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Abstract
Monitoring of water quality should not be solely based on
laboratory samples. Such activity, although producing re-
liable results, cannot provide an accurate enough tempo-
ral coverage for water quality monitoring. The Finnish
Environment Institute, SYKE, has therefore established
numerous online water monitoring stations that continu-
ously monitor water quality. The problem with the au-
tomatic monitoring, however, is that the recorded values
are not reliable as such and need to be subject to quality
control and uncertainty estimation. Here, as the main con-
tribution, we present a computational service that we have
implemented to automate and integrate the water quality
monitoring process. We also present a case study regard-
ing the river Väänteenjoki and discuss the obtained uncer-
tainty results and their implication.
Keywords: environmental measurements, quality control,
uncertainty estimation, computational service, river

1 Introduction
The Finnish environmental authorities have regularly
monitored water quality variables such as total suspended
solids (TSS) and total phosphorus (TP) concentrations in
major Finnish rivers since 1960s. The aim is to get gen-
eral idea on the amounts of substances transported into
the Finnish lakes and coastal areas and to detect possi-
ble trends. Presently, water quality and flow are moni-
tored at 29 downstream monitoring stations of Finland’s
major rivers discharging into the Baltic Sea. There are
also numerous inland river monitoring sites included, for
instance, in the Finnish Eurowaternet (Niemi and Raate-
land, 2007). Annually, 13 to 22 water samples are taken
and analyzed for TSS and TP (The Finnish Ministry of
Environment, 2014) in addition to other substances.

SYKE has published quality recommendations for lab-
oratories producing and delivering environmental mon-
itoring data for registers of water quality in Finland

Table 1. Recommended LOQ and MU (k=2) values for the mea-
surement of TSS, TP and turbidity in monitoring of natural wa-
ters in Finland (Näykki et al., 2013).

(Näykki et al., 2013). Examples of the recommended lim-
its of quantification (LOQ) and expanded measurement
uncertainties (MU) are given in Table 1. The challenge in
automating water quality monitoring is that the measure-
ment data have not only significant seasonal variation but
also erroneous values. Thus, without proper quality con-
trol and reliable uncertainty estimation, the data has little
value. Thus far, this activity has been performed manually
by environmental researchers.

As a solution, we have implemented a computation ser-
vice based on an Enterprise Service Bus Architecture. The
service provides means for online quality control and in-
tegration of uncertainty estimation. It automates the se-
quence of operations performed earlier by the researchers;
thus, providing more reliable results in a scalable and ex-
tensible manner. The service also enables reliable moni-
toring of the changes in water quality and flow over shorter
periods of time.

2 Materials and Methods
The river Väänteenjoki was used here as the measurement
site. A turbidity sensor was assembled at the Väänteenjoki
site in the Karjaanjoki River Basin (2046 km2) in southern
Finland, shown in Figure 1, as a part of the sensor network
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Figure 1. Location of the Väänteenjoki measurement site in the middle of the Karjaanjoki river basin.

established during the years 2007 and 2008 in the Soil-
Weather project (Kotamäki et al., 2009). The river basin is
mainly covered by forest (60%), the rest of the area being
agricultural land (13%), lakes and rivers (12%), and pop-
ulation centers (9%). The Väänteenjoki measurement site
is located between the two major lakes of the Karjaanjoki
basin. From the lake Hiidenvesi (area 29 km2, mean depth
6.7 m), waters flow via the river Väänteenjoki into the lake
Lohjanjärvi (area 92 km2, mean depth 12.7 m).

The monitoring process of the Väänteenjoki site is de-
picted in Figure 2. In the Väänteenjoki case, an OBS3+
sensor by Campbell Scientific was used. It emits a near-
infrared light into the water, measures the light that scat-
ters back from the suspended particles, and transforms this
information into turbidity values (in Nephelometric Tur-
bidity Units, NTU). The sensor collects and transmits the
data to a server as SMS messages. The received messages
are decoded as measurements with timestamps. The mea-
surements are stored into a HydroTempo database main-
tained by SYKE.

Laboratory samples are collected once in a month.
More frequent sampling can also be carried out during
the high water runoff seasons. Laboratory turbidity mea-
surement is carried out according to the international stan-
dard ISO 7027 (International Organization for Standard-
ization, 1999). Turbidity is measured nephelometrically;
the instrument measures the scattered light using the de-
tector angle of 90 degrees from incident light. Instrument

is calibrated with formazine standard solutions, and the
turbidity of the tested water sample is expressed in For-
mazine Nephelometric Units (FNU). Note that FNU equal
to NTU. TSS are determined at laboratory according to the
standard EN 872 (European Committee for Standardiza-
tion, 2005a), where water samples are filtered with GF/C
glass fibre filter and dried at 105 oC. The mass of the
residue retained on the filter is determined by weighing.
Measurement of TP is based on standard EN ISO 15681-
2 (European Committee for Standardization, 2005b) and
recommendations of the analyzer manufacturer. Phospho-
rus is converted to orthophosphate by an acid-persulfate
digestion prior measurement, where orthophosphate reacts
in an acid solution containing molybdate and antimony
forming an antimony phosphomolybdate complex. Re-
duction of the complex with ascorbic acid forms a strongly
coloured molybdenium blue complex which is measured
at the wavelength of 880 nm.

In a previous study (Koskiaho et al., 2015), turbidity
recorded by an OBS3+ sensor at the Väänteenjoki site
was calibrated against the turbidity determined from wa-
ter samples taken near the sensor. Calibration equation,
shown in Table 2, was determined according to linear re-
gression between the values of the water samples and the
simultaneous values recorded by the sensor. Because tur-
bidity does not denote the content of substance in water, it
cannot be directly used in calculations of material fluxes.
Thus, correlations of turbidity with the concentrations of
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Figure 2. The monitoring process of the Väänteenjoki site.

TSS and TP were determined from the 2009–2012 wa-
ter sample data collected at Väänteenjoki to convert the
sensor-based, calibrated turbidity data to hourly concen-
trations of TSS and TP. The conversion equations based
are presented in Table 2.

It should be noted that there may be events where tur-
bidity jumps into the maximum (e.g. 250 NTU) and stays
there for some hours. In some cases such events have
lasted a day or two. The events could be caused by a storm
followed by rapidly increasing water flow. In a previous
study (Koskiaho et al., 2015), these events were manually
checked, removed, and replaced with interpolated values
before further processing. In (Koskiaho et al., 2015), how-
ever, measurement uncertainty was not estimated.

We have implemented a computational service that au-
tomates and integrates uncertainty estimation to the se-
quence of operations depicted earlier in Figure 2. The
service architecture, shown in Figure 3, uses an Enter-
prise Service Bus (ESB) to connect different subsystems
and to relay data between the subsystems. When the re-
searcher inquires TSS for a specific river, ESB is used to
acquire relevant measurement data and laboratory results.
That data is passed to an online computational subservice.
It computes TSS and TP for the river based on turbidity
measurements. It also computes (combined) measurement
uncertainty for the result.

In the computation, the calibration equation and related
conversion equations are used as discussed earlier in Table
2. The computation results obtained by using these linear
regression equations are then subjected to uncertainty es-
timation as discussed in (Ellison and Williams, 2012; Bar-

Figure 3. ESB based architecture implementing the service for
computing TSS and TP along with measurement uncertainty es-
timation.

wick, 2003). The results regarding the amount of TSS,
including the linear regression equations, are then deliv-
ered to the researcher along with the (total) measurement
uncertainty. The measurement uncertainty is a reliability
estimate and can be used to compare the measurement re-
sults among each other or with reference values (JCGM,
2008).

The combined measurement uncertainty includes con-
tribution from the laboratory reference measurement and
the performance of the measurement models, i.e. how well
the measured values fit in the model, and how repeatable
the online measurements are. The laboratory reference un-
certainty is estimated according to the Nordtest approach
(Magnusson et al., 2012) and ISO standard 11352 (Inter-
national Organization for Standardization, 1012), where
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Table 2. Calibration equations and coefficients of determination (r2) derived from the relation between the sensor recordings and
water samples, and equations to convert the calibrated turbidity to TSS and TP concentrations.

Table 3. Uncertainty budget for the turbidity, TP and TSS con-
centration measurements.

combined standard uncertainty consists of two main com-
ponents: the within-laboratory reproducibility and the un-
certainty due to possible bias. The quality recommenda-
tion for reporting measurement results and uncertainties
does not include the uncertainty due to sampling (Näykki
et al., 2013). The uncertainty of the linear regression mea-
surement models, uc0 , is estimated with help of (Ellison
and Williams, 2012):

uc0 =
S

B1

√
1
p
+

1
n
+

(c0 − c̄)2

Sxx
(1)

where S is the residual standard deviation of the measure-
ment model, B1 is the slope of the measurement model, p
is the number of replicate measurements in the determina-
tion of the concentration c0, n is the number of replicate
measurements in the determination of the mean calibra-
tion value c̄, and Sxx is the standard deviation of the mea-
sured values and the mean calibration value. The uncer-
tainty related to the repeatability of the measurements is
included in Equation (1).

3 Results and Discussion
Hourly time series of the calibrated turbidity measured by
sensors (curves) together with turbidity analyzed from wa-
ter samples (dots) are presented in Figure 4. As suggested
by the equality of sampled and sensor-based values, cali-
bration of the sensors was successful.

The turbidity curve of the river Väänteenjoki, also
shown in Figure 4, differed strongly from those of the

other measurement sites dealt with in (Koskiaho et al.,
2015), which showed clearly sharper general form and
higher peak values. The difference was claimed to be a
consequence of the retention effect of the lake Hiidenvesi
and the close proximity of the Väänteenjoki measurement
site to the lake. In other measurement sites, the distance
to the upstream lakes was much longer, or the lakes were
small.

The uncertainty components are listed in Table 3. In
this example, a typical value for the turbidity is 25 FNU,
for the TP is 60 µg/l, and for TSS is 20 mg/l. The standard
uncertainty (k=1) of the laboratory analysis is 10% for the
turbidity in the range >1 FNU, and 7.5% for the TP and
TSS in the ranges of >10 µg/l and >3 mg/l, respectively.
Using Equation (1), we obtain the standard uncertainty es-
timates for the turbidity sensor calibration, 7.8%, and for
the TP and TSS measurement models, 7.7% and 12%, re-
spectively. The TP and TSS contents are determined based
on turbidity, so the calibration of the turbidity sensor must
be included. The combined standard uncertainty is cal-
culated as a square sum of the individual, uncorrelated
components (JCGM, 2008). Figure 5 demonstrates the ex-
panded uncertainty (in content) as a function of measured
turbidity, TP and TSS. The measured values presented are
between the minimum and maximum values of the data
set of our example.

It can be seen that all the uncertainty components, labo-
ratory analysis and the measurement models, are of the or-
der of the same magnitude. The linear regression models
are based on the whole dataset 2009 – 2012. In this case,
there is no significant difference in terms of uncertainty
whether the model is fitted based on the whole dataset or
on yearly basis.

Using the presented measurement models practically
doubles the measurement uncertainty as compared with
the laboratory analysis, but on the other hand the online
monitoring provides more representative and frequent in-
formation in the water quality. In Figure 6, this is illus-
trated by presenting the relative standard error of the mean
for TP in different variation levels, calculated based on the
two different monitoring processes and their measurement
uncertainties presented in Table 3.

The more frequent data of online monitoring (24 sam-
ples per day) enables following the trends in daily basis
with low estimation error, whereas infrequent laboratory
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Figure 4. Hourly time series of the corrected turbidity measured by sensors (NTU) together with turbidity analyzed from water
samples (FNU) in Väänteenjoki measurement site.

Figure 5. Expanded uncertainties of turbidity (FNU, solid line),
TP(µg/l, dashed line) and TSS (mg/l, dotted line) as a function
of content.

measurements (1 sample per month) is only suitable for
estimating yearly averages with a comparable estimation
error.

As compared with the quality recommendations in Ta-
ble 1, the uncertainty of the laboratory analysis is equal
to the recommendation for turbidity and TP. For TSS, the
quality recommendation is 20%, and in this case 15%.

For the measurement models, the total number of mea-
surement data points is 45 for turbidity and 46 for TP
and TSS. The coefficients of determination for the mea-
surement model equations are 0.86, 0.82 and 0.74 for the
turbidity, TP and TSS measurement models, respectively.
The coefficient of determination of 0.90 would result in
uncertainties of 6.5%, 6.0% and 7.7% for turbidity, TP,
and TSS, respectively. With the present laboratory anal-
ysis uncertainties, these uncertainties would produce re-
spective expanded uncertainties of 24%, 31% and 32%. If
the coefficient of determination is 0.95, the turbidity sen-
sor measurement model would result in 4.5% standard un-
certainty. This would result in 22% expanded uncertainty
in turbidity, 29% in TP, and 31% in TSS measurement
model.

However, the coefficient of determination of 0.90 would
be obtainable by using an outlier detection algorithm. This
would require removal of two most deviating points from
turbidity model, five from TP model and ten points from
the TSS model. Even the coefficient of determination of
0.95 is obtainable, at least with turbidity measurement
model. This would require removing 11 most deviating
measurement points from the model. Reducing the size of
the data set down to 34 points does not increase the uncer-
tainty of the model significantly.

4 Conclusions

A computational service for monitoring TSS and TP was
introduced in this study. The service also integrates mea-
surement uncertainty estimation and delivers monitoring
results with uncertainty information. The service was im-
plemented by using a scalable and extensible architecture
based on the use of an Enterprise Service Bus.

The monitoring results obtained for the river Väänteen-
joki were presented and discussed. The results indicate
that online monitoring does not fully fit within the rec-
ommended limits of quantification. The advantage of on-
line monitoring, however, is that it is a continuous activity
and it supports monitoring of quick events and changes in
trends. This is something that would not be feasible by us-
ing laboratory sampling only. Thus, in together with lab-
oratory sampling online monitoring provides a more ac-
curate situation picture of the state and quality of Finnish
rivers.
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Figure 6. Relative standard error of the mean (SE) with the different monitoring processes and different observation periods

calculated as (%) = 100
√
(σp

2 +σM
2 )/n.
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