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Abstract

Heat transfer and pressure loss characteristics of a fin

and tube heat exchanger are numerically investigated

based on parametric fin geometry. The cross-flow type

heat exchanger with circular tubes and rectangular fin

profile is selected as a reference design. The fin

geometry is varied using a design aspect ratio as a

variable parameter in a range of 0.1-1.0 to predict the

impact on overall performance of the heat exchanger. In

this paper, geometric profiles with a constant thickness

of fin base are studied. Three-dimensional, steady-state

CFD model is developed using commercially available

Multiphysics software COMSOL v5.2. The numerical

results are obtained for Reynolds number in a range

from 5000 to 13000 and verified with the experimentally

developed correlations. Dimensionless performance

parameters such as Nusselt number, Euler number,

efficiency index, and area-goodness factor are

determined. The best performed geometric fin profile

based on the higher heat transfer and lower pressure loss

is predicted. The study provides insights into the impact

of fin geometry on the heat transfer performance that

help escalate the understanding of heat exchanger

designing and manufacturing at a minimum cost.

Keywords: fin and tube heat exchanger, numerical

modelling, fin profile, conjugate heat transfer, turbulent

flow, pressure loss

1 Introduction

Fins are the extended surfaces used in heat exchangers

to enhance the heat transfer rate between heat transfer

surfaces and the flowing fluid (Cengel et al., 2012). The

increment in the heat transfer performance through fin

surfaces is widely employed in many industrial

applications. Application of waste heat recovery

systems has received tremendous attention during the

last decade due to the resulting saving of primary fuel,

increased energy efficiency and lower greenhouse gas

emissions. Heat exchangers are one of the important

components of these waste heat recovery systems.

During past few years, H-type finned and tube heat

exchangers have been studied both experimentally (Yu

et al., 2010; Chen and Lai, 2012; Chen et al., 2014) and

numerically (Tong, 2007; Zhang et al., 2010; Jin et al., 

2013). The studies mainly focused on examining the 

heat transfer and flow resistance characteristics for a 

reference design of the H-type finned tube bundles. In 

addition, combined heat and mass transfer analysis on 

H-type design with three types of finned tube namely-

dimple finned tube, longitudinal vortex generators 

(LVGs) finned tube, and finned tube with compound 

dimples and LVGs together was conducted (Wang and 

Tang, 2014; Zhao et al.,2014).  

The implementation of fins on the primary heat surface 

enhances the complexity, volume, and weight which 

make the design and construction of fin surfaces of vital 

importance in heat exchanger applications. Very limited 

research on different fin types or geometry profiles is 

available due to restricted experimental conditions and 

numerical challenges. This limitation overshadows the 

current knowledge of design factors that influence the 

heat transfer and pressure loss characteristics. Hence, it 

becomes imperative to study the different fin geometric 

profiles to determine the optimal fin design for a given 

H-type fin and tube heat exchanger application.  

In this paper, we used Computational Fluid Dynamics 

(CFD) to obtain the solution of governing equations of 

physical phenomena in a cross-flow type fin and tube 

heat exchanger. The parametric study of fin geometry is 

conducted using air as a working fluid considering the 

‘rectangular’ fin as reference geometric profile. Heat 

transfer and pressure loss characteristics in a fin and 

tube heat exchanger with different geometric fin profiles 

are predicted and compared with the reference fin 

profile geometry. 

2 Numerical model development 

2.1 Heat exchanger design 

The heat exchanger used in the present study is fin 

and tube type. The design entails circular tubes and 

rectangular fins which are attached to the set of two 

tubes with a fixed gap in between. This particular design 

is also called ‘H-type’ finned tube heat exchanger due to 

the typical arrangement of fins on tubes resembling the 

letter ‘H’. An orderly arrangement  of  the  single  units  
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Figure 1. Double fin and tube (or H-type) heat exchanger 

configuration. 

 

results in the complete heat exchanger configuration 

which can be scaled for desired applications based on 

the heat transfer rate and allowable pressure loss. Figure 

1 shows the pictorial view of fin and tube heat exchanger 

configuration used in the present study. The design 

typically used in waste heat recovery applications such 

as marine boilers, where hot exhaust gas flows over the 

finned tube bundle, and cold water flows inside the tubes 

as can be seen in Figure 1. The heat transfers from hot 

exhaust gases, by convection through fins and 

conduction within fin and tube thickness, to the water 

inside the tubes for steam generation for other 

application purposes 

2.2 Computational geometry 

The geometry of the fin and tube heat exchanger 

simulated in the present study is shown in Figure 2. In 

order to save the computational effort, the geometry to 

be studied is reduced to one-half of the single unit. The 

computational geometry is divided into three domains- 

fin, tube and gas; and boundaries- inlet, outlet, and 

symmetry. The geometric dimensions of the heat 

exchanger design are given in Table 1. 

 

Tube domain

Fin domain

Gas domain

Inlet

Outlet

Symmetry

Symmetry

Symmetry

 

Figure 2. Computational geometry used in the present 

investigation. 

Table 1. Design parameters and operating conditions for 

a single unit of the exchanger. 

Parameter Symbol Value Unit 

Length of the fin Lf 0.145 m 

Width of the fin Wf 0.070 m 

Thickness of the reference 

fin base 

δfb,r 0.002 m 

Thickness of the reference 

fin tip 

δft,r 0.002 m 

Width of the gap between 

fins 

δa 0.007 m 

Inner diameter of the tube Di 0.030 m 

Outer diameter of the tube Do 0.038 m 

Tube pitch pt 0.077 m 

Length of the gas domain Lg 0.155 m 

Width of the gas domain Wg 0.080 m 

Fin pitch pf 0.015 m 

Temperature at gas inlet Tin 573.15 K 

Pressure at gas outlet  pout 0.0 Pa 

Temperature of inner tube 

wall Tw 

453.15 K 

 

2.3 Formulation of the fin geometric profile 

In the present work, the geometry of the fin is varied 

using aspect ratio (α) as a profile parameter which is 

defined as the ratio of thickness of fin tip (δft) to the 

thickness of fin base (δfb) and can be expressed as- 

   

,

ft

fb r





     (1) 

 

The rectangular geometry of the fin is considered as 

a reference profile to simplify the analysis and 

geometric complexity, and the thickness of fin base is 

kept constant as of reference rectangular fin (δfb,r) while 

the thickness of the fin tip is subjected to a variation 

(Figure 3). The aspect ratio is varied in a range α=1.0- 

0.1 transforming the reference rectangular fin profile (at 

α=1.0) into the trapezoidal profile (at  α= 0.7, 0.5, 0.3) 

which eventually resembles a triangular profile (at 

α=0.1). With the change in aspect ratio, total heat 

transfer area, the thermal contact area between the fin 

and tubes and, the weight of the heat exchanger unit 

(computational geometry) changes as shown in Figure 

4. 
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Figure 3. Computational geometry used in the present 

investigation. 

 

  

Figure 4. Computational geometry used in the present 

investigation. 

 

2.4 Governing equations 

 3D CFD model is developed using commercially 

available Multiphysics software COMSOL v5.2. 

Following assumptions are made in the present model- 

 Steady state flow and heat transfer 

 Incompressible flow 

 Negligible thermal contact resistance 

 Temperature dependent fluid property 

 Constant inner tube wall temperature  

 No periodic boundary condition (i.e. model is valid 

for the first unit of the heat exchanger as shown in 

Figure1). 

The mass and momentum balance for flow in the gas 

domain and energy balance in terms of heat transfer are 

given as- 

                     0 u                     (2)

( ) [ ( ( ) )]Tp         u u I u u F          (3) 

                   
pC T   u q Q                     (4) 

where, k T  q       

Based on the mass flow rate and the heat exchanger 

configuration, the Shear Stress Transport (SST) model 

Table 2. Design parameters and operating conditions for 

a single unit of the exchanger. 

Initial Condition 

Gas domain 2
3/2
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Outlet , 0 ;  0 ; 0out ep p k          n q n n  
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is adopted. The governing equations of two-equation 

SST model are formulated in terms of k and ω as 

(Mentor, 1994)- 

(( ) )o k T

k
k P k k

t
      


      


u        (5) 

2
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v
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t

f k





 
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







       



  

u
    (6) 

The default model parameters used to solve the 

governing equations are defined in the Appendix. Table 

2 lists initial conditions for a steady state simulation 

(Mentor et al., 2003) and boundary conditions used to 

solve the computational model and achieving 

preliminary results numerically.  

 

3 Model validation 

3.1 Experimental validation 

The validation of numerical results is performed using 

the experimentally developed correlations by Chen et al. 

(2014) and a comparison is shown in Figure 5.  

 

Figure 5. Computational geometry used in the present 

investigation. 
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Correlations for the Nusselt number and Euler number 

given by (7) and (8) are valid for Reynolds number 

range of 5000-18000 with a relative error of 2.79% and 

3.70%, respectively. The average percent deviation of 

numerically predicted Nusselt and Euler numbers from 

the correlation values is calculated to be 5.61% and 

5.72%, respectively. The deviation accounts for the 

assumptions in the present study or and the experimental 

errors in developing the correlations. These deviations 

are in acceptable range and hence, the results are 

assumed accurate enough to predict the physical 

behavior. 
0.212 0.294 0.155

0.7560.053
f fo

f f f

L WD
Nu Re

p p p

 

     
      

     
     

   (7) 

   

1.32

0.5719.14
f

o

L
Eu Re

D

  
  

    (8) 

3.2 Mesh independence test 

Mesh independence test is made on the reference fin 

using temperature difference across the gas domain as 

an objective property. Five different meshes with 

375860, 657449, 997272, 1716992 and 2130500 

elements are used in the simulation. The test result 

suggests the mesh with 1716992 elements as a good 

choice in regards with the accuracy and computational 

time.     

4 Results and discussion 

The results predicted from the present study are 

discussed in this section. Table 3 expresses the 

dimensionless parameters used to evaluate the 

performance of the heat exchanger design. The Nusselt 

number and Euler number are used to assess the heat 

transfer and pressure loss characteristics of the heat 

exchanger with different fin geometric profile. As 

observed in Figure 6, the Nusselt number increases with 

the Reynolds number which shows thermal performance 

increases as the flow velocity increases. Moreover, the 

Nusselt number is higher for α=1.0, i.e., for rectangular 

Table 3. Performance parameters. 

Performance parameter Expression 

Nusselt number, Nu ohD

k  

Euler number, Eu 2

max

1

2
g

p

u



 

Efficiency index, η 
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 
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21
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u L
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 

 
 
 
   

 

Figure 6. Variation of the Nusselt number with respect to 

Reynolds number. 

fin profile and then decreases as α approaches to 0.1 

where the fin geometric profile becomes nearly 

triangular. This effect results from the decreasing flow 

velocity as α varies from 1.0 to 0.1, which further 

decreases the convective heat transfer. Variation in 

Euler number with Reynolds number for different fin 

geometric profiles can be seen from Figure 7. Euler 

number decreases as α varies from 1.0 to 0.1, which is a 

clear demonstration of reduced pressure loss on a 

transition of rectangular fin profile (α=1.0) to triangular 

profile (α=0.1). At Re = 13000, Euler number for α=0.1 

decreases by 7.23% than α=1.0.  

In order to evaluate the overall performance of the 

heat exchanger in terms of both, heat transfer and 

pressure loss, efficiency index (Table III) is calculated. 

Figure 8 shows a variation in efficiency index with 

respect to Reynolds number for different fin geometric 

profiles. The efficiency index increases with the 

Reynolds number and so thus the overall performance 

of the heat exchanger design. As observed, efficiency 

index increases as α goes down from 1.0 to 0.1. which 

dictates that the fin with tapered geometric profile 

performs better in comparison to the conventional 

rectangular fin geometric profile. 

             

Figure 7. Variation of the Euler number with respect to 

Reynolds number. 
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Figure 8. Variation of the efficiency number with respect 

to Reynolds number. 

This trend of efficiency index explains that as α 

varies from 1.0 to 0.1, the pressure reduction is 

dominant than that of increment in thermal 

performance. In addition, the heat exchanger with α=0.1 

and α=0.3 shows nearly equivalent performance. For 

instance, at Re=13000 efficiency index at α=0.1 is only 

0.23 % higher than α=0.3. Heat transfer through the fin 

can be predicted from the temperature gradients on the 

fin surface. 

Figure 9 shows temperature gradients on the fin 

surface of different geometric profiles. The dissipation 

of the heat from hot gas to the fin is evident from the 

higher temperatures away from fin and tube interface 

where the heat is conducted from the fin to the tube wall 

resulting in lower temperatures in those regions. 

Relatively, higher temperature gradients on the fin 

surface with α=0.1 are evident of lower heat transfer rate 

due to the lower temperature difference between the gas 

and the fin which further reduces the heat transfer 

performance. 

To determine the impact of different fin profiles on 

the overall performance, a dimensionless parameter 

called ‘area-goodness factor’ is used. It is defined as a 

ratio of Colburn j factor to the friction factor, f of the 

heat exchanger design with respect to the reference fin 

geometry (Table III). Figure 10 shows the comparative 

performance of the heat exchanger with different fin 

geometric profiles at Reynolds number range 5000-

13000. It can be observed that fin at α=0.1 (i.e., nearly 

triangular geometric profile) has the highest 

performance factor in comparison to the other fin 

profiles under similar operating conditions.  

In many industrial applications of fin and tube heat 

exchangers such as waste heat recovery, aerospace, air-

conditioning, automobile radiator, marine vessels, the 

available volume space and heat exchanger unit weight 

is a primary design consideration. Therefore, to 

investigate the most suitable geometric fin profile, the 

reduction in the weight of the heat exchanger unit as the 

fin geometric profile varies from α=1.0 to α=0.1 is 

determined and is shown in Figure 11. As α reduces 

from 1.0 the weight of the heat exchanger unit 

(considered one-half in the present study, see Figure 2) 

reduces and accounts for approximately 28 % reduction 

when α=0.1. Based on the results and discussion, it can 

be observed that fin geometric profile at α=0.1 when fin 

has nearly triangular geometric profile shows better 

performance with less weight than the reference 

rectangular fin geometry at α=1.0.   
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Figure 9. Temperature gradients on the fin surface of different geometric profiles. 
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Figure 10. Performance comparison of different geometric 

fin profile. 

 

          

Figure 11. Comparison of the change in weight of heat

exchanger unit with different geometric fin profile.

5 Conclusions

In the present study, the impact of different fin

geometric profiles on the heat transfer performance and

pressure loss in a fin and tube heat exchanger design are

analyzed.  The numerical study concludes that the fin

with triangular at α=0.1 profile can enhance the heat

transfer with reduced pressure loss in comparison to the

conventional rectangular fin profile, α=1.0.

Furthermore, the fin with α=0.1 reduces the heat

exchanger weight up to 28 % which is always desirable

in the industrial applications of fin and tube heat

exchangers. The work presented in this paper

encourages the further investigation of different

possible fin geometric profiles to optimize the material

and manufacturing cost which are the main controlling

factors in designing a fin and tube heat exchangers at the

industrial scale.
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Nomenclature 

Symbols 
D  diameter of the tube, m 
Eu Euler number  
F body force vector, N/m3  
h Convective heat transfer coefficient, W/m2.K  
K thermal conductivity, W/m.K 
k turbulent kinetic energy, m2/s2 
L length, m 
Nu Nusselt Number 
p pressure, Pa 
 ∆p pressure difference across the gas domain, Pa 
Pr Prandtl number 
Q heat flux vector, W/m2 
Re Reynolds number 
T  temperature, K 
Q  heat source or sink, W/m3  
u  flow velocity, m/s 
u  average velocity vector, m/s 
ω Specific dissipation rate, 1/s 
ρ  density, kg/m3  
μ  dynamic viscosity of the gas, Pa.s  

Subscripts 
g  gas or gas domain 
l liquid 
f  fin 
w  inner tube wall 
i  inner tube 
o outer tube 
max maximum 
r reference fin geometric profile 
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The other model constants are given in terms of interpolation 

functions as, 
4

1 1 1 2 1 1(1 )   for = , , ,  and  tanh( )v v k vf f f           
  

2
1 2 2

4500
min max , ,

o k

kk

l l CD l



   




  

  
    

   

  (iv)

  

where, lw is the distance to the closest wall.  
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The other default model parameter values are,   
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The Reynolds number is calculated as:                 (viii) 
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The gas-side convective heat transfer coefficient is determined by 

overall heat transfer coefficient as: 
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On further simplification,  
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   (x) 

Since the heat transfer coefficient inside the tube is high (~104 

W/m2.K), the second term in Eq. (x) is omitted. The above 

equation can be further simplified without losing accuracy as the 

tubes being analyzed are of small thickness (~10-3 m) and higher 

thermal conductivity (~50 W/m.K) which makes the third term 

very small and hence negligible. This results in a much more 

straightforward expression, 
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Overall heat transfer coefficient can be determined as: 
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