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Abstract 
This paper discusses language innovations for future 

Modelica versions, on the one hand for generally appli-

cable language elements, and on the other hand to im-

prove modeling of multibody systems with contacts, and 

media modeling. In a companion paper new algorithms 

are proposed to handle much larger models than can be 

treated today. All these innovations are developed and 

evaluated with the experimental modeling and simula-

tion environment Modia. Modia is based on Julia, a 

powerful programming language with strong focus on 

scientific computing, meta-programming and just-in-

time compilation that allows very fast development. The 

modeling language is directly defined and implemented 

with Julia’s meta-programming constructs and is de-

signed tightly together with the symbolic and numeric 

algorithms. This approach is very well suited for inno-

vation and experimenting with evolutions of modeling 

capabilities in Modelica. 

Keywords: Modelica, Modia, Julia, modeling, simula-
tion 

1 Introduction 

The objective is developing and testing innovations for 

future Modelica versions with reasonable effort both 

from a language point of view as well as for new sym-

bolic and numeric algorithms that are tightly designed 

together with the language elements. To achieve this 

goal, an experimental modeling and simulation environ-

ment called Modia is under development. Modia uses a 

Modelica-like language. It shall be both simpler and 

more powerful than Modelica 3.3 (Modelica Associa-

tion, 2014) and takes into account the experience gained 

with Modelica in the last 20 years. 

New algorithms have been already developed and 

test-implemented in Modia and are described in the 

companion paper (Otter and Elmqvist, 2017). For exam-

ple, arrays defined in a model stay as arrays in the gen-

erated code, even if (array) equations need to be differ-

entiated. This is a pre-requisite to handle much larger 

models than what can be treated with current Modelica 

tools. 
In addition to equations, Modelica has a function con-

cept for procedural programming of tasks, such as table 

look-up, media calculations and control system imple-

mentations. The function part of Modelica is, however, 

not rich enough. There are no advanced data structures 

such as union types, no matching construct. Type infer-

ence is missing with the implication that there are pres-

ently separate blocks for adding Reals, Integers and 

Complex numbers. The evolution of Modelica has 

slowed down since it’s a too large task to make a full 

algorithmic language. Instead of inventing all such fea-

tures, it makes sense to use another language as a base. 

Julia (Bezanson, et al., 2017) is a very promising lan-

guage design effort with focus on scientific computing 

and has many of the properties needed to complement 

the equational style for modeling. Julia also allows def-

inition of real equations (expression = expression). Fur-

thermore, advanced meta-programming features are 

available which are suitable for symbolic treatment of 

equations before just-in-time compilation.  

Julia allows developing a modeling language together 

with a public reference implementation so that language 

features and symbolic/numeric algorithms are designed 

tightly together. Native Julia functions are used in mod-

els and equations use Julia syntax.  

Examples of other research oriented language designs 

for modeling are: SOL (Zimmer, 2010), Hydra (Giorgi-

dze and Nilsson, 2009) and Modelyze (Broman and 
Siek, 2012). There is also one experimental simulation 

package for Julia called Sims (Short, 2012). Sims does 

not make any structural and symbolic processing 

though, but has event handling. It is based on ideas from 

Modelyze and Hydra. 

This paper introduces major language constructs of 

Modia and proposes new language features for future 

Modelica versions. Other aspects of Modia and its im-

plementation are given in (Elmqvist, et al., 2016).  Mo-

dia is available from https://github.com/ModiaSim. 

2 Modia Language Design 

2.1 Model with differential equations 

Modia is a domain specific language extension of Julia 

by means of structured macros, that is, the Julia parser 

is used to parse Modia models.  
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A simple first order example model is shown below: 

@model FirstOrder begin 

  x = Variable(start=1)  

  T = Parameter(0.5, "Time constant") 

  U = 2.0 

@equations begin 

  T*der(x) + x = u  

  end 

end 

@model is a call to the Modia macro called model. The 

first part after begin is used for variable and component 

declarations by means of calling constructors. The sec-

ond part inside the @equations macro contains differ-

ential and algebraic equations as well as connections. # 

starts a Julia comment. Semicolons can be omitted in 

Julia. 

The constructor Variable is used to declare x with 

a start value of 1. In general it constructs instances of 

ordinary variable types and arrays of those. It is a Julia 

composite type which in addition to its value also allows 

specifying type, min, max, variability, start value, info, 

etc. The constructor Parameter is a specialization of 

the Variable constructor which sets the variability to pa-

rameter, that is, a quantity that is changeable before sim-

ulation starts but constant during simulation. There is 

also a special short hand notation to define parameters 

by just giving a default value. This notation is used to 

define the parameter u. The operator der() denotes the 

time derivative of its argument. 

The corresponding Modelica model is: 

model FirstOrder  

  Real x(start=1); 

  parameter Real T=0.5 "Time constant"; 

  parameter Real u = 2.0; 

equation  

  T*der(x) + x = u; 

end FirstOrder; 

Modia uses the Julia way to declare variables with con-

structor calls. The benefit with respect to current Mod-

elica is a simpler syntax since value, variability, info, 

etc. are all given in the constructor calls. This allows to 

easily extending the language with new attributes/prop-

erties in the future.  

2.2 Coupled models 

In order to couple models, the interfaces need to be de-

fined. For simplicity of the language and its implemen-

tation, this is currently described as a @model (and 

might be improved in the future by a dedicated @con-

nector macro): 

@model Pin begin 

  v = Float() 

  i = Float(flow=true) 

end 

Float is a specialization of Variable with fixed type 

Float64. The flow variable, i, is marked with an attrib-

ute flow=true. Such a Pin can be used to define the 

terminals p and n of an electrical resistor: 

@model Resistor begin 

  p = Pin() 

  n = Pin() 

  v = Float() 

  i = Float() 

  R = Parameter(info="Resistance") 

@equations begin 

  v = p.v - n.v # Voltage drop 

  0 = p.i + n.i # KCL within component 

  i = p.i 

  R*i = v # Ohm’s law 

  end 

end 

An electrical component library has been developed 

containing also Capacitor, Inductor, VoltageSource, etc. 

A low-pass filter can then be defined as a set of con-

nected components:  

@model LPfilter begin  

  R = Resistor(R=100) 

  C = Capacitor(C=0.001) 

  V = ConstantVoltage(V=10) 

@equations begin 

  connect(V.p, R.p) 

  connect(R.n, C.p) 

  connect(C.n, V.n) 

  end 

end 

The function connect has the same meaning as in Mod-

elica. Note, that no ground component is needed because 

the missing ground can be automatically handled with a 

new algorithm described in (Otter and Elmqvist, 2017). 

Modia is used to evaluate whether this simplification is 

reliable and transparent for the user. The diagram of a 

corresponding Modelica model is shown in Figure 1. 

 
Figure 1. Low pass filter (without ground object) 

2.3 Inheritance 

There are several electrical components that share the 

property of having two Pins. Such components are 

called OnePorts. Similarly to Modelica, it is possible to 

describe the common properties once and inherit them. 

The common properties are: 

@model OnePort begin 

  p = Pin() 

  n = Pin() 

  v = Float() 

  i = Float() 

@equations begin 

  v = p.v - n.v # Voltage drop 

  0 = p.i + n.i # KCL within component 

  i = p.i 

  end 

end 

The Resistor model can then be simplified: 

@model Resistor begin 
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  @extends OnePort() 

  @inherits i, v 

  R = Parameter(info="Resistance") 

@equations begin 

  R*i = v # Ohm’s law 

  end 

end 

The @extends macro incorporates all declarations and 

all equations from OnePort. The OnePort variables 

can be accessed by this.v and this.i in the equa-

tions of the Resistor. The @inherits macro enables 

to directly use variables i and v.  

2.4 Type and size inference 

The Modelica Standard Library (Modelica Association, 
2016) contains similar models operating on different 

data types. One example is switches, which based on a 

Boolean signal select between two Real, two Booleans, 

or two Complex numbers. There is a desire in the Mod-

elica community to unify this situation by means of type 

inference.  

To experiment with type and size inference, such a 

feature is included in Modia: Variable constructors do 

not need to specify type and size. Types and sizes can 

be inferred from the environment of a model or start val-

ues provided, either initial conditions for states or ap-

proximate start values for algebraic constraints. 

A generic switch that can be applied to matrices and 

strings as well, can be then defined as: 

@model Switch begin 

  sw = Boolean() 

  u1 = Variable() 

  u2 = Variable() 

  y = Variable() 

@equations begin 

  y = if sw; u1 else u2 end 

  end 

end 

2.5 Variable Declarations 

There are, however, cases when size and type inference 

based on start values is not natural, for example, when 

algebraic equations form a linear system of real simul-

taneous equations. In such a case, the solution is inde-

pendent of any start value and only size needs to be 

given. 

It is possible to provide type information in variable 

declarations using the type parameter T in the Varia-

ble constructor or its short version Var: 

v1 = Var(T=Float64) 

It is unspecified if the variable v1 is a scalar or array of 

Float64. It is possible to provide information that a 

variable is of array type with a certain number of dimen-

sions: 

array = Var(T=Array{Float64,1}) 

matrix = Var(T=Array{Float64,2}) 

The size can be fixed using the size attribute: 

scalar = Var(T=Float64, size=()) 

array3 = Var(T=Float64, size=(3,)) 

matrix3x3 = Var(T=Float64, size=(3,3)) 

The size is given with the tuple constructor according to 

the result of the Julia size function. Empty tuple, (), 

means scalar. A vector size is given as a tuple with the 

size. Such a tuple with one element needs a comma to 

distinguish it from an expression within parenthesis. 

When the size attribute is given, T denotes the array el-

ement type. 

There is also a FixedSizeArrays module for Julia 

(Danish, 2014) which gives faster code since stack allo-

cation is possible and garbage collection avoided. The 

corresponding Modia declarations are then: 

fixedArray3 = Var(T=Vec{3,Float64}) 

fixedMatrix3x3 = Var(T=Mat{3,3,Float64}) 

SI units can be given using the Julia SIUnits module 

(Fisher, 2013). It has predefined types such as: Meter, 
KiloGram, Second, Ampere, Kelvin, Mole, 

Candela, Radian, Steradian, Joule, Cou-

lomb, Volt, Farad, Newton, Ohm, Siemens, 

Hertz, Watt, Pascal. A Modia variable with unit 

Volt is declared as: 

v2 = Var(T=Volt) 

There is an option in the SIUnits module to use units 

with shorter names (m, kg, etc) (and * is not needed be-

tween literal and identifier), for example: 

m=2.5kg 

length=5m 

However, this feature is not useful since unit m would 

then be in the same name space as the variable m. Inves-

tigations are being made to allow a local scope for units 

after literals using a syntax with [ ]: 

m=2.5[kg] 

length=5[m] 

2.6 Type Declarations 

To avoid repeatedly typing type and size information, 

it’s possible to define alternative variable constructors 

outside the @model macro: 

Float3(; args...) = Var(T=Float64,  

  size=(3,); args...) 

Voltage(; args...) = Var(T=Volt;  

  args...) 

The notation "; arg... " denotes a list of keyword 

arguments which are just passed to the Variable con-

structor using the same notation. This means that a 3-

vector with start attribute and a three-phase Voltage 

variable can be declared as: 

v3 = Float3(start=zeros(3)) 

v4 = Voltage(size=(3,), start=[220.0, 

  220.0, 220.0]Volt)  
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2.7 Redeclaration of submodels 

With the "replaceable" language element, Modelica has 

a powerful concept to exchange submodels on a lower 

level. However, it is complicated to understand and dif-

ficult to implement for tools. Furthermore, it is not pow-

erful enough for certain applications, because redeclara-

tions cannot be controlled by variables and they must be 

planned in advanced, because only models can be re-

placed that are marked to be replaceable. 

A simpler and more powerful concept for redeclara-

tions has been tested in Modia and follows naturally 

from the constructor style of declaration using expres-

sions, as shown in the following example: 

MotorModels = [Motor100KW, 

               Motor200KW, 

               Motor250KW] # Modia models 

selectedMotor = motorConfig(  ) # Int 

 

@model HybridCar begin 

  @extends BaseHybridCar( 

    motor = MotorModels[selectedMotor](), 

    gear  = if gearOption1; Gear1(i=4) 

            else Gear2(i=5) end) 

end 

In model BaseHybridCar every submodel can be re-

placed without being marked. In particular new motor 

and gearbox models are provided. The motor model is 

selected from an array of Modia models via an integer. 

The gearbox model is selected based on a logical condi-

tion. Such flexible types of redeclarations cannot be for-

mulated in Modelica 3.3. 

2.8 Multi-mode Modeling 

Several attempts have been made to generalize the se-

mantics of Modelica to allow mode changes, for exam-

ple (Mattsson, et al., 2015). However, only a limited 

classes of problems could be handled. One reason is the 

imposed restriction that the equations are only processed 

once, code is generated and this code should hold for all 

mode changes. There are academic simulation proto-

types that dynamically process and switch equations 

during run-time, such as (Zimmer, 2010; Höger, 2014). 

The question is how to incorporate such ideas in to Mod-

elica and Modelica tools with the goal to solve real-

world industrial problems. 

First investigations have been carried out in Modia to 

experiment with changing model structure. Consider the 

model of an electrical motor with a load in Figure 2. The 

shaft between motor and load breaks at a certain time. 

 

Figure 2. Electrical motor, load and breaking shaft. 

 

The breaking shaft can be modelled as follows using 

conditional equations: 
 

@model BreakingShaft begin 

  flange1 = Flange() 

  flange2 = Flange()  

  broken = Boolean() 

@equations begin 

    if broken 

      flange1.tau = 0 

      flange2.tau = 0 

    else 

      flange1.w = flange2.w 

      flange1.tau + flange2.tau = 0 

    end 

  end 

end 

 

Figure 3 shows the angular speeds of the two inertias 

when the shaft breaks at time = 100. 

 

Figure 3. Angular speeds of inertias 

The set of model equations and the DAE index is chang-

ing when the shaft breaks. The Modia environment 

makes new symbolic transformations and just-in-time 

compilation for each mode of the system. The final re-

sults of variables before an event is used as initial con-

ditions after the event. 

Mode changes with conditional equations might in-

troduces inconsistent initial conditions causing Dirac 

impulses to occur. This more general problem is treated 

in (Benveniste, et al., 2017). 

2.9 Other features 

Other features, such as type and size inference, time 

events, synchronous controllers, state events, multi do-

main models are exemplified in (Elmqvist, et al., 2016). 

There are also ongoing development and experimenta-

tion regarding nested simulations, etc. 

3 Model Examples 

3.1 Multibody modeling 

Multibody models uses vector and matrix equations. Be-

low, a tiny multibody library is defined with similarities 

to package MultiBody of the Modelica Standard Library 
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(Modelica Association, 2016). First, convenient Varia-

ble constructors involving SIUnits are defined. 

Position(; args...) =  

  Var(T=Meter; size=(), args...) 

Velocity(; args...) =  

  Var(T=Meter/Second; size=(), args...) 

Acceleration(; args...) = 

  Var(T=Meter/Second^2; size=(), args...) 

Angle(; args...) =  

  Var(T=Radian; size=(), args...) 

AngularVelocity(; args...) = 

  Var(T=Radian/Second; size=(), args...) 

AngularAcceleration(; args...) =  

  Var(T=Radian/Second^2; size=(),  

  args...) 

Force(; args...) =  

  Var(T=Newton; size=(), args...) 

Torque(; args...) =  

  Var(T=Newton*Meter; size=(), args...) 

Mass(; args...) =  

  Var(T=KiloGram; size=(), min=0, 

  args...) 

Based on these scalar Variable constructors, vector and 

matrix constructors can be defined. 

Axis3(; args...) =  

  Var(T=SIPrefix; size=(3,), args...) 

Position3(; args...) =  

  Position(size=(3,); args...) 

Velocity3(; args...) =  

  Velocity(size=(3,); args...) 

Acceleration3(; args...) =  

  Acceleration(size=(3,); args...) 

Rotation3(; args...) =  

  Var(T=SIPrefix; size=(3,3), 

  property=rotationGroup3D, args...) 

AngularVelocity3(; args...) =  

  AngularVelocity(size=(3,); args...) 

AngularAcceleration3(; args...) =  

  AngularAcceleration(size=(3,); args...) 

Force3(; args...) =  

  Force(size=(3,); args...) 

Torque3(; args...) =  

  Torque(size=(3,); args...) 

Inertia3(; args...) =  

  Var(T=KiloGram*Meter*Meter, size=(3,3); 

  property=symmetric, args...) 

It should be noted that Rotation3, the type for rotation 

matrices, has a special property: 

property=rotationGroup3D 

In particular this means that the element declared in this 

way is a 3x3 rotation matrix that has 9 elements with 6 

implicit constraints between them. In case kinematic 

loops are present, this property of rotation matrices 

would lead to redundant constraint equations that are 

difficult to handle. As discussed in (Elmqvist and Matts-

son, 2016), a tool can, however, automatically remove 

this redundancy of a kinematic loop in a pre-processing 

step, provided the rotation matrices are marked, as done 

above. Compared to current Modelica, the benefit is that 

no special operators Connections.branch/.root/.isRoot 

etc are needed anymore. Note, these operators are awk-

ward, difficult to understand and it is easy to make mis-

takes.  

Other properties can be defined as well. In particular, 

the Inertia3 constructor specifies the matrix to be sym-

metric. This can enable better user interface for setting 

parameters. 

The coupling semantics is defined by Frames.  

@model Frame begin 

  r_0 = Position3() 

  R = Rotation3() 

  f = Force3(flow=true)  

  t = Torque3(flow=true)  

end 

A Prismatic joint has two Frames. Axis of translation is 

given by a vector parameter n. 

@model Prismatic begin 

  n = Axis3(value=[1,0,0], 

    variability=parameter)  

 

  frame_a = Frame() 

  frame_b = Frame() 

 

  s = Position(start=0*Meter) 

  v = Velocity(start=0*Meter/Second) 

  a = Acceleration() 

  f = Force() 

@equations begin  

  v = der(s) 

  a = der(v) 

 

  frame_b.r_0 = frame_a.r_0 +  

    frame_a.R’*(n*s) 

  frame_b.R = frame_a.R 

  frame_a.f = -frame_b.f 

  frame_a.t + frame_b.t =  

    cross(n*s, frame_b.f) 

 

  # d'Alemberts principle 

  f = -dot(n, frame_b.f) 

  f = 0*Newton # Not driven 

  end 

end 

A Revolute joint has similar structure. 

@model Revolute begin 

  n = Axis3(value=[0,1,0], 

    variability=parameter)   

 

  frame_a = Frame() 

  frame_b = Frame() 

 

  phi = Angle(start=0) 

  w = AngularVelocity(start=0) 

  a = AngularAcceleration() 

  tau = Torque()   

  R_rel =  Rotation3() 

@equations begin  

  R_rel = n*n’ + (eye(3) - n*n’)*cos(phi) 

    - skew(n)*sin(phi) 

 

  w = der(phi) 

  a = der(w) 

 

  frame_b.r_0 = frame_a.r_0 
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  frame_b.R = R_rel*frame_a.R 

  frame_a.f = -R_rel'*frame_b.f   

   frame_a.t = - R_rel'*frame_b.t 

 

  # d'Alemberts principle 

  tau = -dot(n, frame_b.t) 

  tau = 0*Newton*Meter # Not driven 

  end 

end 

The skew function is defined as: 

skew(x) = [    0 -x[3]  x[2];  

            x[3]     0 -x[1]; 

           -x[2]  x[1]    0] 

Gravity is defined by the following function: 

gravityAcceleration(r) =  

  9.81*[0,-1,0]*Meter/Second^2 

A Body has one Frame. The parameter r_CM gives the 

vector from the frame to center of mass. 

@model Body begin 

  r_CM = Position3(variability=parameter)    

  m = Mass(variability=parameter)  

  I = Inertia3(variability=parameter)  

 

  frame = Frame() 

 

  r_0 = Position3()  

  R = Rotation3() 

  v_0 = Velocity3()  

  a_0 = Acceleration3()  

  w_a = AngularVelocity3()  

  z_a = AngularAcceleration3()  

  g_0 = Acceleration3()  

  W = Var(T=Float64, size=(3,3)) 

@equations begin  

  r_0 = frame.r_0 

  R = frame.R 

   g_0 = gravityAcceleration(r_0 + R'*r_CM) 

 

  # Translational kinematic differential 

  # equations 

  v_0 = der(r_0) 

  a_0 = der(v_0) 

 

  # Rotational kinematic differential  

  # equations 

  W = der(R)*transpose(R) 

  w_a = [W[3,2], W[1,3], W[2,1]]   

  z_a = der(w_a) 

 

  # Newton/Euler equations 

  frame.f = m*(R*(a_0 - g_0) +  

    cross(z_a, r_CM) + cross(w_a,  

    cross(w_a, r_CM))) 

  frame.t = I*z_a + (cross(w_a, I*w_a) + 

    cross(r_CM, frame.f)) 

  end 

end 

The coordinate systems must be fixed for multibody dy-

namics. This is done by using a World object: 

@model World begin 

  frame = Frame() 

@equations begin  

  frame.r_0 = zeros(3)*Meter 

  frame.R = eye(3,3) 

  end 

end 

A simple sliding mass model is shown below: 

@model TranslationalBody begin 

  world = World() 

  j = Prismatic(n=[1,1,1]/sqrt(3),  

    v = Velocity(start=1*Meter/Second)) 

  body = Body(r_CM=[0.5,0,0]*Meter,  

    m=1.0*KiloGram,  

    I=1e-3*eye(3)*KiloGram*Meter^2 ) 

@equations begin 

  connect(world.frame, j.frame_a) 

  connect(j.frame_b, body.frame) 

  end 

end 

3.2 Functions and data structures 

One of the reasons for developing Modia on top of Julia 

is to have direct access to Julia algorithmic features, i.e. 

much more powerful functions and data structures than 

available in current Modelica.  

One of the limitations of current Modelica is a con-

venient way of handling collisions of many objects for 

DEM (Discrete Element Modeling). The problem is that 

there are n*(n-1)/2 potential contacts possible for n ob-

jects. The user can of course not explicitly make these 

connections.  

One approach is that each object registers its position. 

After that, the forces between each pair of objects in 

contact are calculated. Then each object retrieves the 

sum of the forces acting on the object. This force is used 

in the equations of motion. In (Elmqvist et al., 2015), the 

information about each object and the above calcula-

tions are handled in C/C++. A problem is that there is 

no convenient method in current Modelica to make sure 

all objects have registered their position before forces 

are extracted. An elaborate scheme involving in-

ner/outer construct together with flow variables was 

used. 

An experimental feature has been included in Modia 

to solve this problem. The built-in operator 

allInstances(v) creates a vector of all the variables 

v within all instances of the class where v is declared. It 

can be seen as a specialization of the proposed Modelica 

array constructor: [c.v for c in class Class], (Elmqvist, 

et al., 2015b). This construct did not make it into Mod-

elica 3.4 due to concerns about self-reference and mu-

tual recursive loops. The allInstances operator is re-

ferring to the class where it’s used but has a more re-

stricted semantics. 

Consider modeling a set of spherical balls moving on 

a plane. We will assume the same radius for simplicity 

and a force law of a spring-damper during contact. A 

Modia model is shown below.  

 

@model Ball begin 

  r = Var() 

  v = Var() 

  f = Var() 
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  m = 1.0 

@equations begin 

  der(r) = v 

  m*der(v) = f 

  f = getForce(r, v, allInstances(r), 

    allInstances(v), (r,v) -> (k*r + d*v)) 

  end 

end 

The force is dependent on the position and velocity of 

all Balls, that is, the allInstances operator is used on 

both r and v. The force law is provided as an anony-

mous function: (r,v) -> (k*r + d*v). 

A set of Balls can easily be modelled by just instanti-

ation. The contact handling is automatic: 

@model Balls begin 

  b1 = Ball(r = Var(start=[0.0,2]),  

            v = Var(start=[1,0])) 

  b2 = Ball(r = Var(start=[0.5,2]), 

            v = Var(start=[-1,0])) 

  b3 = Ball(r = Var(start=[1.0,2]), 

            v = Var(start=[0,0])) 

end 

 

In this case with three balls, the operator 

allInstances(r) expands to [b1.r, b2.r, b3.r].  

The force contributions from all other balls are calcu-

lated according to the spring-damper model by function 

getForce: 

const k=10000 

const d=100 

const radius=0.05 

 

function getForce(r, v, positions,  

  velocities, contactLaw) 

  force = zeros(2) 

  for i in 1:length(positions) 

    pos = positions[i] 

    vel = velocities[i] 

    if r != pos 

      delta = r - pos 

      deltaV = v - vel 

      f = if norm(delta) < 2*radius;  

        -contactLaw((norm(delta)- 

          2*radius)*delta/norm(delta), 

          deltaV) else  

        zeros(2) end 

      force += f 

    end 

  end 

  return force 

end 

 

The described technique opens up the possibility for fur-

ther important optimizations. In order to avoid O(n2) 

complexity when deciding which objects that are in con-

tact, space partitioning by quad-trees or oct-trees can be 

used, see (Elmqvist et al., 2015). This requires recursive 

data structures that are available in Julia. 

                                                 
1 http://doc.modelica.org/om/Modelica.Media.html 

3.3 Media Modelling 

The Modelica.Media library within the Modelica Stand-

ard Library1 provides a large set of packages and func-

tions to compute media properties of one and two-phase 

media dedicated for simulation. Although the Media li-

brary is powerful, it has conceptual limitations for the 

modeling of media with multiple substances that have 

multiple phases. Furthermore, the details of the library 

are difficult to understand and difficult to support by 

Modelica tools due to the extensive use of replaceable 

packages and functions. There have been several at-

tempts to simplify the approach and making media mod-

eling more powerful.  

Julia allows a fresh view on this difficult topic and it 

seems that multiple dispatch and other Julia features al-

low a surprisingly simple way to model complex media: 

Following the Modelica.Media library design, a me-

dium has the following orthogonal properties: 

1. Medium states that define the independent variables 

of the medium. A medium may have different types 

of independent variables. For example, it might 

have as independent variables pressure p and tem-

perature T or pressure p and specific enthalpy h. In 

Julia they would be described as types. 

2. Medium constant data that defines constants for 

every instance of a specific medium. For example a 

simple medium may have a constant d_const for the 

mean density. In Julia constant data would be de-

scribed as constants in a module. 

3. Medium immutable data that defines constants spe-

cific to an instance of a specific medium that cannot 

be changed once the medium is instantiated. Typi-

cally reference points such as h_offset may have a 

default value, but might be changed for particular 

medium instances. In Julia such data would be de-

scribed as immutable types. 

4. Medium functions that define properties of a me-

dium as function of the medium constant and immu-

table data and the medium states. For example den-

sity(medium,state) computes the density for a 

medium using the given state description. 

Below is a sketch of a new Media library design:  

module Media  # Interface of media models 

  # Possible medium states 

  type State_pT 

    p::Float64 

    T::Float64 

  end 

 

  type State_ph 

    p::Float64 

    h::Float64 

  end 

 

  # Possible medium functions 

  density(medium,state)=error(..) 
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  specificEnthalpy(medium,state)=error(..) 

  setState_pT(medium,p,T)=error(..) 

  setState_ph(medium,p,h)=error(..) 

  ... 

end 

In a generic module Media, the supported medium states 

and the supported medium functions are collected. The 

default implementation of the functions for every me-

dium are error messages. However, also concrete func-

tions could be added here that hold for every medium. 

A specific medium is implemented with a Julia mod-

ule, as shown here for a simple water model: 

module SimpleWater  

  import Media 

 

  # Constants of medium 

  const cp_const = 4184.0 

  const cv_const = 4184.0 

  const d_const  = 995.586 

  const T0       = 273.15 

 

  # Variables specific to an instance 

  immutable Medium 

    h_offset::Float64 

    Medium(;h_offset=0.0) = new(h_offset) 

  end 

 

  # Functions of medium 

  Media.density( 

    m::Medium, 

    state::Media.State_pT) = d_const 

  Media.specificEnthalpy( 

    m::Medium, 

    state::Media.State_pT) =  

    cp_const*(state.T - T0) + m.h_offset 

  Media.setState_pT(m::Medium, p, T) =  

    Media.State_pT(p,T) 

  Media.setState_ph(m::Medium, p, h) =  

    Media.State_pT(p, 

      T0+(h-m.h_offset)/cp_const) 

  ... 

end 

In a Modia model Julia data structures and functions can 

be used. As a result, it is possible to instantiate a medium 

model at some place with 

medium1=SimpleWater.Medium() 

medium2=SimpleWater.Medium(h_offset=10.0) 

and then propagate this medium through all connected 

fluid component models: 

@model FluidPort begin 

  # contains medium, p, h, ... 

end 

... 

port = FluidPort() 

... 

port.medium = SimpleWater.Medium() 

Inside a component model, medium properties are com-

puted. The implementation of such a component model 

neither knows which concrete medium model is used, 

nor which independent states the medium has, so the 

component model can be used for all media that provide 

an implementation of the used functions: 

state = setState_ph(port.medium, 

                    port.p, 

                    port.h) 

d = density(medium,state) 

h = specificEnthalpy(medium,state) 

Julia selects the concrete functions to be called based on 

the medium type and the state type. This is the key in-

novation that makes media modeling suddenly so sim-

ple: a function is (statically) selected based on the types 

of several arguments. 

4 Implementation 

The Modia implementation is made in Julia which pro-

vides meta-programming capabilities which are suitable 

for symbolic treatment of the equations. 

4.1 Meta-programming in Julia 

Languages such as Modelica and Modia require sym-

bolic transformations of equations into executable code. 

A mathematical expression is conveniently represented 

by an AST (abstract syntax tree).  The Julia language 

(Bezanson, et al., 2017) allows creation of “quoted” ex-

pressions encapsulated as, ʺ:(…)ʺ.  

julia> equ = :(0 = x + 2y) 

:(0 = x + 2y) 

Such an expression is stored as an AST. The AST can 

be shown by using a built-in function, dump(): 

julia> dump(equ) 

Expr 

  head: Symbol = 

  args: Array(Any,(2,)) 

    1: Int64 0 

    2: Expr 

      head: Symbol call 

      args: Array(Any,(3,)) 

        1: Symbol + 

        2: Symbol x 

        3: Expr 

          head: Symbol call 

          args: Array(Any,(3,)) 

          typ: Any 

      typ: Any 

  typ: Any 

equ is of type Expr which has three fields: head, args 

and typ. equ.head is the Symbol = representing the 

equality of the two expressions of the equation. The 

right hand side is the sum of two expressions: x and 2y. 

The operator + is represented as a function call: 

equ.args[2].head. Which function to call is defined in 

equ.args[2].args[1]. The operands of the + operator are 

equ.args[2].args[2] and equ.args[2].args[3]. 

 A new AST can be built using the Expr constructor. 

For example, solving an equation of the form: 

0 = x + expression 

can be done as follows: 
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julia> solved = Expr(:(=), 

  equ.args[2].args[2], Expr(:call, :-, 

  equ.args[2].args[3])) 

:(x = -(2y)) 

It is also possible to create a quoted expression referring 

to parts of equ by the use of “interpolation”, $(  ). 

julia> solved = :($(equ.args[2].args[2]) =  

  - $(equ.args[2].args[3])) 

:(x = -(2y)) 

The result is presented as a quoted expression. By as-

signing the variable y, it’s possible to calculate x using 

the eval function on the AST solved: 
 

julia> y = 10 

10 

julia> eval(solved) 

-20 

julia> @show x 

x = -20 

4.2 Symbolic Transformations of Modia 

Models 

The following list shows some of the structural and sym-

bolic transformations which are performed by the Modia 

implementation: 

 Instantiation 

 Flattening 

 Alias elimination 

 Type and size inference 

 Removal of singularities 

 Index reduction and BLT of array equations 

 Symbolic differentiation of matrix equations 

 Symbolic solution of matrix equations 

 Partial state selection and tearing 

 Transformation to a special index one DAE 

 Determining sparseness structure of Jacobian 

Modia supports type and size inference, that is, the Var-

iable constructor does not need to specify type and size. 

However, Pantelides algorithm and removal of singular-

ities require that types and sizes of variables and equa-

tions are known. Types and sizes are inferred from the 

start values provided and by propagation. The left and 

right hand sides of equations are evaluated with given 

start values and the type and size inference of Julia is 

used to determine the size and types of variables and 

equations. 

There are useful application models where structural 

symbolic algorithms fail and may lead to strange error 

messages during symbolic processing or to run-time er-

rors. For example, if an electrical circuit is not grounded, 

the potentials of the electrical Pins can float, that is, the 

system equations are underdetermined. On the other 

hand, the equations are overdetermined regarding cur-

rents. Such singularities needs to be removed before fur-

ther structural processing. Details of such a technique is 

described in the companion paper (Otter and Elmqvist, 
2017).  

The Pantelides algorithm and other structural index 

reduction algorithms are designed for scalar variables 

and equations. So Modelica tools typically symbolically 

expand array equations into a set of scalar equations in-

volving the variable elements. This is not feasible if 

large array equations are used, for example, for flexible 

bodies or other discretized partial differential equations. 

Generalizations of BLT and Pantelides algorithms to di-

rectly handle array equations can be found in (Otter and 
Elmqvist, 2017). 

Pantelides algorithm determines which array equa-

tions that needs to be differentiated. Special care are 

needed when performing symbolic operations on array 

and matrix equations since matrix multiplication is not 

commutative. Solving for unknowns are done by a set 

of rewrite rules. As an example, the right division oper-

ator, /, or the left division operator, \, is used depending 

on whether the unknown is on the right or left side of a 

multiplication operator. Special rules can be used for ro-

tation matrices to replace division by multiplication with 

the transpose of the rotation matrix. 

4.3 Numeric Solution of Modia Models 

Numeric treatment and transformation of the resulting 

differential algebraic array equations to index one form 

is described in the companion paper (Otter and 
Elmqvist, 2017). 

5 Outlook 

The Modia experimental language gives new possibili-

ties for creation of new innovative language elements 

and algorithms to model and simulate more complex 

models than is possible in current Modelica.  

The suggested innovations of the companion paper 

(Otter and Elmqvist, 2017) can be directly utilized in 

current Modelica tools. A change in the Modelica lan-

guage is not needed for them. Part of the proposed inno-

vations in this paper for new language elements, such as 

type inference, marking of rotational matrices in combi-

nation with new algorithms, or the allInstances(..) oper-

ator, could be included in a fully backwards compatible 

form in a future Modelica 3.x version. 

The use of native Julia for the algorithmic part would 

simplify the Modelica effort considerably since Model-

ica does not need to be extended with new features in 

functions. This means that evolution of Modelica could 

be focused on the equational modeling aspects.  

Contributions to Modia for language design and for 

improved symbolic and numeric algorithms are wel-

come. 
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