
A Simulation Environment for Efficiently Mixing Signal Blocks
and Modelica Components

Ramine Nikoukhah Masoud Najafi Fady Nassif

ALTAIR ENGINEERING, FRANCE, ramin@altair.com

Abstract
There exist several specialized tools that provide environ-
ments for the development and simulation of either pure
Modelica models or pure signal based models. These en-
vironments have each their own advantages and flaws.
solidThinking ActivateTM has been developed to mix
these domains and take advantage of both of these ap-
proaches to system modeling. This paper presents this
mixed Signal-Modelica environment, and in particular the
efforts and challenges faced in its development.
Keywords: Modelica tool, Signal based tool, FMI

1 Introduction
The Modelica R© language1 and tools are successfully used
for modeling physical systems in industrial applications.
This success is primarily due to the ability of Modelica to
express mathematical equations corresponding to physical
phenomena in a natural way (Modelica Association; Peter
Fritzson).

For modeling complete systems, for example systems
including controllers, Modelica provides other features
that makes it go beyond a declarative language for ex-
pressing equations. Data types other than reals, algorithm
sections, Matlab-like matrix operations are introduced to
dispense of the use of other tools, in particular Matlab R©

and Simulink R© for handling models with control compo-
nents. Yet, still in many applications, the design process
requires using Modelica to model the physical plant and
exporting the model in the Matlab/Simulink environment
for controller design. The reason for this is in part the
limitations of the Modelica language, which is not well
suited for creating block diagrams, such as the ones used
in control applications, for which specialized tools such as
Simulink, Scicos (Campbell et al., 2010), and solidThink-
ing ActivateTM have been developed.

In an attempt to provide an environment for modeling
efficiently both blocks and physical components, in 2002
Modelica was introduced in the Scicos environment in the
framework of the publicly funded project RNTL (Réseau
National des Technologies Logicielles) Simpa (Simula-
tion pour le Process et l’Automatique). This Scicos ex-
tension (Najafi et al., 2004, 2005a,b; Nikoukhah, 2006;
Nikoukhah and Furic, 2009) allowed Scicos users to

1http://www.modelica.org.

mix both standard Scicos blocks and Modelica compo-
nents in the same environment. A similar extension was
later introduced in Simulink with the introduction of the
SimscapeTM language (Simscape).

Scicos/Modelica environment based on the Modelicac
compiler (Furic, 2007) provides a versatile modeling envi-
ronment, especially thanks to the Coselica library2. Even
though this extension allows Scicos users to use some
Modelica components in the construction of their models,
it has many limitations. For example Modelica libraries
cannot be automatically imported and used in Scicos.

Activate is a professional simulation tool developed by
Altair Engineering based on the open source academic
simulation software Scicos. As such, it inherits many
of Scicos features including the close integration with a
matrix-based scripting and programming language. In
Activate, the HyperMath Language (HML) has replaced
Scilab3 and NSP4. And for the Modelica extension, Scicos
Modelicac has been replaced with the MapleSimTM com-
piler developed by Maplesoft5 in Activate.

Activate and Scicos both use the same mechanism to
integrate Modelica: at compile time, they aggregate Mod-
elica components and create a Modelica program which
is then processed by the Modelica compiler providing
the C code corresponding to the simulating function of a
block replacing these Modelica components in the origi-
nal model6. The Activate environment however provides
specific features that has allowed taking the Modelica in-
tegration beyond what is available today in Scicos. This
paper presents this new modeling environment.

2 Motivations
It is widely agreed upon that for many applications Mod-
elica today does not provide a viable alternative to block-
based modeling tools such as Simulink, Scicos and Ac-
tivate. The limitations imposed by the language make it
difficult to provide the types of blocks that are needed

2http://www.kybdr.de/software.
3http://www.scilab.org
4https://cermics.enpc.fr/~jpc/nsp-tiddly
5http://www.maplesoft.com
6A noteworthy difference is that in Scicos this simulation function

represents a DAE (Differential Algebraic Equations) forcing Scicos to
use a DAE solver, whereas in Activate the simulation function is pro-
vided as a model-exchange FMU representing ODEs. This difference
however is not relevant to the presentation here.

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

831



Figure 1. Different modules in Activate and their interactions.

to model control systems. For example creating a sim-
ple multiplexer block capable of concatenating a variable
number of vectors and scalars of different data types is
complicated in Modelica. Same is true for the summa-
tion block and many other basic mathematical operations
(Elmqvist et al., 2016).

Other limitations come from the lack of a powerful sup-
porting math environment. The computation of model pa-
rameters, post processing of the simulation results, etc.,
require access to math and engineering libraries, which
could in theory be developed or interfaced in Modelica,
but would require an enormous and lasting effort. In
short it would amount to developing alternatives to Mat-
lab, Scilab, HML, or Nsp, including their specialized tool-
boxes in control, signal processing, communication, opti-
mization, etc. Some Modelica tools already use other lan-
guages, for example Maple and Python, for such support.

A reasonable solution to this problem is to base the sim-
ulation environment on a “User Language”, preferably a
matrix-based mathematical language such as Scilab, Mat-
lab, Nsp, Octave, HML, or even on non-matrix based
languages such as Python and LUA. The key point is to
give users the ability to interact with the simulation model
through this language for anything from block/component
creation, model construction, parameterization, compila-
tion, code generation and simulation to data collection,
post processing, optimization, and more. The Scicos en-
vironment was developed in this spirit with Scilab as User
Language. Matlab is the User Language for Simulink and
Simscape.

A very interesting effort in this direction is under-
taken in (Elmqvist et al., 2016), where a complete re-

implementation of Modelica is considered with Julia7 as
User Language. This undertaking is very ambitious in that
the Underlying Language is also used for defining the dy-
namics of blocks and components. The Activate/Modelica
environment presented here is developed with this consid-
eration in mind and follows the spirit of Scicos but uses
HML as the Underlying Language. It does not go as far as
defining dynamics of blocks in HML (except for embed-
ded code generation purposes (Chancelier and Nikoukhah,
2015)); but rather it makes a clear distinction between the
block/model creation and compilation, and runtime sim-
ulation. Model creation, evaluation and compilation, and
in general anything that can be done before the start and
after the end of runtime simulation are based strongly on
the User Language. On the other hand the block dynamics
need not be based on the User Language. The “standard”
(Signal) Activate blocks have in general their runtime sim-
ulation functions expressed in C, and the equations of Ac-
tivate physical components are expressed in Modelica.

This approach allows the Activate/Modelica environ-
ment to take advantage of existing technologies: Acti-
vate (synchronous semantics, block libraries, compiler,
Simulink import (Weis, 2015) facility) and Modelica (ex-
isting Modelica compilers, in particular the MapleSim
compiler, and existing Modelica libraries such as MSL).

3 Activate/Modelica environment fea-
tures

Activate is not a Modelica tool per se; it cannot be used
conveniently to build Modelica libraries. Its objective is to
propose a unique harmonious environment to allow mix-
ing regular Activate blocks and Modelica components in a

7http://julialang.org.

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

832 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831



same model. The user interface and behavior of Modelica
blocks and regular Activate blocks are designed to be as
similar as possible without being too different from user
interface of other Modelica tools. The Modelica compo-
nents are seen as regular Activate block in this environ-
ment.

3.1 Modularity
A key architectural element in Activate is modularity. The
diagram in Figure 1 shows different modules that consti-
tute Activate. There are three main modules, the graphical
user interface, the interpreter language, and the Activate
engine. The graphical user interface and the interpreter
can be replaced with similar modules fairly easily. For ex-
ample the HML interpreter can be replaced with another
interpreter, and alternative user graphical interfaces (for
example javascript based tools) can be considered. The
other module that can easily be replaced is the Model-
ica compiler. Currently the MapleSim compiler is used.
In Scicos, Modelicac was used. Other compilers may be
considered in the future.

The modularity between the engine and the graphical
user interface is enforced by the usage of file based ex-
changes. The model, once edited is saved in an XML for-
mat and the engine uses this file to proceed with the com-
pilation and simulation. The modularity of the interpreter
is guaranteed through the specification of a set of APIs
for the exchange with the graphical user interface and the
engine.

3.2 Double layer implementation
In the Activate environment, a model is constructed using
blocks. The compiler however does not operate on these
blocks; it interacts with Atomic Units (AU). In many cases
a block is associated with a single AU, but not always: a
block may produce a network of AUs. The AU or AUs
produced by a block may depend on the values of the
block parameters. Specifically, the choice of the AU(s),
their parameters, and the topology of the network is spec-
ified by an HML function associated with the block based
on the values of the block parameters.

The ability to programmatically instantiate an AU or a
network of AU(s) is an elementary feature in Activate but
provides a particularly useful functionality in the context
of Modelica components, as it will be described later.

Atomic unit (AU)

An AU may be presented as a "basic" block, but this would
be misleading. An AU has ports that are connected to
links, just like a block. It has parameters, like a block, but
these parameters are not in general the block parameters.
Consider for example the Activate block that implements
a transfer function. The block parameters are the numer-
ator and the denominator coefficients of the transfer func-
tion. The AU associated with this block operates in time
domain and implements the dynamics based on the state-
space realization of the transfer function. The parameters

of the AU in this case are the A, B, C, D matrices, which
are computed by the HML function associated with the
block.

In general an AU is a computational unit providing
APIs to be used by the simulator. The APIs are C func-
tions that are called by the simulator at different stages
of the simulation: computation of the output, of the state
derivative, of the next discrete state, etc. But the AUs can
also be Modelica components. An AU may also be virtual.

The creation of AUs from Activates blocks based on
a User Language script is a process that does not have
an equivalent in standard Modelica or in Simulink (S-
Functions). This process, which provides a clear sepa-
ration between the model at the graphical layer and at the
compiler layer, has been first implemented in Scicos.

3.3 Modelica components
In Activate, Modelica components are Activate blocks and
treated as such in the graphical editor. They are also
treated similarly at the evaluation phase, prior to com-
pilation. This means that certain properties of Modelica
components that are coded as annotations are handled by
the corresponding Activate XML file and HML evaluation
script. These properties include in particular the graphical
properties and the parameter descriptions. When a Mod-
elica library is imported into Activate, these component
annotations are used to create the Activate blocks. These
annotations are never directly used in Activate.

So, having the Modelica component as an Activate
block means that all graphical features, parameter defini-
tions, code instantiations, ..., are done in the usual Activate
way. The use of Activate block to instantiate the Model-
ica components provides facilities that allows for example
the creation of components with variable number of ports
or different data types based on block parameters. The
Activate block is thus a lot more versatile than a standard
Modelica component; even the internal Modelica code of
the block/component can be customized. At the extreme
case, the Modelica code itself could become a block pa-
rameter.

On the graphical editor, the visible difference between
a regular Activate block and a Modelica Activate block is
that the latter has special (implicit) ports. No connections
can be made between these ports and other Activate port
types. Two special interface blocks are used to interface
the Modelica world with the regular Activate world. One
has an implicit input port and a regular output port and
the other, the opposite (see Figure 2). Such connections
are meaningful only if the the connection on the Modelica
side is of type Modelica Signal.

Figure 2. Special blocks for Modelica-Activate world interface

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

833



Importing Modelica libraries

The import of a Modelica library is done by the MapleSim
compiler, which creates HML scripts, the execution of
which create the corresponding Activate library. An Acti-
vate library is a collection of XML files, HML functions,
image icons and palettes. The MapleSim compiler also
uses the definition of component icons described in Mod-
elica language to generate image files (svg format) to
be used by Activate as block icons. Certain features such
as dynamical icons (icons changing during simulation) are
not supported.

Currently, most but not all MSL (Modelica Standard
Library) blocks are imported and integrated in Activate
palettes.

3.4 Model compilation
Compiling a model consists of producing a structure to be
used by the simulator. This structure contains all the in-
formation needed by the simulator that can be computed
before the start of the simulation. It contains in particular
type and size information, and scheduling tables specify-
ing the condition and the order in which AU computational
functions are to be called during simulation. The same
structure is used for code generation.

Model evaluation

The evaluation is the first phase of model compilation. In
this phase, the model parameters are evaluated and the
HML function associated with the blocks are executed
producing the network of AUs associated with the model.
Note that this network of AUs, which retains a hierarchical
structure, does not in general present a one to one corre-
spondence with the original block diagram model.

At the end of model evaluation phase, all model and
block scripts and parameters are removed. They are used
in this phase to construct the AUs and evaluate the numer-
ical values of their parameters. They are not available or
needed for the rest of the compilation process, which deals
exclusively with the network of AUs.

Model flattening

Model flattening is the second phase of the compilation.
The hierarchical network of AUs produced by the model
evaluation phase is converted into a flat network of com-
putational units. All virtual AUs are removed and all Mod-
elica AUs have been replaced with computational AUs (in
particular derived from an FMU produced by the Model-
ica compiler).

A simple example is provided in Figure 3. This model
contains an electrical circuit, modeled for the most part
using Modelica components. The regular Activate blocks
are the sine wave generator and the Scope. There are three
interfacing blocks connecting the Activate environment to
the Modelica environment.

The Modelica part is aggregated into a single block as
shown in Figure 4. This step is of course fully transparent
to the user and is presented here as an illustration of the

Figure 3. Simple Activate diagram containing Modelica com-
ponents.

way the mechanism operates. The newly created block
has one input and two outputs, as expected.

Figure 4. Equivalent Activate model after aggregation of Mod-
elica components.

The Modelica code corresponding to the Modelica part
is generated automatically by Activate and sent to the
Modelica compiler for compilation. The Modelica com-
piler then generates a corresponding FMU, which replaces
the Modelica part as shown in Figure 5. This step is of
course again transparent to the user and is presented here
as an illustration

Figure 5. Resulting regular Activate model with no Modelica
components.

Back-end compiler
In this phase, which consists of computing the scheduling
tables for the simulator, the structure contains no trace of
the Modelica components; they have been replaced with
computational AUs in the previous phase. So the introduc-
tion of the Modelica extension does not affect this phase.

4 Modelica integration through FMI
The way Activate handles the Modelica components is by
grouping them into a single Modelica model with inputs
and outputs that are clearly specified by special interfac-
ing blocks, as presented in the previous section. In the
Modelica code generated by the Activate compiler, the in-
terfacing blocks (shown in Figure 2) are instantiated as

Modelica.Blocks.Interfaces.RealInput
Modelica.Blocks.Interfaces.RealOutput.

The Modelica model is then compiled by the Modelica
compiler, which in turn generates a code executable in Ac-
tivate. This code is then imported in the Activate model as
an FMU to replace the Modelica part. The FMI has been

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

834 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831



chosen as the exchange format because it is a standard al-
ready supported both by Activate and MapleSim.

The FMI format is a rich interface format and quite
compatible with Activate and Modelica. There are how-
ever a few shortcomings that need to be considered. Some
challenges encountered in the usage of FMI standard in
this context is discussed in this section.

4.1 Choice of the FMI type: Model-Exchange
or Co-Simulation

The Modelica part of the Activate model is converted into
an FMU and imported as a regular Activate block. In the
exported FMU, both Model-Exchange and CoSimulation
implementations are available. Using the model-exchange
implementation allows taking advantage of different nu-
merical solvers of Activate. The co-simulation implemen-
tation is useful for complex models where different parts
of the model are needed to be simulated separately or even
in parallel. Currently only the model-exchange implemen-
tation is used in Activate.

4.2 FMI import preserving full output/input
dependency property

A challenge in importing the FMI generated from the
Modelica code (or more generally any FMI) in Activate
is the treatment of output/input dependencies. In the Ac-
tivate block (or more specifically its AU) output/input
dependencies are expressed as a vector of dependencies
specifying which inputs affect any of the outputs. So the
dependency is solely a property of an input port. The rea-
son is that an AU computes all of its outputs in the same
call, so all its dependent inputs must be up to date when
the call is made. An FMU on the other hand specifies
output/input dependencies as a matrix specifying which
output depends on which known variables including indi-
vidual inputs. The FMU provides routines that allow the
computation of output ports separately and take advantage
of variable caching.

A way to deal with this situation, which is the way the
Modelica extension is implemented in Scicos, is to simply
project the matrix of dependencies into a vector. This con-
servative approach properly assigns dependencies in Acti-
vate but "loses" information along the way. This may lead
in particular to detection of algebraic loops by the Acti-
vate compiler that are not true algebraic loops (artificial
algebraic loops). Even though there are ways to break al-
gebraic loops in an Activate model, it is not the best way
to deal with this situation. A very simple example that
illustrates this problem is shown in Figure 6.

After compiling the Modelica part, a model similar to
what is shown in Figure 7 is obtained in Activate. In the
generated FMU, there is a direct dependency between the
SignalCurrent input port (in) and the CurrentSensor
output signal (A). The dependency is depicted by a red
dashed line in Figure 7. If the dependency matrix is pro-
jected into a vector, both the output ports A and V are
considered depend on the input port in, which results in

Figure 6. A simple model mixing Modelica and Activate blocks

an artificial algebraic loop.

Figure 7. The model in Figure 6, after converting the Modelica
part into an FMU block.

There is no solution to this problem as long as the FMU
block implements a single AU. But as it was stated previ-
ously, Activate blocks can implement a network of AUs,
the topology of which can depend on block parameters. It
turns out that the matrix output/input dependency can be
properly implemented by a properly constructed network
of AUs to implement the FMU.

In this case the block parameters are provided by the
FMU XML file. By reading and parsing the XML inside
the FMU, the block generates a network of AUs, as shown
for example in Figure 8 in the case of a 2 input 4 output
FMU block. The network contains a central AU, always
present, and an AU associated with each output port. The
input dependency associated with an output is specified
in the AU associated with that output. In this particular
example it can be seen that the first output depends on
both inputs whereas the second output has no input de-
pendency, the third output depends only on the first input
and the last output depends on the second input.

The central AU includes the simulation APIs for state
derivative computation and discrete state updates and does
not have any input dependency. All the AUs in the net-
work use the same internal structure, which is instantiated
by the central AU. The central AU provides a pointer to
this structure to the other AUs through its output port.

In the case of the model in Figure 6, the network of
AUs is generated as in Figure 9. By using this network
to replace the FMU block, the resulting Activate model
contains no algebraic loop.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

835



Figure 8. Automatically generated network of AUs from FMU
import for an FMU with two input and four output ports.

Figure 9. The network of AUs corresponding to the example in
Figure 6.

4.3 DAE support and constraints on states
The current FMI standard is powerful enough to be used
for implementing the Modelica extension in Activate for
many situations but some extensions would be particularly
useful.

Compiling complex Modelica models, in particular me-
chanical models, very often results in high index DAEs or
sometime ODEs and DAEs with constraints. Keeping the
constraints valid is important to avoid drift in the solu-
tion. In the current FMI specification, only ODEs are sup-
ported. Activate currently supports both DAEs, and ODEs
with constraints. But these solvers cannot be used for the
Modelica extension since the FMI does not support DAEs
and ODEs with constraints.

The DAE support is currently being considered for
FMI. ODEs with constraints, should also be considered.
If it is known that an ODE ẋ = f (x) satisfies a constraint
C(x) = 0, information that could be available in various
scenarios, then the solver should take advantage of this
information to reduce drift in the solution. The constraint
information may be provided as a residual function return-
ing the constraint value, i.e., C(x), or as a projection func-
tion such as JT (JJT )−1 where J = ∂C

∂x .
This FMI extension can be done in several ways. One

way would be to add one of these APIs to FMI interface:

fmi2Projection(fmiComponent c, double *J)
fmi2Constraint(fmiComponent c, double *C)

If the second API is used, then the number of con-
straints should also be declared as an attribute in the XML

file inside the FMU.
Another way is to add a new function to the set of FMI

APIs in order to bring back the solution on the constraint
after each completed integration step.

fmi2ApplyProjection(fmiComponent c)

This function would apply a near-minimal projection
to the continuous states in the model. This is of-
ten done via a Newton-based method, and terminates
when it achieves the desired precision. This method can
be applied on single-step solvers where memory of the
past solution is not used. It will be necessary to call
fmi2GetContinuousStates after the projection to ob-
tain the continuous states satisfying the solution. Having
this as a separate function allows the simulator to choose
when it is applied (e.g. at the end of an integration step,
internal to the step, after events, etc.).

A third way, which does not require adding a
new API, a projection is implicitly applied when
fmi2CompletedIntegratorStep is called by the sim-
ulator. This solution would work only with single-step
solvers. No error tolerance control can be used on the con-
straints in that case.

4.4 Handling input derivatives
Consider the simple example shown in Figure 10. In this
model the derivative of the input is required.

Figure 10. model requiring the derivative of inputs

When the time derivative of an input is required, the
derivative can be computed numerically inside the FMU,
but this does not always work for variable-step size solvers
since the derivative value is not necessarily stable as the
integrator step-size changes. Furthermore, at initial step or
just after an event that changes the internal model config-
uration, no derivative can be computed. If there are con-
straints that depend on these derivatives, the integration
step rapidly reduces to zero, stalling the simulation. In
FMI for CoSimulation, the derivative of inputs can be pro-
vided via the API fmi2SetRealInputDerivatives,
but nothing is available for ModelExchange FMI. The
only robust alternative currently is to add an extra input
port to provide the derivative of input from the environ-
ment, if available.

4.5 Using the Jacobian of the FMU
The numerical solvers often need the Jacobian of the
model for numerical integration. The Jacobian can ei-
ther be provided analytically or computed numerically. In

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

836 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831



complex models providing the analytical Jacobian is cru-
cial for obtaining reliable results. The FMU block8 may
provide directional derivatives of its state derivatives and
outputs with respect to its states and inputs. These direc-
tional derivatives can be used to compute the equivalent
linear model of the block. If an FMU block with nonlinear
dynamics defined as (1) provides its directional derivatives{

ẋ = f (x,u)
y = g(x,u), (1)

The matrices (A,B,C,D) as defined in (2) can be obtained
by repeated calls to fmi2GetDirectionalDerivative
function in FMI.

A = ∂ f
∂x B = ∂ f

∂u
C = ∂g

∂x D = ∂g
∂u

(2)

The (A,B,C,D) matrices are equivalent linear system of
the FMU block. The numerical solver, on the other hand,
needs the complete Jacobian of the entire model which
may be composed of other FMU blocks and other regular
Activate blocks. In order to obtain the complete Jacobian
of the model, Activate offers the following solutions.

• Computing a pure numerical Jacobian, i.e., ignoring
the local analytical linear system of blocks and com-
pute the complete Jacobian of the model using the
numerical differentiation method. This method usu-
ally works fine and it is fairly fast, but may fail for
complex stiff models.

• Mixing numerical and analytical Jacobian. In many
cases, the highly nonlinear part of the Jacobian of the
model is present in matrix A of the block. The ana-
lytically obtained matrix A of blocks may be used to
populate the Jacobian matrix of the model, then the
rest of the Jacobian matrix can be filled numerically.
This methods works fine, and is the default method
in Activate.

• Fully analytical method. This method which is more
complex than other two methods is useful if all
blocks provide their analytical equivalent linear sys-
tem matrices (A,B,C,D). Since this method does not
require calling the f (x,u) and g(x,u) function in (1),
it is useful when calling these functions is expensive.

5 Challenges
Activate is not a Modelica tool and cannot provide the
same Modelica functionalities as do pure Modelica tools
such as Dymola or OpenModelica. Modelica is an exten-
sion for the modeling and simulation environment Acti-
vate. Efforts have been made to provide a user-friendly
interface both for native Activate users as well as Model-
ica component users in this environment. There are cur-
rently a number of limitations in this extension.

8Only FMI-2.0 blocks provide directional derivative.

Modelica expressions, records and functions

The parameters of Modelica components present in an Ac-
tivate models follow the scoping rules of Activate. So the
records and functions used in the definition of parameters
in Modelica are not always consistent with the way Acti-
vate handles parameters. This creates a complex problem
for importing Modelica components. A translator of ex-
pressions is being developed to deal with this issue. For
importing models, the records should be converted into
HML scripts to be placed in Activate diagram contexts.
This is a complex task, in general, but solutions have been
found in special cases.

Initial equations

Initial equations in Modelica are global information that
are not related to a specific component. Adding such in-
formation, even in specialized Modelica tools, cannot be
easily done in the user interface and must be added textu-
ally. Since Activate does not provide a textual interface,
the addition of initial equations currently is not possible.
Various solutions are being considered but for the moment
Activate does not allow the definition of initial equations
in models. Initial equations in library components are of
course handled by the compiler as usual.

6 Conclusion
Activate provides a complete environment for modeling
systems with both physical components and signal based
control parts where the physical components are modeled
in Modelica. The integration of Activate and Modelica
is done by respecting the semantics of the two languages.
But there remain issues for going towards full Modelica
support. This paper has presented the Modelica extension
in Activate and the issues that remain open.

References
Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine

Nikoukhah. Modeling and Simulation in Scilab/Scicos with
ScicosLab 4.4. Springer-Verlag New York, 2010. ISBN 978-
1-4419-5526-5.

Jean-Philippe Chancelier and Ramine Nikoukhah. A novel code
generation methodology for block diagram modeler and sim-
ulators scicos and VSS. CoRR, abs/1510.02789, 2015. URL
http://arxiv.org/abs/1510.02789.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter. Sys-
tems modeling and programming in a unified environment
based on julia. In Proceedings of the ISoLA 2016 - 7TH Inter-
national Symposium On Leveraging Applications of formal
methods, verification and validation; 2016, pages 198–217,
2016.

Sébastien Furic. Using modelica under scilab/sci-
cos, 2007. URL http://www.scicos.org/
ScicosModelica/Formation/Documentation/
IntroductiontoModelica.pdf.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

837



Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
Wiley, 2014. ISBN 9781-118-859124.

Modelica Association. The Modelica Language Spec-
ification, Version 3.3 Revision 1, 2014. URL
https://www.modelica.org/documents/
ModelicaSpec33Revision1.pdf.

Masoud Najafi, Azzedine Azil, and Ramine Nikoukhah. Ex-
tending scicos from system to component level simulation.
In Proceedings of the ESMc2004 international Conference;,
Paris; France; October, 2004, 2004.

Masoud Najafi, Sébastien Furic, and Ramine Nikoukhah. Sci-
cos: a general purpose modeling and simulation environment.
In Proceedings of the 4th International Modelica Conference;
Hamburg; 2005, 2005a.

Masoud Najafi, Ramine Nikoukhah, Serge Steer, and Sébastien
Furic. New features and new challenges in modeling and sim-
ulation in scicos. In Proceedings of the IEEE conference on
control application; Toronto; Canada; August, 2005, 2005b.

Ramine Nikoukhah. Challenges in integrating modelica in the
hybrid system formalism scicos. In Claude Gomez Shi Li,
Long-Hua Ma, editor, The Oxford Handbook of Innovation.
Tsinghua University Press, Beijing, 2006.

Ramine Nikoukhah and Sébastien Furic. Towards a full inte-
gration of modelica models in the scicos environment. In
Proceedings of the 7th International Modelica Conference;
Como; Italy; 20-22 September 2009, pages 641–645, 2009.

Simscape. Physical systems simulation. URL https://www.
mathworks.com/products/simscape.html.

Pierre Weis. Simport: A simulink model importer for scicos.
In Proceedings of The 3rd International Workshop on Simu-
lation at the System Level for Industrial Applications; Ecole
Normale Supérieure de Cachan, France, October, 2015.

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

838 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831


