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Abstract
FRB adopted ”quantitative monetary easing” three times
as QE1 (2008m11,2010m06), QE2 (2010m11,2011m06)
and QE3 (2012m09,2014m12). In this paper, we showed
that ”Reserve at the FRB“ is effective to the economy
through a transmission path of a stock market in QE1, ef-
fective through housing price channel in QE2 and QE3,
and effective through an exchange rate channel in QE3,
where impulse responses in VAR model are calculated
with ”reserve, stock prices, exchange rate, industrial pro-
duction, and cpi_core (or housing price)“ in monthly data
of USA.

Furthermore, we investigated behaviors of M2 money
in QEs periods. Decomposing M2 into transaction money
demand and precautionary one, we estimated precaution-
ary money demand as a function of industrial production,
business condition denoted by napm and reserve at the
FRB. We showed that increasing ”Reserve at the FRB“
is comparatively effective in QE1 rather than in QE2 and
QE3 through the behavior of napm.
Keywords; QE1, QE2, QE3, nontraditional monetary
policies

1 Introduction
The subprime problem in 2007 and Lehman crisis in 2008
caused serious depressions in the world economy. Many
central banks set interest rates around zero, and carried out
”nontraditional monetary policies” in large scales. Gener-
ally speaking, operation of short term interest rates based
on for example Taylor rule is called ”traditional monetary
policy”, while in financial crisis of these days a traditional
monetary policy has no room to operate around zero in-
terest rates, and hence, many central banks were forced
to adopt nontraditional monetary policies. There are three
kinds of nontraditional monetary easing in USA.

Federal Reserve Board (FRB) decreased FF rate from
2 % at Lehman crisis (2008m09) to 0-0.25 % (2008m12).
Furthermore, additional easing policies were done by op-
erations of buying long term government bond, Resi-
dential Mortgage-Backed Securities (RMBS) and agency
debt. FRB called these policies as ”Credit Easing“ in the
interval (2008m11,2010m06). We denote these monetary
easing in this period as QE1. FRB carried out QE2 during
(2010m11,2011m06), where long term government bonds
of 600 billion dollars were purchased. QE3 was operated

during (2012m09,2014m10), where FOMC decided on
2012m12 to buy MBS of 40 billion dollars and long term
government bonds of 45 billion dollars per month. How-
ever, from 2014m01, FRB gradually decreased buying op-
erations every month and stopped QE3 on 2014m10.

(Bernanke, 2009) said that the essence of QE1 is ”credit
easing“, that is, reducing the cost of private brrowing by
direct purchases of privately issued debt instead of gov-
ernment debt. (Gagnon et al., 2011) reported that large-
scale asset purchases in QE1 have been successful in
doing lower longer term private borrowing rates, which
should stimulate economic activity. (Fratzscher et al.,
2013) showed highly effectiveness of QE1 compared with
QE2 and analysed the global spillovers of the FRB’s QE.
International spillover effects of US QE were investigated
by (Bhattarai et al., 2015). (Wen, 2014) studied the likely
impact of QE and its exit strategy with three aspects; (i)the
timing of the exit, (ii)the pace of the exit and (iii)the pri-
vate sector’s expectations of when and how the FRB will
exit. (Engen and Reifschneider, 2015) showed that by the
unconventional monetary policies in USA the peak unem-
ployment effect does not occur until early 2015, while the
peak inflation effect is not anticipated until early 2016.

(Hall et al., 2012) analyzed European economy includ-
ing financial crises 2007 and 2008, focusing on the sta-
bility of M3 money demand function through a general-
ized cointegration concept ”TVC“. (Fawley and Neely,
2013) described the circumstances of and motivations for
the quantitative easing programs of the FRB, Bank of Eng-
land, European Central Bank, and Bank of Japan during
the recent financial crisis and recovery.

Efficiency of QE in Japan during (2001,2006) was
shown by (Honda et al., 2007) through transmission paths
of both stock market and exchange rate. They used SVAR
model. (Sawada, 2014) applied Honda’s method to USA
case and showed that base money operated at QEs are ef-
ficient to the economic activity.

First, in this paper, following (Honda et al., 2007) and
(Sawada, 2014), we construct VAR models with 5 vari-
ables (reserves, stock prices, exchange rate, industrial
production, cpi) in QE1, QE2 and QE3, and investigate
the efficiency from ”reserves“ to ”industrial productions“
through transmission paths of stock market, exchange rate
and/or housing price in each of QEs.

Secondly, focusing our attention on money demand
function of ”M2“, we decompose ”M2“ into precautionary
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Figure 1. f ed f unds(t) and ad jressl(t), ind pro(t) and m2sl(t), sp500(t), twexmmth(t), cpil f esl(t) and cpihossl(t), and u(t) in
(1975m10, 2016m03)

and transaction money demands and estimate precaution-
ary one as a function of economic activity, reserves and
business condition during (1975m10,2016m03). Thus, we
can investigate behavior of M2 money in QEs. Since
(Morita and Miyagawa, 2016) estimated precautionary
money demand and analyzed QE monetary policy in Japan
with quarterly data, we apply this method to the analysis
of US data.

2 Data Properties
Monthly data through (1975m10, 2016m03) are obtained
from FRED. Variables and symbolic notations are given
in Table 1. See Figure1 for behavior of each variable.

Two kinds of unit root tests are carried out; DF-GLS
(ERS) test with unit root as the null hypothesis and KPSS
test with stationarity as the null hypothesis. The results

Table 1. List of variables

ad jressl(t) = St.Louis adjusted reserves
f ed f unds(t) = federal funds rate
m2sl(t) = M2 money stock
ind pro(t) = industrial production index
cpil f esl(t) = consumer price index, less food & energy
cpihossl(t) = consumer price index, housing
sp500(t) = S&P500 index
twexmmth(t) = trade weighted exchange index
napm(t) = ISM manufacturing, PMI composite index
u(t) = napm(t)−50
u−(t) = min{u(t),0} u+(t) = max{u(t),0}

are shown in Table 2. Every variable except u(t) is shown
to be nonstationary. Hereafter, we treat these variables in
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Table 2. Unit Root Test in (1975m10,2016m03)

var. ERS lag KPSS trend
ln(m2sl/p) 4.98 2 2.51∗ const.
ln(ind pro) 1.52 3 2.72∗ const.
ln(sp500/p) -2.02 1 0.29∗ trend.
ln(twexmmth) -1.32 1 1.47∗ const.
u −4.33∗ 2 0.01 const.
ln(ad jressl/p) 0.92 2 1.66∗ const.
ln(p) 0.24 9 2.61∗ const.
ln(cpihossl) 0.61 9 2.62∗ const.
∗ denotes 1% significance level and p = cpil f esl.

levels in order to avoid cointegration analysis.
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Figure 2. Impulse responses of the system with x = (x1,x2,x3,x4,x5)
‘, where in the figure we denote x1 = ln(ad jressl/p),

x2 = ln(sp500/p),x3 = ln(twexmmth),x4 = ln(ind pro),x5 = ln(p) in QE1=(2008m11,2011m06).

3 Macro Money Systems in QEs
Letting x = (ln(ad jressl) − ln(p), ln(sp500) − ln(p),
ln(twexmmth), ln(ind pro), ln(p))′, we consider VAR
model of the form with the lag order i given by AIC,

x(t) = A0 +A1x(t−1)+ · · ·+Aix(t− i)+ ε(t), . (1)

3.1 Behavior in QE1=(2008m11,2010m06)
Setting sampling interval as QE1, impulse responses of (1)
are depicted in Figure 2, where a solid line implies a cal-
culated impulse response and two dotted lines show 95 %
confidence intervals. For economy of space, we only show
responses of 5 variables corresponding to three kinds of
impulse shocks; ”reserves“, ”sp500“ and ”exchange rate
(twexmmth)“.
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Hereafter, if necessary, we abbreviate reserves and
twexmmth by rsrvs and rex respectively.

1st: rsrvs(↑) =⇒ rsrvs(↑) stock(· · · ↑)
rex(↓) ind pro(· · · ↑) p(↑)

2nd: stock(↑) =⇒ rsrvs(· · ·) stock(↑)
rex(· · ·) ind pro(↑) p(· · ·)

3rd: rex(↑) =⇒ rsrvs(· · ·) stock(· · ·)
rex(↑) ind pro(↑) p(↑)

where rex = twexmmth(↑) implies “high appreciation of
dollar”, and where (· · ·) and (· · · ↑) mean ”statistically not
significcant“ and ”at first not significant but after several
months significantly ↑“ respectively.

We can see that reserves(↑) → ind pro(↑) on the 1st
column, and that reserves(↑)→ stock(↑)→ ind pro(↑) on
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Figure 3. Impulse responses of the system with x = (x1,x2,x3,x4,x5)
‘, where in the figure we denote x1 = ln(ad jressl/p),

x2 = ln(sp500/p),x3 = ln(twexmmth),x4 = ln(ind pro),x5 = ln(p) in QE2+α = (2010m10,2012m08).

the 1st and 2nd columns. It should be noticed, however,
that reserves(↑) → rex(↓) 6→ ind pro(↑) on the 1st and
3rd columns. Therefore, we can conclde that there is a
transmission path in QE1 through a stock market, but not
through exchange rate.

3.2 Behavior in QE2+α=(2010m11,2012m08)
Since QE2 is too small to construct VAR model,
we extend the sampling interval QE2 to QE2 + α =
(2010m11,2011m06) + (2011m07,2012m08) just before
starting QE3.

Impulse responses of (1) are depicted in Figure 3, where
a solid line implies a calculated impulse response and two
dotted lines show 95 % confidence intervals.
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Responses of 5 variables are shown, corresponding to
three kinds of impulse shocks; ”reserves“, ”sp500“ and
”exchange rate (twexmmth)“.

1st: rsrvs(↑) =⇒ rsrvs(↑) stock(· · · ↓)
rex(↓) ind pro(· · · ↓) p(· · ·)

2nd: stock(↑) =⇒ rsrvs(· · ·) stock(↑)
rex(· · ·) ind pro(· · ·) p(↓)

3rd: rex(↑) =⇒ rsrvs(· · ·) stock(↑)
rex(↑) ind pro(· · ·) p(· · ·)

In this period of QE2, we cannot say any transmission
path from reserves(↑) to ind pro(↑).
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Figure 4. Impulse responses of the system with x = (x1,x2,x3,x4,x5)
‘, where in the figure we denote x1 = ln(ad jressl/p),

x2 = ln(sp500/p),x3 = ln(twexmmth),x4 = ln(ind pro),x5 = ln(p) in QE3=(2012m09,2014m10).

3.3 Behavior in QE3=(2012m09,2014m10)
Setting sampling interval as QE3, impulse responses of
(1) are depicted in Figure.4, where a solid line implies a
calculated impulse response and two dotted lines show 95
% confidence intervals. For economy of space, we only
show 5 variables responses corresponding to three kinds
of impulse shocks; ”reserves“, ”sp500“ and ”exchange
rate (twexmmth)“.

1st: rsrvs(↑) =⇒ rsrvs(↑) stock(↑)
rex(↓) ind pro(· · ·) p(· · ·)

2nd: stock(↑) =⇒ rsrvs(· · ·) stock(↑)
rex(· · ·) ind pro(↓) p(· · ·)

3rd: rex(↑) =⇒ rsrvs(· · ·) stock(· · ·)
rex(↑) ind pro(↓) p(↓)
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We can see that reserves(↑)→ rex(↓)→ ind pro(↑) on
the 1st and 3rd columns, while we can see that reserves(↑)
→ stock(↑) 6→ ind pro(↑) on the 1st and 2nd columns.

Therefore, we can conclude that there is a transmission
path in QE3 through exchange rate, but not through a stock
market.

4 Transmission Path of Housing Price
from Reserve to Economic Activity

In this section, we consider the influence of hous-
ing price to the economy. Defining, in (1), x =
(ln(ad jressl/p), ln(ind pro), ln(cpihossl))′ and estimat-
ing VAR model, we can obtain impulse responses cor-
responding to the sampling intervals QE1, QE2+α and
QE3. Remark that 5 variables VAR model with lncpil f esl
replaced by lncpihossl in the preceding section gives us a
similar result as in this section with 3 variables. For econ-
omy of space, we only show the results without figures of
impulse responses.

We can see that
(QE1) reserve(↑) 6→ cpihossl(↑),
(QE2+α) reserve(↑)→ cpihossl(↑)→ ind pro(↑),
(QE3) reserve(↑)→ cpihossl(↑)→ ind pro(↑).

So, we can conclude that there is a transmission path
through housing price in QE2 and QE3, not in QE1.

5 Decomposition of M2 into Transac-
tion and Precautionary Money De-
mands in (1975m10, 2016m03)

In this section, we statistically quantify how much money
contributed to the recovery of the economy when the FRB
increased reserves. We would decompose the money stock
denoted by m2sl(t) into the transaction money and the pre-
cautionary money demands.

5.1 Estimation of Precautionary Money De-
mand

Precautionary money demand will increase when the liq-
uidity concern among the private sector intensify in the de-
pression, while its demand will decrease when the concern
dispels in the boom. We use here the u(t) = napm(t)−50,
where napm(t) implies ”ISM manufacturing: PMI com-
posite index“ in order to qualify the unobservable variable,
which would affect the precautionary money demand.

Properties of precautionary money demand can be
listed as follows:
[Properties of prec. money demand]

• ind pro(↑) =⇒ prec. money demand(↑) as Keynes
said.

• prec. money demand(↑) for future anxiety when
economy is in depression.

• prec. money demand is affected by reserves in
QEMP.

[Assumption of prec. money demand]

prec. money demand(t)
= c1 ∗ ind pro(t)∗ cpil f esl(t)/1000

+ (c2 ∗un(t)+ c3 ∗up(t))∗
m2sl(t)

1000
+ c4 ∗ad jressl(t)∗dummyad jressl(t)

(2)

In the above assumption, the 2nd term on the RHS
means that the precautionary money demand is a func-
tion of napm, because people try to hold more money
when financial anxiety rises, and that the demand may
depend on the level of M2. The 3rd term represents
effect of the FRB’s monetary policies. We take into
consideration the policy change by adding the dummy
variable. The reserves began to be increased by FRB
from September 2008. We have set both of f f rate
and ad jressl as monetary policies, but f f rate was not
significant, and was deleted in (2). Dummy variable
denoted by dummyad jressl(t) in (2) takes value 1 for
t = (2008m09,2016m03) and takes value 0 otherwise.

[Log-likelihood function] The growth rate model of
ind pro(t) is taken into consideration, and the log-
likelihood function of ∆ ln(ind pro) should be max-
imized with respect to every parameter containing
prec. money demand, where in the following
equation ”prec. money demand(t)“ is abbreviated by
”prc. mny(t)“.

∆ ln(ind pro(t)) = d1 ∗∆ ln(ind pro(t−1))
+ d2 ∗∆ ln(ind pro(t−2))+d3 ∗∆ ln(ind pro(t−3))
+ d4 ∗∆ ln((m2sl(t−1)− prc.mny(t−1))/p(t−1))
+ d5 ∗∆ ln((m2sl(t−2)− prc.mny(t−2))/p(t−2))

(3)

Table 3 shows estimation results in (2) and (3) .

Table 3. Estimation results of (2) and (3) in
(1975m10,2016m03)

coefficients std.error z-statistics prob.
c1 143.46 140.57 1.021 0.3074
c2 -11.82 4.905 -2.410 0.0160
c3 -4.847 3.256 -1.489 0.1365
c4 1.003 0.345 2.907 0.0036
d1 0.118 0.048 2.450 0.0143
d2 0.176 0.0518 3.399 0.0007
d3 0.247 0.0389 6.355 0.0000
d4 0.0425 0.0290 1.468 0.1422
d5 0.0340 0.0255 1.335 0.1819
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Figure 5 shows the nominal money stock m2sl and
the trans. money demand. The difference “m2sl −
trans. money demand” measures the prec. money de-
mand. We find that the difference begins to expand rapidly
around 1995, 2000 and 2008.

Figure 6 depicts the comparison of trans. money de-
mand with prec. one in (2008m09, 2016m03) including
QE1,QE2 and QE3. In this figure during the QEMP pe-
riod, prec. money demand as well as trans. money de-
mand gradually increases except for the beginning of QE1.
In the zero interest rates period, there may exist the phe-
nomena of “Liquidity trap” such that easing money by the
central bank is only saved without consumption. However,
in our estimation, prec. money demand increases while
trans. money demand is also increasing. We may insist
that the “Liquidity trap” does not exist in QEMP period.
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Figure 6. Estimation results of trans. money demand and
prec. money demand in (2008m09, 2016m03)

5.2 The Role of Business Condition u(t) =
napm− 50 in Transmission Mechanism of
QEMP during QE1,QE2+α and QE3

We estimate VAR model of y = (ln(ad jl f esl(t)), u(t),
ln(trns. mny dmnd(t)), ln(prc. mny dmnd(t))‘ with x re-
placed by y in Eq.(1) . We focus on the role of u(t) in
the transmission mechanism of easing monetary policy.
Figures 7, 8 and 9 show impulse responses to a one stan-
dard deviation shock to four variables in periods of QE1,
QE2+α and EQ3 respectively.

In QE1, we can see the following behavior:

1st: ln(ad jressl)(↑) =⇒ ad jressl(↑)
u(· · · ↑) trns.mny(↓↑)
prc.mny(↑)

2nd: u(↑) =⇒ ln(ad jressl)(· · ·)
u(↑) ln(trns.mny)(↑)
ln(prc.mny)(↓)

3rd: ln(trns.mny)(↑) =⇒ ln(ad jressl)(↓)
u(↑) ln(trns.mny)(↑)
ln(prc.mny)(↓)

4th: ln(prc.mny)(↑) =⇒ ad jressl(↑)
u(· · · ↑) trns.mny(· · · ↑)
prc.mny(↑)

Summarizing the behavior in QE1, we can say that
a quantitative monetary easing has a positive effect on
USA’s economy. On the 1st column of Figure 7, we can
see first reserve(↑)→ prec.demand(↑). At the same time,
trans.demand changes from downward to upward during
several months: trans.demand(↓ · · · ↑). u rises along
with trans.demand on the 1st column, while on the 2nd
column, u(↑)→ trans.demand(↑).

In QE2 + α , we can’t see the path from reserve to
trans. demand in Figure 8.

In QE3, on the 1st and 2nd columns of Figure 9, we can
see
reserve(↑) 6→ trans.demand(↑),
reserve(↑)→ u(↑),
u(↑)→ trans.demand(↑).
Thus, we can say that efficency of QEs is, in order, given
by QE1 > QE3 > QE2.
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Figure 7. Impulse responses of the system with y = (y1,y2,y3,y4,)
‘, where in the figure we denote y1 = ln(ad jressl/p),y2 = u(t),

y3 = ln(trans. money demand(t)),y4 = ln(prec. money demand(t)) in QE1.
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Figure 8. Impulse responses of the system with y = (y1,y2,y3,y4,)
‘, where in the figure we denote y1 = ln(ad jressl/p),y2 = u(t),

y3 = ln(trans. money demand(t)),y4 = ln(prec. money demand(t)) in QE2+α .
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Figure 9. Impulse responses of the system with y = (y1,y2,y3,y4,)
‘, where in the figure we denote y1 = ln(ad jressl/p),y2 = u(t),

y3 = ln(trans. money demand(t)),y4 = ln(prec. money demand(t)) in QE3.
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6 Conclusions
We investigated efficiency of QE1, QE2 and QE3 in USA
in two ways. First, usual VAR models were constructed
and we can see that QE1 is effective through a trans-
mission path of a stock market, QE2 and QE3 are effec-
tive through housing price path, and that QE3 is effective
through an exchange rate path. Secondly, decomposing
M2 into precautionary and transaction money demands,
we can estimate precautionary money demand as a func-
tion on ”industrial production“, business condition and
reserves. By investigating relationship among reserves,
business condition, transaction and money demands, we
see that QE1 is most effective and that QE3 is effective
and that QE2 is not so effective. .
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