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Abstract
In this paper we investigate how the disturbance rejection
properties of physiological regulatory systems depend on
the signalling kinetics between the biochemical species
being considered as controlled and manipulated variables.
Based on the mathematical model of a physiological regu-
latory system, we analyse the impact of three different sig-
nalling models, i.e. linear signalling, first order and second
order Hill kinetics. We separate the analysis in two parts.
First we identify to what extend the signalling from the
manipulated variable to the controlled variable affect the
range and ratio of manageable disturbances. In the second
part we investigate whether and how the signalling from
the controlled variable to the manipulated variable will af-
fect the parameters of the controller part of the regulatory
system. In this context, saturable Hill kinetics display ad-
vantages compared to linear signalling.
Keywords: Systems Biology, Control Engineering, Ho-

moeostasis, Signalling Kinetics

1 Introduction
In order for organisms to function properly it is imperative
that their internal environment is maintained within cer-
tain thresholds independent on external conditions. This
ability of living systems to adjust their own environment
was first described by Claude Bernard with his definition
of milieu intérieur (Cooper, 2008; Langley, 1973). Can-
non later refined this concept and coined the term home-
ostasis (Cannon, 1929, 1939). The term homeostasis has
since become the most commonly used concept when talk-
ing about an organism’s ability to regulate its own internal
environment in an ever changing external environment.
This concept is closely related to that of control engi-
neering, where the objective is to maintain a given set-
point, regardless of external perturbations (Skogestad and
Postlethwaite, 2005).

An example of a physiological regulatory system is the
regulation of cellular glucose concentration in the pres-
ence of varying blood glucose concentration. Related to
the intracellular stability is also the cell’s ability to coun-
teract for e.g. large variations in intracellular consump-
tion. For the blood glucose example, an intensive ex-
ercise session will dramatically increase the intracellular
glucose consumption, leading to an increased glucose up-
take from the blood stream. The physiological mecha-
nisms behind this regulation include hormones acting as

signalling species, cellular membrane receptors transfer-
ring the signalling information within the cell, and cellu-
lar membrane proteins acting as pumps. For glucose to
enter a cell, the insulin hormone secreted by the pancreas
is sensed by the insulin receptor located in the cell mem-
brane. This again leads to a cascade of signalling events
inside the cell, which finally activates the glucose trans-
porter facilitating glucose uptake. In order to utilize the
glucose as cellular fuel, the glucose enters the glycolysis
which is a chain of enzyme catalysed reactions convert-
ing glucose into pyrovate which again is transported into
the mitochondria and the TCA cycle (Jeoung and Harris,
2010; Lam et al., 2005).

The modelling of such systems involves enzymes and
transporter proteins, and the models can be made at differ-
ent levels of complexity, all depending on the aim of the
modelling effort. If the goal is to make a detailed model
of one part of the glycolysis, it can be very different com-
pared to a model of the overall cellular homeostatic func-
tion (Ackerman et al., 1965; Swierkosz, 2015). In the lat-
ter case, the underlying model structure which would in-
clude signalling events from other cellular species is per-
haps more important than details about certain enzymatic
steps. In this respect, we are interested in the properties
of different signalling models and how the underlying sig-
nalling kinetics will affect the performance of regulatory
systems. Performance is, in this context, defined as the
disturbance rejection properties of the regulatory systems,
i.e. to what extend is different signalling kinetic imple-
mentations able to cope with increasing level of distur-
bances/perturbations. In order to compare the different
signalling models we have defined a regulatory system
where the involved species varies between some prede-
fined levels. Thus, we maintain as much as possible of
the surrounding cellular conditions enabling us to com-
pare the results.

2 Controller Motifs
We have previously published the eight controller motifs
shown in Figure 1, all being candidates for physiological
regulatory systems (Drengstig et al., 2012). The function
of these controller motifs show similarities with standard
integral control (Drengstig et al., 2012), and their control
theoretic properties have been investigated (Thorsen et al.,
2013). From a synthetic biology approach, we have also
shown how such controller structures can be tuned similar
to an industrial control system (Thorsen et al., 2016), and
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the motifs are also shown to be closed loop asymptotically
stable (Tveit and Thorsen, 2017).

The analysis in this paper is based on controller motif 5,
given in Eqs. (1) and (2).

Ȧ = ki
p−V A

max ·
A

KA
M +A

· f (E) (1)

Ė = kE
s ·g(A)−V E

max ·
E

KE
M +E

(2)

The concentrations of A and E represent the con-
trolled variable and the manipulated variable, respectively.
Furtermore, ki

p is the inflow perturbation and V A
max is the

maximum turnover number for A. The parameter KA
M is

the Michaelis-Menten constant for the degradation of A.
The synthesis rate of E is given by kE

s , and V E
max is the

maximum turnover number for E. The parameter KE
M is

the Michaelis-Menten constant for the degradation of E .
All concentrations and rate constants are given in arbitrary
units (a.u.) unless stated otherwise.

The function of the motif can be described as follows.
When the inflow perturbation ki

p increases, the level of A
increases, which again will increase the synthesis rate of
E through the signalling from A to E. As the level of E
increases, the E-mediated compensatory outflow of A will
also increase, bringing A back towards its pre-perturbed
value. A necessary condition for this behaviour is that the
enzyme degrading the controller species E is saturated, i.e.
KE

M�E (Drengstig et al., 2012). If this condition is not
satisfied, there will be a deviation between the level of A
prior to and after the perturbation. Such deviation mea-
sures are found in many in silico studies of physiological
regulatory systems, see e.g. (Ma et al., 2009).

The structure in Eqs. (1) and (2) is schematically illus-
trated in Figure 2, where the signalling from A to E is
represented by the function g(A). From a control theo-
retical point of view, this corresponds to the measurement
in a negative feedback loop (see Figure 2.). Furthermore,
the signalling from E to A is represented by the function
f (E), which is how the manipulated variable E enters the
process.

In our analysis we have looked further into the fol-
lowing three types of signalling events for both f (E) and
g(A), commonly used to model enzyme kinetics in physi-
ology (Cornish-Bowden, 2012) :

1. Linear signalling, i.e. f (E) = E and g(A) = A.

2. First order Hill kinetics, i.e. f (E) = E
KE

a +E and

g(A) = A
KA

a +A , where KE
a and KA

a are the activation
constants. The enzymatic activation is assumed to be
mixed activation.

3. Second order Hill kinetics, i.e. f (E) = E2

(KE
a )

2
+E2

and

g(A) = A2

(KA
a )

2
+A2

Figure 1. Eight different controller motifs, all representing neg-
ative feedback loops (Drengstig et al., 2012). Based on the lo-
cation of the E-mediated compensatory flow, the controllers are
either classified as inflow or outflow controllers. The species A
represent the controlled variable, and the species E the manipu-
lated variable. The perturbations are represented by the variables
ko

p and ki
p. The signalling between A and E (dashed lines) are ei-

ther based on activation (plus sign) or inhibition (minus sign).

To compare these different signalling events, we have,
as mentioned above, defined levels of A and E, here rep-
resented as low and high levels, i.e.

A ∈ [Alow,Ahigh] = [1,3] (3)
E ∈ [Elow,Ehigh] = [2,8] (4)

These levels represent combinations of steady state values
of the process. The numerical values in Eqs. (3) and (4)
are arbitrary chosen, and are only used to illustrate the
principle.

3 Signalling from E to A, f (E)
In the presence of inflow perturbation ki

p, the signalling
from E to A affect the compensatory outflow of A as shown
in Eq. (1). Thus, the high and low levels in Eqs. (3) and (4)
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Figure 2. Representation of Eqs. (1) and (2) as a negative feed-
back loop. Eq. (1) represents the dynamics of the process, while
Eq. (2) represents the controller dynamics.

are therefore related to corresponding high and low levels
of ki

p. In order to organize these 6 low/high levels into two
working points, we note that a low inflow perturbation,
ki

p,low, will lead to a low level of A. A low level of A will
again lead to a low level of E, as A activates the synthesis
of E. Similarly, a high perturbation level ki

p,high, will lead
to high levels of both E and A. This behaviour is shown
in the qualitative simulation shown in Figure 3, where the
inflow perturbation is increased in a stepwise manner, and
the corresponding levels of A and E are increased. Hence,

Figure 3. Qualitative simulation of motif 5. A low perturbation
level ki

p results in low levels of both E and A. Similarly, a high
perturbation level ki

p results in high levels of both E and A.

the following steady state combinations exist for motif 5 1:

[ki
p,low,Alow,Elow] (5)

[ki
p,high,Ahigh,Ehigh] (6)

In order to have a quantitative measure of the motif’s
disturbance rejection properties, we define both the range
between the high and low perturbations (∆ki

p), and the ra-
tio of the high to low perturbations (λki

p) as:

∆ki
p = ki

p,high− ki
p,low (7)

λki
p =

ki
p,high

ki
p,low

(8)

Thus, our aim is to investigate how these two measures
are affected by the choice of signalling event f (E). The
expressions for the range and ratio are found by inserting
each of the steady state combinations in Eqs. (5) and (6)

1The other motifs in Figure 1 will have other combinations, deter-
mined by the kind of signalling in f (E) and g(A), together with the kind
of controller (inflow or outflow).

into Eq. (1). Thus, solving for ki
p,low and ki

p,high, respec-
tively, we find

∆ki
p =V A

max
Ahigh

KA
M +Ahigh

· f (Ehigh)

−V A
max

Alow

KA
M +Alow

· f (Elow)

(9)

λki
p =

Ahigh

KA
M+Ahigh

· f (Ehigh)

Alow
KA

M+Alow
· f (Elow)

(10)

There is, in general, an important distinction between
linear and Hill based signalling. While Hill kinetics are
saturable, i.e. f (E) ∈ {0,1}, the linear signalling varies
between f (E) ∈ {Elow,Ehigh}. Thus, using the same value
of V A

max would favour linear signalling with respect to
range ∆ki

p. In order to make a fair comparison between
linear and Hill signalling, we therefore choose V A

max in the
linear signalling case as

V A,lin
max =

V A
max

Ehigh−Elow
(11)

3.1 Linear Signalling
In many cases, the use of linear signalling kinetics is mo-
tivated by the fact that the influence of an activator or in-
hibitor is not saturated, i.e. the influence is approximated
to be in the linear domain of the saturation curve. As such,
the V A,lin

max is therefore far from the actual maximum level
V A

max, and Eq. (11) is therefore a reasonable assumption.
In the following, we use V A

max=1, and hence, V A,lin
max = 1

6 .
Linear signalling for activating kinetics is often used

when modelling physiological systems (Sedaghat et al.,
2002). One of the benefits is that the models are easier to
analyse analytically compared to more complex signalling
kinetics (Thorsen et al., 2013, 2016) .

Using f (E)=E in Eqs. (9) and (10), leaves us with one
unknown parameter, i.e. KA

M . Thus, we present the distur-
bance rejection properties as a function of this parameter,
see Figure 4.

We see from Figure 4a) that the range ∆ki
p is maximized

when KA
M=0, and it is minimized when KA

M→∞. At the
same time, the ratio λki

p is maximized when KA
M→∞ and

minimized when KA
M=0. Thus, there exists a trade-off be-

tween range and ratio in the regulatory system. Figure 4b)
shows the corresponding values of ki

p,low and ki
p,high.

3.2 First Order Hill Signalling
The simplest saturable signalling event is the first order
Hill expression:

f (E) =
E

KE
a +E

(12)

DOI: 10.3384/ecp17138343 Proceedings of the 58th SIMS 
September 25th - 27th, Reykjavik, Iceland

345



Figure 4. Panel a) The range ∆ki
p and ratio λki

p for controller
motif 5 (using f (E)=E) as a function of KA

M (V A
max=

1
6 ). Panel b)

The corresponding low and high values of ki
p.

Applying Eq. (12) in Eqs. (9) and (10), gives two unknown
parameters, i.e. KA

M and KE
a , and thus, the range and ra-

tio could have been presented as 3-dimensional surfaces.
However, in order to focus on the effect of the signalling,
we use KA

M=0, and the results shown in Figure 5 are there-
fore comparable to the left part of Figure 4 were KA

M=0.

Figure 5. Panel a) The range ∆ki
p and ratio λki

p for controller
motif 5 (using f (E) = E

KE
a +E ) as a function of the activation con-

stant KE
a (V A

max=1 and KA
M=0). The maximum range is found at

KE
a = 4 (indicated with a black dot). Panel b) The corresponding

low and high values of ki
p.

Unlike the results for the linear signalling in Figure 4a),
there is a maximum value for the perturbation range. By
differentiating the expression for the range ∆ki

p (Eq. (9))
with respect to KE

a , we find the maximum value as

∂∆ki
p

∂KE
a

= 0 ⇒ KE
a = 4 (13)

At KE
a =4, the range is ∆ki

p=0.33 while the ratio is λki
p=2.

The results indicate that the perturbation range and ra-
tio, using first order Hill signalling from E to A, is re-

duced compared to linear signalling (∆ki
p=1 and λki

p=4
at KA

M=0 in Figure 4). It is important to note that V A
max

at the same time is increased from V A
max=

1
6 to V A

max=1 in
the Hill signalling. The decline in both perturbation range
and ratio was expected when considering the Hill-based
signalling. In the next section we increase the enzymatic
cooperativity by increasing the order of the Hill kinetic
expression.

3.3 Second Order Hill Signalling
The second order Hill kinetic expression is given in
Eq. (14).

f (E) =
E2

(KE
a )

2 +E2 (14)

As in the previous subsection, we assume KA
M=0 and focus

entirely on the effect of f (E) through KE
a , and the results

are shown in Figure 6.

Figure 6. Panel a) The range ∆ki
p and ratio λki

p for controller

motif 5 (using f (E) = E2

(KE
a )2+E2 ) as a function of the activation

constant KE
a (V A

max=1 and KA
M=0). The maximum range is also

here found at KE
a = 4 (indicated with a black dot). Panel b) The

corresponding low and high values of ki
p.

As in Figure 5a), we find in Figure 6a) a similar peak
for the perturbation range at KE

a =4. The noteworthy
difference is that the peak is substantially higher com-
pared to first order Hill signalling (∆ki

p=0.6 compared to
∆ki

p=0.33 in Figure 5a)). Moreover, the ratio λki
p is also

significantly increased from 2 to 4. Thus, both values for
perturbation range and ratio for the second order Hill sig-
nalling is comparable to those from linear signalling.

3.4 Higher Order Hill Signalling
The general expression for higher order Hill signalling is
given in Eq. (15)

f (E) =
En

(KE
a )

n +En (15)

and the effect on perturbation range and ratio of increasing
n is shown in Figure 7. As n increases, so does the per-
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Figure 7. The range ∆ki
p and ratio λki

p for controller motif 5
(using f (E) = En

(KE
a )n+En for n∈ {1 . . .5}) as a function of the ac-

tivation constant KE
a (V A

max=1 and KA
M=0). Panel a) The ranges

∆ki
p. Panel b) The ratios λki

p (note the logarithmic ordinate).

turbation range ∆ki
p and ratio λki

p. As n→ ∞, the range
∆ki

p→ 1 as obtained for the linear signalling.
To summarize, we have investigated the effect on the

range and ratio of disturbances as function of the sig-
nalling from E to A given the low and high levels of A
and E in Eqs. (3) and (4), respectively. The combination
of low and high values represent therefore different pos-
sible steady state combinations (or working points) of the
process.

In the next section, we investigate how the signalling
g(A) will affect the controller’s ability to bring the process
through these working points.

4 Signalling from A to E, g(A)
The signalling from A to E represented by the function
g(A) is a part of the dynamic model of the controller
species E given in Eq. (2). Hence, the complexity of the
signalling g(A) will therefore, to a large degree, deter-
mine whether the steady state combinations from the pre-
vious subsection are obtainable when closing the feedback
loop. As Figure 8 illustrates, the task of the controller is to
match the low and high limits of A and E, and is therefore
not directly affected by perturbation levels.

The procedure in this subsection is similar to what we
did in the previous subsection, i.e. we apply the signalling
g(A) and insert each of the two steady state combinations
in Eqs. (3) and (4) into Eq. (2). Thus, we have two equa-
tions and three unknowns i.e. kE

s , V E
max, and KE

M . For the
cases where we apply Hill based signalling, we have an
addition unknown parameter in the activation constant KE

a .
In general, the level of the synthesis rate kE

s and degra-
dation rate V E

max of E is a measure of the swiftness of
the controller (Thorsen et al., 2016). These two param-
eters are therefore individually not a part of the steady

Figure 8. An illustration showing that the controller part is only
dependent on the low and high levels of E and A, and indirectly
dependent on the perturbation levels.

state properties of the controller. However, their ra-
tio participate in the definition of the physiological set-
point (Thorsen et al., 2016), which represents the steady
state levels of E. In this subsection, we therefore specify
one of the parameters, i.e. V E

max=1, and calculate the other.

4.1 Linear Signalling
In case of linear signalling, we have g(A) = A. The two
unknown parameters KE

M and kE
s are calculated by solving

the two versions of Eq. (2). Interestingly, in order to find
positive solutions to these parameter, the following condi-
tion on the steady state levels must be satisfied

Ehigh

Elow
>

Ahigh

Alow
(16)

Thus, if the variation in the controlled variable A is too
large compared to the variation in the manipulated vari-
able E, the controller is not able to bring the process
through the identified working points using linear activa-
tion.

4.2 First Order Hill Signalling
If we apply first order Hill signalling from A to E, we have

g(A) =
A

KA
a +A

(17)

One could expect that this saturable expression would
complicate the process of finding a suitable controller
even further, i.e. introducing stricter conditions compared
to Eq. (16). However, to our surprise, the signalling in
Eq. (17) enables us to identify controllers where Eq. (16)
is not fulfilled. Thus, if the low and high steady state levels
of E and A do not satisfy Eq. (16), the following additional
condition on KA

a

KA
a <

Ahigh ·Alow ·
(
Ehigh−Elow

)
Ahigh ·Elow−Alow ·Ehigh

(18)

will make the control system feasible. The expression in
Eq. (18) is found in the symbolic expression for the so-
lution to KE

M and kE
s when solving the two versions of

Eq. (2).
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In order to illustrate this phenomena, we show in Fig-
ure 9 three different simulations where

A ∈ [Alow,Ahigh] = [1,3] (19)
E ∈ [Elow,Ehigh] = [2,5] (20)

Note that we have reduced Ehigh=5, and hence, the con-
dition in Eq. (16) is therefore not satisfied. The signalling
f (E) from E to A is in all three simulations based on the
first order Hill kinetics in Eq. (12). Thus, using the new
low and high levels in Eqs. (19) and (20), the optimum KE

a
is found to be KE

a =3.16.
For the linear signalling g(A)=A, we get the dashed

lines in Figure 9. We note that, as expected, the controller
is not able to bring the process through the working points.
The solid line in Figure 9 represents the first order Hill sig-
nalling in g(A) where the constraint on KA

a in Eq. (18) is
met, i.e. KA

a =5 < 9. In order to show the effect of not sat-
isfying either Eq. (16) nor Eq. (18), we have included this
simulation as dotted lines as well. Both parameters KE

M
and kE

s are kept constant for all three simulations. In order
to avoid negative values of A, we have used KA

M = 0.001.

Figure 9. Simulations of controller motif 5 using three dif-
ferent signalling events between A and E, constrained by the
steady state levels in Eqs. (19) and (20). Solid lines: First
order Hill signalling using KA

a =5, satisfying the condition in
Eq. (18). Dotted lines: First order Hill signalling using KA

a =10,
violating the condition in Eq. (18). Dashed lines: Linear sig-
nalling. Other parameter values used in these simulations are:
KA

M=0.001,KE
a =3.16,V E

max=1,kE
s =0.44 and KE

M=25.

4.3 Second Order Hill Signalling
Extending the Hill signalling to second order, we have

g(A) =
A2

(KA
a )

2 +A2 (21)

Similar to the above results, we find conditions on both
i) the values of steady state levels (similar to Eq. (16))

and ii) the parameter KA
a (similar to Eq. (18)). These new

conditions are shown in Eqs. (22) and (23).

Ehigh

Elow
>

A2
high

A2
low

(22)

KA
a <

√(
Ehigh−Elow

)(
ElowA2

high−EhighA2
low

)
ElowAhighA−1

low−EhighAlowA−1
high

(23)

We observe that the condition in Eq. (22) is stricter com-
pared to Eq. (16). Moreover, inserting the steady state
levels in Eqs. (19) and (20) into Eq. (23) reveals that also
this condition is strengthened compared to first order Hill
signalling.

5 Conclusions
We have in this paper investigated the effects of differ-
ent signalling kinetics between the controlled and manip-
ulated variables in physiological regulatory systems. The
results indicate that the level of complexity in the sig-
nalling certainly has an influence on the disturbance re-
jection properties.

By introducing first order Hill signalling from E to A
via the function f (E), we initially experience a drop in
performance in both range (∆ki

p) and ratio (λki
p). However

if we allow second order Hill signalling the performance
becomes comparable to the linear case, and by allowing
higher order Hill signalling we find that the ratio ∆ki

p is
significantly improved over linear signalling.

In the signalling from A to E, represented by the func-
tion g(A), we find that the introduction of Hill signalling
allows us to model data which would not be possible when
using linear signalling.
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