
describing the side and the obtained coefficients as well as
the error of the fitting were used as features. Fitting was
done not only to the whole time series but also different
sizes of parts of it, for instance to the first and the sec-
ond half separately. In addition, a straight line was fitted
through the first and the last measurement of the time se-
ries and the ratio describing the number of points below
and above this line was used as a feature. This was also
done to different parts of the time series so that altogether
23 features of this type were extracted. Other features in-
cluded minimum, maximum, and different percentiles of
the values. The complete feature vector included 66 fea-
tures.

5 Experiment
In this section, the method presented above is applied to
the data set introduced in Section3. As it was stated in
the previous section, the recognition of the direction and
the amount of curvature of a steel plate side edge is di-
vided into two tasks: at first it was recognized whether the
side was convex/concave or not. In the second phase, con-
vex and concave sides were further studied to estimate the

Table 1. Recognizing non-curve side edges.

Classifier Accuracy Precision Recall
QDA 94.6% 87.0% 82.5%
LDA 91.5% 77.1% 78.9%
C4.5 93.4% 86.2% 73.4%
kNN, k=1 93.9% 87.1% 76.0%
kNN, k=3 94.9% 91.5% 77.9%
kNN, k=5 95.0% 93.2% 78.8%

Table 2. Confusion matrix showing the classification results us-
ing QDA.

Curve Other
Curve 699 17
Other 26 56

amount of curvature as well as the direction of the curva-
ture.

In the first part, the classification was done using four
different methods to compare their performance. The clas-
sifiers used werekNN, LDA, QDA and C4.5. The idea of
thek nearest neighbor classifier is to classify a data point
into the class, to which most of itsk nearest neighbors be-
long. In this study,k values 1, 3 and 5 were employed.
Linear discriminant analysis (LDA) is used to find a linear
combination of features that separate the classes best. The
resulting combination may be employed as a linear clas-
sifier. QDA (quadratic discriminant analysis) is a similar
method, but it uses quadratic surfaces to separate classes.
C4.5 is a decision tree model that based on the difference
in entropy partitions the space spanned by the input vari-
ables to maximize the score of class purity. This is done
so that the majority of points in each cell of the partition
belong to one cell (Hand et al., 2001).

In order to avoid over-fitting in the classification pro-
cess, the data set were randomly divided into five parts and
cross-validation was performed so that one part at the time
was used for testing and the rest for training. The most de-
scriptive features from the feature set were selected using
a sequential forward selection (SFS) method.

The results are shown in Table1. In the table,accuracy
is defined astrue positives / all, precisionwas calculated
astrue positives / (true positives + false positives)calcu-
lated for both classes and averaged , andrecall stands for
true positives / (true positives + false negatives)calculated
for both classes and averaged. In addition, the results us-
ing QDA are shown in more detail in Table2.

In the second part, a linear regression model was trained
using the same feature set to estimate the direction and
amount of curvature of the plate’s side. Curvature val-
ues calculated using Equation1 combined with informa-
tion about the direction of the curvature were used as a
response vector to this regression model. Table3 demon-
strates the accuracy of recognizing the direction of curve
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Figure 3. Using linear regression model the direction and curvature of a side can be estimated accurately.

Table 3. Three methods to detect the direction of the curvature
of a side are compared.

Method Accuracy
Regression 99.6%
Intuitive 96.5%
Classification, QDA 99.6%

curvature using the trained model. The results of regres-
sion model were compared to two alternative methods:
intuitive methodand classificationusing QDA. Intuitive
method is simple, a line is drawn between the first and last
observation of the time series, and the direction of curva-
ture is decided based on which side of the line has more
observations. In the case of QDA, 5-fold cross-validation
was applied and side edges were classified as curve or not.

Finally, Figure3 shows how well the estimation given
by the regression model is comparable to the response cal-
culated using Equation1.

6 Discussion
In our approach, the recognition of the shape of the side of
the mother steel plate was divided into two phases: at first
we recognized whether the side was convex/concave or
not. In the second phase, convex and concave sides were
further studied to estimate the amount of curvature as well
as the direction of the curvature. The recognition rates
in Table1 show that sides without a curve shape can be
detected with high accuracy. All the tested classifiers per-
formed well, only LDA had a bit lower recognition rates,
although it could still recognize shapes with more that 90
percent accuracy. While the classification accuracy was

very high, the precision and recall were not. This is be-
cause class ’Other’ had a lot lower recognition accuracy
than class ’Curve’. This is partly due to the nature of the
data set. It can be seen from Table2 that the data set is
very unbalanced. There are a lot more convex/concave
sides than ones without any particular form. From man-
ufacturing perspective this is of course good but from a
model training perspective it is problematic because there
is not the same amount of data from both classes.

Table3 shows how well the direction of curvature can
be detected. It can be seen that using linear regression
model it can be detected almost perfectly, in fact in 714
cases out of 716 the curve direction was recognized cor-
rectly. Therefore, the method is very reliable. Detection
of the direction of the curvature using the QDA classifier
performs equally well, while the intuitive method gives a
somewhat lower recognition accuracy. However, the ad-
vantage of the regression model compared to the classifi-
cation is that it does not only detect the direction of cur-
vature but it also estimates the amount of curvature, see
Figure3. However, the accuracy of the estimation of the
amount of the curvature is more difficult to validate as
the response used to train the regression model was also
an estimation. In addition, the estimation calculated us-
ing Equation1 is very vulnerable to anomalies of the data
which can be caused for instance by errors in the measure-
ments. In this sense, the estimation given by the regression
model can be considered more stable and reliable as it is
not based on only the measurements data of one side of a
steel plate but on the whole data set including 798 sides.
Therefore, anomalies of single sides do not have that much
effect on the estimation given by the regression model.

Figure4 shows two sides where the estimation given by
the regression model differed the most compare to estima-
tion obtained using Equation1. In Figure4(a)the amount
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(a) Curvature of this side based on regression model is 1.1mm, and based on Equation1, 9.1mm.
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(b) Curvature of this side based on regression model is 17.4mm, and based on Equation1, 26.7mm.

Figure 4. Sides where curvature estimations differ the most.

of curvature based on regression model is 1.1mm, mean-
ing that thinnest point of the steel plate side edge is 1.1 mm
narrower that the widest point. On the other hand, accord-
ing to Equation1 this difference is 9.1mm. In this case,
Equation1 has over-estimated the curvature because in
this case there is a lot of variation in measurements mak-
ing estimation based on amplitude inaccurate. Therefore,
the estimation given by regression model, which suggests
that side is almost straight, can be considered more reli-
able in this case. Also in Figure4(b) the estimation given
by regression model can be considered more reliable that
the estimation obtained using Equation1 which has over-
estimated the curvature because of the drop at the end of
the end of the time series.

Our results show that using the presented method the
shape of the side edge of a mother steel plate can be de-
tected with high accuracy and the results can be presented
in a way that enables analyzing a steel plate in a glance and
enable long-term statistical monitoring. For example, our
method to detect sides without curve shape can be used

to monitor the manufacturing process and detect if there
are possible problems in the manufacturing process. Fig-
ure5 shows the classified data set and sides without curve
shape are drawn with higher spikes. Now based on this
visualization it can be seen that there are a intervals con-
taining a lot of sides without curve shape, one for instance
aroundx-axis value 40. These types of intervals can be a
consequence of some unexpected change in the process,
and monitoring enables a quick response to it. In addi-
tion, using the estimations obtained using the regression
model, in Figure6 the deviation of convex and concave
sides is visualized. Negative value means that side edge
is convex, bigger negative value stands for more convex
side edge. Similarly, positive value means that side edge
is concave and zero equals to straight side edge. Figure6
shows that majority of the sides are concave but there is
still quite many convex plates. Based on these statistics it
is possible to define new parameter values for the rolling
process to minimize the number of convex plates and to
minimize the cutting wastage.
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Figure 5. Many of the sides without curve form are centered
at clusters. Short bars describe sides with curve form and long
without.

Figure 6. Curvature estimation can be used to optimize rolling
parameters. In this case, rolling parameters should be tuned to
reduce the number of convex sides.

7 Conclusions

In this study we developed a method to define the steel
plate side edge shape based on data collected at the manu-
facturing line. The method consists of two phases: at first
we recognize whether the side is a curve or not, and them
we estimate the amount of curve curvature as well as the
direction of the curvature. According to our experiments,
classification methods can accurately be used in the first
phase to detect if the side is a curve. In addition, our ex-
periments show that linear regression model can be used
to accurately recognize not only the direction of the curve
curvature but also to estimate the amount of curvature.
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