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Abstract 
We outline the challenges of situation awareness with 

early and accurate recognition of traffic maneuvers and 

how to assess them. This includes also an overview of 

the available data and derived situation features, 

handling of data uncertainties, modelling and the 

approach for maneuver recognition. An efficient and 

effective solution, meeting the automotive 

requirements, is successfully deployed and tested on a 

prototype car. Test driving results show that earlier 

recognition of intended maneuver is feasible on average 

1 second (and up to 6.72 s) before the actual lane 

marking crossing. The even earlier maneuver 

recognition is dependent on the earlier recognition of 

surrounding vehicles. 

Keywords:     Bayesian networks, massive data streams 

1 Introduction 

A highway, typically providing several traffic lanes, is 

characterized by complex scenes with many vehicles. 

Reliable situation assessment requires multi-sensor 

fusion and management of uncertainty in order to 

interpret accurately the traffic environment. To reduce 

the risk of accidents and congestions, an autonomous 

system must analyze and be aware of possible hazards 

of a driving situation. This includes: correctly 

recognizing intended maneuvers of all surrounding 

vehicles at an early stage and using this information to 

enable corrective actions like braking or steering, thus 

helping to avoid or mitigate potential collisions. 

Situational awareness and recognition of traffic 

maneuvers are key elements of modern driver assistance 

and autonomous driving systems (Kasper et al, 2011, 

2012, 2013; Morris et al, 2011; Kumar et al, 2013; 

Tereshchenko, 2014; Schlechtriemen et al, 2014; Weidl 

et al, 2014, 2015, 2017; Mori et al, 2015; Satzoda et al, 

2015; Zeisler et al, 2015).  

A probabilistic approach, using Object-Oriented 

Bayesian networks (OOBNs) for maneuver recognition 

has been proposed in (Kaper et al, 2011, 2012, 2013) 

and (Zeisler et al, 2015). It is based on the own (ego) 

vehicle dynamics, its driving path in relations to the lane 

markings and/or surrounding vehicles, to evaluate the 

vehicles’ relevance as possible target objects and to 

recognize earlier maneuvers in real traffic. In addition to 

the data from in-vehicle sensors, including both the 

vehicle kinematics and vehicle surround dynamics, 

(Satzoda et al, 2015) also uses visual data from multiple 

perspectives to characterize lane changes. In (Kaper et 

al, 2011, 2012, 2013), we use pairwise vehicle-vehicle 

relations; as far as the sensors can percept the 

surrounding objects. 

In (Mori et al, 2015) an approach, based on Hidden 

Markov Models computes the driver's intent on lane 

change and/or potential risk of accidents. This work 

studied the driver decisions whether is safer to change 

lane in front of a faster car closing the gap or to brake 

for keeping a safe distance to a slower car in front, by 

evaluating the time-to-collision (TTC). We have used 

similar features in the safety model (in section 3) to infer 

the intention on lane change for the situations shown in 

Figure 1, utilizing the relative longitudinal dynamic 

between a vehicle (own, neighbor) and the vehicles in 

front and back, driving on the target lane (Tereshchenko, 

2014). This effectively builds a gap for finishing a lane 

change maneuver and has an impact on the decision for 

lane changing, see (Tereshchenko, 2014; Mori et al,  

2015; Weidl et al, 2015; Yan et al, 2015). The 

mentioned features, characterizing the vehicle state, 

were extended in (Li et al, 2015) with the driver’s 

operation signals to enhance by hidden Markov models 

the classification of lane change maneuvers.  

In our recent work (Weidl et al, 2015) and for the 

results reported here, we have focused on the 

development of a solution for maneuver recognition and 

its deployment on a Linux based system emulating the 

automotive target platform, using commercially viable 
sensors, image processing and multi-sensor fusion. We 

use the commercial software HUGIN, allowing efficient 

BN modelling and automated c-code generation. All 
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current and future developments are compared to our 

initially developed “Original (ORIG)” OOBN, which 

has shown promising results as described in (Kasper et 

al, 2011, 2012, 2013; Weidl et al, 2014). Our latest work 

(Weidl et al, 2015) describes three statistical classifiers 

as deployed on the prototype vehicle as well as the 

planned dynamic extension into a Dynamic Bayesian 

Network (DBN). The DBN are now deployed on the 

vehicle and evaluated in highway drive and in statistical 

comparison to other static classifiers. The main 

contribution of this work is the extension of all four 

classifiers with special evidence for better accuracy. The 

DBN deployment on the automotive target platform has 

been successfully tested in real highway driving. 

              

Figure 1. Longitudinal relative dynamics between 

following and front vehicles, both moving on the same 

lane. Lateral relative dynamics towards the lane marking, 

when initiating a lane change maneuver. 

               

Figure 2. Maneuver recognition as a vehicle-vehicle 

relation between the own EGO-vehicle (red) and a 

neighbor OBJ-vehicle (blue). 

The automotive target platform represents both a 

storage and an inference challenge. The requirement on 

automotive safety demands accuracy close to 100% for 

a prediction horizon of 1 second. Moreover, the solution 

should scale to the specification of the hardware 

restrictions of the target platform. It should meet the 

automotive requirements on computation time and 

memory space, which are strongly constrained by the 

electronic control unit. The quick development of 

situations over time requires an automatic system, 

capturing and analyzing massive data streams, under 

uncertainties, every 20 milliseconds for several safety 

applications, resulting in 0.15 milliseconds for 

maneuver recognition.  

This paper is organized as follows. Section 2 gives an 

overview of the used method, section 3 – on efficient 

modeling, section 4 - on proper treatment of data 

uncertainties and their use for building of hypotheses on 

driving behavior for event (maneuver) recognition. The 

approach is outlined in section 5, while section 6 

describes the evaluation of classifiers. Section 7 

summarizes the results with outlook.  

 

2 Method for Probabilistic Reasoning 

2.1 Bayesian network (BN)  

A Bayesian network BN:= (G, P)  is defined as a 

directed acyclic graph G and P - a set of CPDs 

(conditional probability distributions) P(X | pa(X)) of a 

variable X conditioned on its influence variables pa(X), 
(Friedman and Koller 2009, Kjærulff and Madsen 

2013). The joint probability of a BN is computed by the 

Chain rule for BNs: 

 

P( X1 , …, Xn ) = Πi=1..n  P(Xi | pa(Xi))               (1) 

 

The graph G=(V,L) contains nodes V (to represent 

random variables) and edges L to represent the 

conditional dependency relations between the nodes. A 

BN can be used as a knowledge representation to 

compute the probability P(X=x|e) given a set of 

observations e. The Bayesian theorem allows inverting 

the probability computations, i.e. 

 

P(X|Y) = P(Y|X)P(X) / P(Y)                                (2) 

 

An object-oriented Bayesian network (OOBN) 

contains instance nodes in addition to the usual BN 

nodes. An instance node is an abstraction of a net 

fragment into a single unit (network class) (Friedman 

and Koller 2009, Kjærulff and Madsen 2013). 

Therefore, instance nodes can be used to represent 

different network classes as well as repetitive structures 

within other nets (encapsulation). Thus an OOBN can 

be viewed as a hierarchical (data/information fusion) 

model of a problem domain. Every layer in this 

hierarchy expresses another level of abstraction in the 

OOBN model. The modeling extensions in this work 

explore also dynamic Bayesian networks (DBN), which 

use a time series of observations for information fusion 

and inference (Friedman and Koller 2009; Zhang and Ji 

2009; Kjærulff and Madsen 2013; Weidl et al, 2015-

2017). In this work, we use OOBN and DBN to 

represent the extension for both the lateral and 

longitudinal relative dynamics. DBN combine repetitive 

BN structures as discrete time slices. They follow the 1st 

order Markov assumption, i.e., the future Xt+1 is inde-

pendent on the past Xt-1 given the present Xt:                 

(Xt+1 ┴ Xt-1 | Xt) together with the stationary assumption, 

that the transitional probability distributions do not 

change between the time slices:  

 

P(Xt+1 | Xt ) = P(Xt | Xt-1). 

 

3 OOBN for Maneuver Recognition 

To recognize the maneuvers considering the relative 

vehicle-vehicle motion (Figure 2), we have modeled 

them as states of variable MNVR(≡Maneuver of Pairs) 
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at the top layer (Figure 3, Figure 4) of the OOBN. The 

pairwise combination of vehicles’ maneuvers ensures 

scalability of the approach. It reduces the memory 

requirements and uses computation resources only for 

the actually present surrounding vehicles. The OOBN 

fuses in the hypotheses at the lowest level of abstraction 

(see Figure 3) features under uncertainties (Figure 5, 

Figure 6), i.e. measured multi-sensor data and computed 

situation features. 

             

Figure 3. OOBN structure and layers for maneuver 

recognition. 

               

Figure 4. Class hierarchy of the OOBN for maneuver 

recognition between two vehicles (OBJ1 and OBJ2), 

expressed as lateral and longitudinal relative dynamics, 

including their safety (see Figure 1). 

               

Figure 5.  BN fragment for modeling of sensor’s 

uncertainties with a discrete MEASURED variable. 

4 Modeling of Data and Driving 

Behavior  

4.1 Modeling of sensor data and its 

uncertainty 

The maneuver recognition represents a task of the type 

reasoning under uncertainties with heterogeneous data. 

These data are acquired from multi-sensors 

measurements as well as from thereof fused and 

computed (by physical models) situation features. All 

data have naturally inherited uncertainties. The data 

characterize a traffic situation and define the set of 

situation features for maneuver recognition. The data 

input is represented as variables in the OOBN to support 

the inference process by allowing the measured (or 

computed) values of the variables to be inserted as 

evidence. For discrete variables, to be able to distinguish 

between the states of deduced features and to deal with 

the uncertainties in the sensor signals (Kaper et al, 2011, 

2012, 2013), the measured signals are discretized in 

predefined partitions (Figure 5). In general, the 

measured signal Smeasured ≡Sm is composed of its real 

(expected) value S_REAL ≡ Sexpected under 

measurement and its disturbance (sensor noise) Serr 

around the real value, i.e. Sm = Sexpected + Serr. In many 

practical applications (and in our work), the sensor noise 

is assumed as a zero-mean Gaussian random process. 

Then, the disturbance is described by the signal variance 

Serr ≡ Sσ
2. 

If the measurement instrument is not functioning 

properly (due to senor noise or fault), then the sensor-

reading (S_MEASURED ≡ Sm) and the real variable 

(S_REAL) under measurement do not need to be the 

same. This fact imposes the causal model structure as 

shown in Figure 5, taking care of the uncertainties in the 

input data. The sensor-reading Sm of any measured 

variable is conditionally dependent on random changes 

in two variables: real value under measurement 

(S_REAL≡ Sµ) and sensor fault (S_SIGMA≡ Sσ
2): 

 

P(Sm | Sµ, Sσ
2) = N(Sµ, Sσ

2)             (3) 

 

where N(Sµ,Sσ
2) denotes the Gaussian distribution with 

mean value S_REAL ≡ Sµ. Then, in principle, the 

probability distribution of the real value Sµ of the 

measured variable is inferred by equations (2) - (3), 

given the observation (evidence) from its sensor 

measurement Sm and its sensor disturbance Sσ
2. The last 

is obtained from the sensor diagnostics by use of a 

Kalman filter.  

In the discrete case, the CPD of Sm, expressed as (3), 

is represented by a conditional probability table (CPT), 

while in the continuous case Sm is modeled by a 

continuous random variable with a linear continuous 
Gaussian (CG) conditional distribution function N(Sµ, 

Sσ
2). A BN with CG nodes is referred to as a Conditional 
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Linear Gaussian BN. It induces a multivariate normal 

mixture density of the form: 

 

P(∆) f(Γ) = ΠX∈∆ P(X | pa(X)) ΠX∈Γ f(X | pa(X)), 
 

where ∆ are the discrete and Γ are the continuous 

variables.  

The degree of uncertainty for a variable, which is 

computed from noisy sensor data measurements, is 

obtained as error estimation by variance calculus. For 

example, the uncertainty in velocity Δv  and in distance 

measurement Δs directly affects the uncertainty of the 

computed time to reach a certain point at distance s with 

velocity v. The time is computed as a function of these 

two variables, i.e. 𝑡 =
𝑠

𝑣
= 𝑓(𝑠, 𝑣). Its uncertainty value 

or its variance tσ
2
 ≡ δt is computed for each vehicle 

object by taking the partial derivative of the time 

function f(s, v):  

 

𝛿𝑡 = √(
𝛿𝑓

𝛿𝑠
)

2

+ (
𝛿𝑓

𝛿𝑣
)

2

=  √(
𝜕𝑓

𝜕𝑠
𝛿𝑠)

2

+ (
𝜕𝑓

𝜕𝑣
𝛿𝑣)

2

= √(
1

𝑣
 ∙  ∆𝑠)

2

+ (− 
𝑠

𝑣2
 ∙  ∆𝑣)

2

 

 

To model the uncertainty in a variable, which has 

been computed from noisy sensor measurements, we 

use Normal (continuous linear Gaussian LCG) 

distribution. By analogy to (3), similar distribution holds 

for its conditional probability, which is expressed by (4)  

 

P(tcomputed | tµ , tσ
2 ) = N(tµ , tσ

2)                 (4) 

 

and its causal model structure is shown in Figure 6. 

Here, the computed variable tcomputed is denoted by an 

ellipse with a double line boarder. The root nodes - real 

value denoted as t_real ≡ tµ and the sensor noise denoted 

as t_sigma ≡ tσ
2 - are modeled as discrete variables with 

uniform distributions for the purpose of independent 

treatment of the influence variables on the computed 

variable. 

               

Figure 6. BN fragment, modeling uncertainties in a 

continuous variable tcomputed, influenced by discrete 

variables tµ and tσ
2. 

Similar principle of error estimation can be applied to 

any computed variable of interest for the BN modelling. 

The computed uncertainties complete the set of situation 

features, used for maneuver recognition. 

In (Weidl et al, 2014), we proposed a number of 

modelling approaches to meet the automotive 

requirements on RAM and ROM memory size, and on 

computation time. These included besides the 

continuous nodes, also the use of function nodes as an 

alternative modeling of the sigmoid growth of 

probability for the hypotheses nodes; the use of 

expressions to specify the conditional probability 

distributions (CPDs) compactly and a divide-and-

conquer approach to update of probability. 

4.2 Modeling of driving behavior 

(hypotheses)   

The lateral relative dynamics (Figure 4) is inferred 

from the actual lateral movement of a vehicle towards 

the lane marking. It is fused from the set of hypotheses 

H1.1 ≡ {lateral evidence LE, actual movement trajectory 

TRAJ and free space FS, computed by the occupancy 

grid OCCGRID}. Here, the hypothesis LE fuses the 

vehicle’s lateral offset to the lane marking (O_LAT) and 

its lateral speed (V_LAT) as shown in Figure 7. Its CPD 

is represented by a sigmoid function to expresses the 

growing probability for LE (and possible lane change) 

when the vehicle is coming closer to the lane marking 

(modeled by O_LAT_MEASURED) by growing lateral 

velocity (modeled by V_LAT_ MEASURED (see 

(Kaper et al, 2011, 2012, 2013) and for modeling 

optimization with continuous variables – see (Weidl et 

al, 2014). By analogy, the hypotheses TRAJ fuses: 

lateral acceleration (A_LAT), gear angle (vehicle’s 

orientation in the lane) and the time-to-lane-crossing. 

For safety of lane change, H1.1 checks available free 

space by assessing the risk of simultaneous occupancy 

of surrounding target cells (OCCGRID). This free space 

is inferred based on the times to enter and to leave the 

occupancy cells (Kaper et al, 2011, 2012, 2013). 

               

Figure 7. BN fragment modeling the hypothesis LE with 

discrete variables V_LAT_MEASURED and 

O_LAT_MEASURED. 

The longitudinal relative dynamics (Figure 1, 

Figure 4) is fused from the set of hypotheses H1.2 ≡ 

{longitudinal relative dynamics (RD) and its safety 

SAFE_RD}, see section 3. In the Original OOBN the 

BN-hypothesis LE, used for the evaluation of LMC 

(Figure 3, Figure 4), can recognize a maneuver only 

when the car approaches the lane marking. Hence, the 

intention of a driver to make a lane change cannot be 

detected with it. Therefore, we explore the longitudinal 
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relative dynamics (Figure 1) which is characterized by 

hypothesis “Relative Dynamics” (REL_DYN ≡ RD). 

Here we use the radar-measured features, characterizing 

the relation between a follower-vehicle and its front-

vehicle on the same lane. The radar provides additional 

advantage of a longer view-horizon (up to 200 m) than 

the camera (up to 60 m). Since the hypotheses 

REL_DYN is contributing to the recognition of 

maneuver intention, it can be considered as “Maneuver 

Advice” and should be integrated in the higher 

abstraction OOBN layers, i.e. into the third layer in 

parallel with LMC and its output on “Maneuver Advice” 

further into the forth layer LC of the OOBN (Figure 3, 

Figure 4), since we use information on how fast the 

vehicles in front on the same lane are driving.  

First, we apply the model for handling of 

uncertainties in measurements (described in section 4.1) 

- see layer 1, Figure 3. For simplicity, we will take two 

measured features (relative distance X_REL_MEAS and 

relative velocity V_REL_MEAS to the vehicle in front) 

and their variances 𝜎2 to improve the maneuver 

recognition time performance, i.e. earlier as with 

hypotheses H1.1. The structure of the static BN-Model 

on relative dynamics is shown in Figure 8. 

 

               

Figure 8. Static BN-Model for hypothesis “Relative 

Dynamics”. Evidence nodes are coded with blue color; 

chance nodes – with yellow;        decision hypothesis for 

maneuver L/R/F – with red border. 

At the next abstraction level: H1.1 contribute to the 

recognition of an event lane marking crossing by class 

LMC≡LANEMARKCROSS (where the classification 

node LMC is Boolean), which is reused at the next 

abstraction level for the recognition of LEFT and 

RIGHT lane marking crossing to infer on event LC≡lane 

change for each vehicle (OBJ1 and OBJ2). The OOBN 

model structure and parameters are based on domain 

knowledge and physical models, as described in details 

in (Kaper et al, 2011, 2012, 2013; Weidl et al, 2014, 

2015). The initial OOBN parameterization has been 

specified qualitatively and quantitatively by use of 

expressions, like sigmoid functions or kinematics 

relations. The parameters have been initially hand tuned 

by domain experts to reflect expected lane change 

behavior for the conditional probability distributions of 

the hypotheses variables, which represent qualitatively 

a typical vehicle behavior at lateral and longitudinal 
relative dynamics with safety aspects. 

4.3 Free Space Model for Safety 

The CUTOUT and CUTIN maneuvers (Figure 1, Figure 

2) can be considered as a lateral relative dynamics 

motion, since they represent a vehicle, performing a 

lateral movement towards the lane marking and relative 

to neighbor vehicles. In addition to the lateral relative 

dynamics, the longitudinal relative dynamics becomes 

essential for earlier recognition of maneuver intentions 

on lane change. It assumes, the analyzed vehicle aims to 

keep certain comfortable speed during its highway 

drive.  It considers the longitudinal relative speed and 

relative distance to a vehicle driving in front on the same 

lane, Figure 1. The modeling principle of safety for the 

longitudinal relative dynamics is similar to the safety for 

the lateral dynamics, relative to the lane marking 

crossing (LMC), i.e., the hypothesis lateral Free Space 

(FS) in (Kasper, 2013). For safety, the longitudinal 

relative dynamics requires the check of available free 

space on the target lane to finish a maneuver or the 

suitability of a gap between two neighbor vehicles. This 

is performed by evaluating the safety features for 

longitudinal relative dynamics: “SAFE_RD/LEFT or 

RIGHT” (Figure 4). The driving praxis shows, that if a 

vehicle in front is slower, usually it is overtaken on the 

left, if free space is available (Figure 1). On the other 

hand, when a vehicle intends to leave the faster moving 

lane, it is slowing to change to the most-right or to the 

highway exit lane. Therefore, to ensure safety, it is 

necessary to estimate two features: the relative velocity 

and time to collision with vehicles on the target lane. 

These features are calculated as a relation to the nearest 

vehicles on the target lane, both behind and in front of 

the analyzed vehicle with a possible intention of a lane 

change. This safety mechanism is reflected in the fusion 

of the mentioned features, which are calculated for the 

left and right neighbor lanes. Figure 9 shows the BN 

fragment structure of the hypothesis “Safe_RD” for 

longitudinal relative dynamics. By analogy to the 

evaluation of the longitudinal relative dynamics to the 

front vehicle on the same lane (Tereshchenko, 2014; 

Weidl et al, 2015), a similar structure is used to model 

the relation to both the front and behind moving vehicle 

on the target lane (same fragment is used to evaluate 

both its left and right side).  

               

Figure 9. Safe hypothesis (SRD) for longitudinal Relative 

Dynamics. 
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The “Safe_RD” output nodes represent the interface 

nodes at the next layer of abstraction (Maneuver Advice 

≡ MA, Figure 4).The evidence features are modeling the 

measurements (denoted as *_MEAS) with their 

uncertainty (variance denoted as *_VAR) which are 

assumed to have a Gaussian distribution. The 

distributions of nodes (V_FRONT_REAL, 

TTC_FRONT_REAL, etc.) are inferred based on the 

evidence. Nodes SAFE_V_FRONT and SAFE_TTC_FRONT 

are fused as an OR-relation in node SAFE_FRONT, i.e., a 

lane change to the target lane is safe only if at least one 

of the nodes has high probability. Thus, it models the 

relation between the “FRONT” input variables and the 

safety ahead on the neighbor target lane of the 

considered front vehicle. The CPD of SAFE_BEHIND is 

parameterized by analogy to SAFE_FRONT. Node 

SAFE_RD (evaluating the gap) combines the results from 

SAFE_FRONT and SAFE_BEHIND and is implemented as 

an “AND-relation”, i.e. if both have a high probability 

for state “true”, SAFE_RD will have also high probability 

for “true”. However, if one of them is in state “false”, 

SAFE_RD will have a high probability for “false”. 

 

4.4 Dynamic Models for Earlier Recognition 

Here, we focus on the use of two-time slice dynamic 

Bayesian networks DBNs (2T-DBNs) to achieve earlier 

recognition of traffic maneuvers, see (Weidl et al, 
2015). They are characterized by an initial model 

representing the initial joint distribution of the process 

and a transition probability distribution (TPD) 

representing a standard BN repeated over time. They 

satisfy both the first-order Markov assumption and the 

stationary assumption. Figure 10 shows the graphical 

structure of a 2T-DBN model for the hypothesis LE, 

while Figure 11 represents a DBN extension of 

hypothesis REL_DYN, with the hidden node 

AREL_𝑅𝐸𝐴𝐿(𝑡), which was added for purposes as explained 

below. The TPDs between the time slices t and t+1 are 

assumed conditional Gaussian N(µ,σ2). Here, since we 

do not have observations on the mean value µ, it is 

specified by physical models. 

LE_DBN (Figure 10) is combining the real values of 

three lateral features: O𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡), 𝑉𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡) and 

A𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡). When O𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡) is steadily increasing 

and 𝑉𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡) is high or increasing (requiring also 

A𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡)), their combination clearly indicates that 

the vehicle is leaving its lane. Note, that in (Kaper et al, 

2011, 2012), A𝐿𝐴𝑇_𝑅𝐸𝐴𝐿 was included in hypothesis 

Trajectory (TRAJ) and not as part of LE.  The TPDs for 

the LE-variables: O𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡), 𝑉𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡) and 

A𝐿𝐴𝑇_𝑅𝐸𝐴𝐿 are defined as shown in (5)-(7):  

 
O𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡) ~ 𝑁(O𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡-1) +V𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡-1) ∙∆t, 𝜎O_LAT (𝑡)

2)              (5) 
 
𝑉𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡) ~ 𝑁(𝑉𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡-1) + A𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡-1) ∙∆t ,  𝜎𝑉_LAT (𝑡)

2 )       (6) 
 
A𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡) ~  𝑁(A𝐿𝐴𝑇_𝑅𝐸𝐴𝐿(𝑡-1),  𝜎A_LAT (𝑡)

2 )                                                   (7) 

The time step ∆t is the cycle time, i.e., 42 or 60 

milliseconds depending on the camera used. The 

variances σ2 are modeling the uncertainties of the 

variables. This dynamic extension incorporates the trend 

of real values, while their physics relations are 

represented as causal dependencies between time steps 

∆t. By analogy are defined the TPDs for the REL_DYN 

features: distance XREL_𝑅𝐸𝐴𝐿(𝑡) and velocity 𝑉REL_𝑅𝐸𝐴𝐿(𝑡) 

and the hidden variable relative acceleration 

AREL_𝑅𝐸𝐴𝐿(𝑡). 

               

Figure 10. LE_DBN: 2T-DBN structure for the 

hypothesis LE (Lateral Evidence) for lateral Relative 

Dynamics towards the lane marking. 

               

Figure 11. REL_DYN_DBN: The 2T-DBN structure for 

the hypothesis REL_DYN (Relative Dynamics) with 

A_REL_REAL as hidden node. 

5 Approach 

5.1 Combination of Methods 

Our approach combines several methods to meet the 

deployment requirements on accuracy, less memory and 

faster inference. For resolving of programming 

paradigms, like efficient modelling and reuse of 

modeling fragments, we use OOBNs for information 

fusion from dynamic and/or static fragments. The 

accuracy requirement is reached by adding “special 

evidence” as described in section 5.3. Future study will 

also focus on parameters learning to further improve 

accuracy. In addition, to resolve the design paradigms 

for deployment on a prototype vehicle, i.e. to meet the 

requirements on computation time and memory, we 

have utilized parallelization of computations based on a 

divide-and-conquer strategy (D&C) (Weidl et al, 2014, 
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2015, 2017). This D&C parallelization splits the OOBN 

model into fragments and uses the posterior distribution 

of output nodes from the lower hierarchical fragments 

as likelihood over the corresponding input node at the 

next level of OOBN hierarchy, see (Weidl et al, 2017) 

for more details. 

 

5.2 Modeling of the logical OOBN layers: 

LMC, MA, Lane Change Maneuvers 

and Driving Maneuvers (MNVR) 

The network fragments, created to support the divide-

and-conquer strategy to probability update in OOBN 

(Figure 3, Figure 4) are shown in Figure 12 and Figure 

13. In Figure 12.A), LANEMARKCROSS (LMC) is the 

object class for lateral relative dynamics towards the 

lane marking. LMC represents the vehicle-to-lane-

marking relation and is instantiated using the 

probabilities computed in the hypotheses TRAJ, LE, FS 

(OCCGRID for OBJ1 and OBJ2). In Figure 12.B), 

Maneuver Advice (MA) is the object class fusing the 

longitudinal relative dynamics REL_DYN (RD) 

between two vehicles driving on the same lane, and for 

safety evaluation on the left or right neighbor lanes, the 

available free space (Safe_RD) to a front and back 

vehicles, building the gap for completing a lane change 

(Figure 1). MA is instantiated using their probabilities.  

The event class LANECHANGE (LC) is recognized 

by fusing LMC and MA (Figure 13). LC is instantiated 

by the probabilities, obtained from the hypothesis 

classes LMC towards left and right and from hypothesis 

class MA. The event class MNVR represents the 

vehicle-vehicle-vehicle LC-relation (denoted QMVT 

with 9 states, from all possible Left/Right/Follow LC-

combinations of two objects) together with their relative 

lane-position to each other (denoted as POSDESCR 

with states: left, right, front). It infers the recognition of 

predicted maneuver, after instantiation by the 

probabilities, obtained from the two object classes LC. 

 

5.3 Improving Accuracy by Special 

Evidence 

Based on a performance analysis on sequences not 

included in the evaluation reported below, we have 

extended the OOBN models with measured/perceived 

variables representing Special Evidence. The evaluation 

has been performed with our statistical module and by 

additional visual examination. As typical for statistical 

classification, we use a confusion matrix to evaluate the 

classification results at each time step for all maneuver 

sequences. The corresponding maneuver state is 

classified (at each time step) as recognized (i.e. true 

positive TP, if corresponding to its reference data label) 

when its probability is bigger than 65%. This threshold 
value has been empirically derived in (Kasper, 2013). It 

has been derived from the confusion matrix and from a 

statistical evaluation of the probability of “false 

positives” for the Original OOBN on sequences not 

included in the evaluation reported below. Recall that all 

six maneuvers (Figure 2) are represented as a state of the 

MNVR variable, which has moreover one additional 

state for “DONTCARE” (i.e. pairs without any collision 

hazard). 

 A) 

B)            

Figure 12. Classes: LANEMARKCROSS (LMC) and 

Maneuver Advice (MA). 

 A)                

B) 

Figure 13. The object classes: LANECHANGE and 

Maneuver (denoted as MNVR) 

 

We analyzed the results of the statisticsl evaluation 

and grouped the faults, based on causes with special 

attention to wrong classifications; and derived ideas for 

improvement of recognition performance for Lane-

Follow and Object-Follow situations. We identified 

some measured/percepted features as “special evidence 

(SEi)”, which represent road topology and driving 

behavior in relation to other vehicles (which are present 

or not) on the same lane. These SEi features extend the 

model of Figure 13.B) and are modeled with five blue 

nodes, while their influence on LC – with the yellow 

nodes, see Figure 14. Thus, they fuse the information for 

recognition of a lane change, where SE1 and SE2 

consider the lateral and longitudinal relation between 

each pair of vehicles.  
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Figure 14. Information fusion at level LC of the extended OOBN model, including “special evidence” nodes to reduce 

false positive. 

SE1: If one vehicle is approaching another vehicle 

moving on the most left (or most-right) lane, then no 

matter, if the longitudinal dynamics suggest LC to the 

left (or right) lane, this is not realizable due to natural 

lane boarders, i.e., there is no free space to execute any 

LC LEFT (or RIGHT) maneuver.  This is incorporated 

in the road topology features solid lane markings: 

SE1_LeftSolidMark, SE1_RightSolidMark. It reduces 

the number of false positives (FP/wrongly classified) for 

OBJCUTOUT and the number of false negative (FN/not 

recognized) for FOLLOW maneuvers by 36% (from 11 

to 7) even in the ORIG model.  

SE2: If a vehicle is driving without any vehicle in 

front of it (possible even due to reduced perception 

reliability or out of sensor reach), then it has no reason 

to change the lane, unless an obstacle has been detected. 

This is incorporated in the model (Figure 14) by SE2 

OBJPresent (yes/no). This is represented by the logic 

rule: If No Front Car detected, then both lateral and 
longitudinal dynamics classes (Figure 4) - LMC 

(LaneMarkCross) and REL_DYN - are set to Follow.           
SE3: Change of variable sign for lateral offset 

O_LAT. Due to the used coordinate system, the values 

of variables are positive only inside the current driving 

lane and change to negative, while changing to an 

adjacent lane. This is incorporated as features 

SE3Right_O_LAT_dSIGN and SE3Left_O_LAT_dSIGN 

in the extended structure of the BNs, Figure 14. The 

special evidence is present in the labeled data file and 

introduced in the models at the LC (Figure 14) and 

similarly at the maneuver MNVR (Figure 4) level.  

 

5.4 Deployed classifiers 

To study the effect of different model configurations 

on recognition, we have defined three static classifiers 

(ORIG; STATTR; STAT) and one dynamic classifier 

DBN; see Table 1.  The ORIG classifier uses the 

Original OOBN (see Kaper et al, 2011, 2012; Kasper, 

2013). “Y” shows which BN fragment is included in the 

corresponding classifier. All static classifiers use 

hypotheses LE and OCCGRID, while only ORIG and 

STATTR use TRAJ (Figure 4).  The hypotheses “free 

space” FS ={OCCGRID and SRD} for the lateral and 

longitudinal relative dynamic respectively (Figure 4) 

remain static BN fragments for the purpose of satisfying 

the requirements on computation time and memory. The 

DBN fragments for the relative dynamics for the lateral 

and longitudinal motion are LE_DBN and 

REL_DYN_DBN. The developed static and DBN 

modelling fragments were generated as c-code and 

deployed by use of the divide-and-conquer (D&C) 

approach for probability update on the target Linux 

platform of the car – for details see (Weidl et al, 2017). 

 

Table 1. Deployed classifiers on the Linux platform, see 

Figure 4. 

 BN fragment 

Classifier  LE 

(lateral 

relative 
dynamics) 

TRAJ 

(trajec

tory) 

OCCGRID 

OBJ1-OBJ2 

(free space) 

REL_DYN 

(longitudinal 

RD=relative 
dynamics) 

 SRD 

(free 

space/ 
safety) 

ORIG Y Y Y - - 

STATTR Y Y Y Y Y 

STAT Y - Y Y Y 

DBN LE_DBN - Y RD_DBN Y 

 

6 Evaluation and Analysis 

Data sets used in the evaluation: The dataset has been 

acquired while driving in typical highway traffic. The 

raw data amounts to Terabytes. They are acquired by 

radar and stereo camera, which are fused to obtain the 

data objects with their characteristic features.  In order 

to be able to analyze and use these data, they must be 

cleaned. The data preparation has involved: i) Visual 

examination of data quality for all collected sequences 
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in the prototype vehicle; ii) Statistical evaluation of all 

wrongly classified as well as not recognized maneuvers; 

iii) Data labelling and generation. Steps ii) and iii) have 

been automated. As a result, we have a total of 336 

sequences consisting of 236 lane-change sequences and 

100 lane-follow sequences.  Quality measures of the 

recognition results have been selected for the 

performance evaluation of all developed classifiers. 

They include: the confusion matrix for the relevant (lane 

change) and irrelevant (follow or not present in the data) 

maneuvers; precision, recall; time gain for earlier 

recognition; and runtime performance of all classifiers. 

The statistical evaluation module establishes how big 

the time gain is relative to the labelled maneuver. The 

last is defined by the actual moment of lane marking 

crossing (LMC) by the midpoint of the car front bumper. 

The confusion matrix for all deployed classifiers 

(Table 1) as performing on all evaluated driving 

sequences is shown in Table 2. The BN fragment TRAJ 

increases the accuracy, but the used gear angle is 

difficult to measure. The modeled special evidence has 

been successfully tested to contribute with a reduction 

of false positives (FP), thus increasing the accuracy. 

This has improved the performance on the Linux 

platform for deployment on the prototype car. We have 

made a proof, based on the performance of the ORIG 

classifier, by using all sequences and the statistical 

evaluation module, that the recognition accuracy of 

OOBN is not affected by the D&C approach and its 

implementation. 

Table 3 shows the time gain for all maneuver classes 

for vehicle pairs. The average time gain for all deployed 

classifiers is about 1 second ahead of LMC. Moreover, 

dependent on the traffic situation and object perception, 

even earlier maneuver recognition is feasible. 36 of the 

tested sequences show earlier recognition with time 

gains of 1.5s – 6.72s (seconds). Test drives in real 

highway confirm, that traffic scenarios with 

“longitudinal relative dynamics” are recognized as a 

“need for lane change” before a vehicle is initiating a 

maneuver due to the recognition of a slower moving 

vehicle in front on the same lane. Therefore, the 

recognition by DBN classifier (visualized in Figure 15-

17 with blue arrow) is earlier than the one by ORIG 

(visualized with red arrow). Figure 15 shows 

recognition of EGOCUTOUT, where DBN is 3.24s 

earlier than the actual lane marking crossing (LMC) and 

2.46s earlier than ORIG. The recognition of 

OBJCUTOUT (Figure 16) is 4.62s earlier by DBN than 

LMC and 3.9s earlier than ORIG.  

The driving sequence with the best recognition 

performance is shown in Figure 17, where OBJCUTIN 

maneuver is recognized by DBN 6.72s earlier than LMC 

and 5.88 s earlier than ORIG. The parallel D&C 

implementation has been deployed for all classifier 

alternatives (ORIG, STAT, STATTR, DBN, see Table 

1.) on the automotive Linux platform for maneuver 

recognition. Table 4 shows between 22% and 40% gain 

in runtime performance for all deployed classifiers 

(using c-code on the Linux platform) due to the parallel 

D&C approach with “special evidence SE”. A time 

performance of 1-4 milliseconds (ms) is still far from the 

target value of 0.15 milliseconds. One should note here, 

that these numbers are for the Linux prototype platform 

of the car and thus hardware dependent. The 

optimization of the parallel D&C method on a dedicated 

Linux computer allowed even better results with 

optimized time performance, coming very close to the 

initially set requirement of the target platform, see 

(Weidl et al, 2017).   

 

Table 2. Performance comparison of the deployed 

classifiers with “special evidence” (index  _SE). Column 

Nr.: 1: TP of OBJCUTIN; 2: TP of OBJ CUTOUT; 3: TP 

of EGOCUTIN; 4: TP of EGOCUTOUT; 5: TP (=as 

labeled); 6: FN (not recognized); 7: FP (wrong classified); 

8: All (TP+FN) Maneuvers 

Classifier 1 2 3 4 5 6 7 8 precision  recall 

Label* 29 83 67 57 236 0 0 236   

ORIG 25 82 67 57 231 5 11 236 95.5% 97.9% 

ORIG_SE 25 82 67 57 231 5 7  236 97.1% 97.9% 

DBN_SE 23 80 67 56 226 10 19 236 92.2% 95.8% 

STAT_SE 23 76 67 56 222 14 13 236 94.5% 94.1% 

STATTR_SE 25 82 67 56 230 6 16 236 93.5% 97.5% 

 

Table 3. Summary of evaluation results for time gain 

(negative time value means “maneuver prediction before 

crossing the lane marking”) with all data for all deployed 

classifiers. 1: OBJCUTIN; 2: OBJCUTOUT; 3: 

EGOCUTIN; 4: EGOCUTOUT. 

dt [s] 1 2 3 4 Avg. dt [s] 

ORIG -0.9950 -1.0129 -1.1461 -1.1156 -1.0749 

ORIG_SE -0.9979 -1.0129 -1.1936 -1.1945 -1.1089 

DBN_SE -0.8943 -0.9956 -1.1186 -1.3184 -1.1077 

STAT_SE -0.8977 -1.0161 -1.1192 -1.3092 -1.1089 

STATTR_SE -1.0150 -1.1246 -1.1545 -1.3500 -1.1763 

 

Table 4. Runtime Performance. 

Deployed 

classifier 

Avg. 

Runtime 

[ms] 

Deployed  

classifier  

by parallel D&C 

Avg.Run

time 

[ms] 

Gain with 

parallel 

D&C [%] 

ORIG 1.5989 D&C_ORIG 1.2508 21.8% 

ORIG_SE 1.5989 D&C_ORIG_SE 1.0471 34.5%  

DBN_SE 6.7405 D&C_DBN_SE 4.061 39.8% 

STAT_SE 1.9734 D&C_STAT_SE 1.4606 26% 

STATTR_SE 2.3143 D&C_STATTR_SE 1.5422 33.4% 
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Figure 15. Highway demonstration with REL_DYN 

showing the classifier performance for EGOCUTOUT: 

DBN is 3.24s earlier than actual LaneMarkingCrossing 

(LMC) and 2.46s - than ORIG. 

               

Figure 16. Highway demonstration with REL_DYN 

showing the classifier performance for OBJCUTOUT: 

DBN is 4.62s earlier than actual LMC and 3.9s earlier 

than ORIG. 

7 Discussion of Results and Outlook 

A Bayesian network has been designed and 

parameterized for lane change maneuvers. The 

advantage of our approach is that only measured 

features for lateral and longitudinal dynamics of the 

vehicles are necessary, without map data. The limitation 

is that lane markings are required to compute the 

features and some wrong classifications cannot be 

resolved for cases when the prediction horizon of a lane 

curvature does not reach the percepted front vehicle and 

thus the vehicle orientation inside the lane cannot be 

computed.  

               

Figure 17. Highway demonstration with REL_D YN 

showing the classifier performance for OBJCUTIN: DBN 

is 6.72 s earlier than actual LMC and 5.88 s earlier than 

ORIG. 

The introduced “special evidence” reflects road 

topology and vehicles relations, thus improving the 

recognition accuracy of lane-follow and reducing the 

false positives of lane-change maneuvers. The solution 

has been successfully tested for all classifiers. With the 

system deployment on the prototype vehicle, we have 

collected more data, which will be further divided to use 

for testing, and for learning of models’ parameters of the 

lateral and longitudinal relative dynamics, together with 

their safety aspects. Here the hand tuned expressions 

will serve as an initial guess to improve further the 

recognition accuracy by use of machine learning 

techniques (Lauritzen, 1995), which have shown 

promising results.  

In addition, we have analyzed the effect of 

parallelization of computations based on divide-and-

conquer strategy (D&C). We describe in (Weidl et al, 

2017) the implemented parallel D&C realization, 

allowing resolving the requirements on computation 

time (0.15 milliseconds) and memory for deployment on 

a prototype vehicle. This is an important step towards a 

scalable solution, meeting the hardware constraints of 

the automotive target platform.  Future work will also 

focus on trend analysis for even more accurate and 

earlier maneuver recognition. 
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