
Innovations for Future Modelica

Hilding Elmqvist1 Toivo Henningsson2 Martin Otter3
1Mogram AB, Magle Lilla Kyrkogata 24, 223 51 Lund, Sweden, Hilding.Elmqvist@Mogram.net

2Lund, Sweden, toivo.h.h@gmail.com
3Institute of System Dynamics and Control, DLR, Oberpfaffenhofen, Germany, Martin.Otter@dlr.com

Abstract
This paper discusses language innovations for future

Modelica versions, on the one hand for generally appli-

cable language elements, and on the other hand to im-

prove modeling of multibody systems with contacts, and

media modeling. In a companion paper new algorithms

are proposed to handle much larger models than can be

treated today. All these innovations are developed and

evaluated with the experimental modeling and simula-

tion environment Modia. Modia is based on Julia, a

powerful programming language with strong focus on

scientific computing, meta-programming and just-in-

time compilation that allows very fast development. The

modeling language is directly defined and implemented

with Julia’s meta-programming constructs and is de-

signed tightly together with the symbolic and numeric

algorithms. This approach is very well suited for inno-

vation and experimenting with evolutions of modeling

capabilities in Modelica.

Keywords: Modelica, Modia, Julia, modeling, simula-
tion

1 Introduction

The objective is developing and testing innovations for

future Modelica versions with reasonable effort both

from a language point of view as well as for new sym-

bolic and numeric algorithms that are tightly designed

together with the language elements. To achieve this

goal, an experimental modeling and simulation environ-

ment called Modia is under development. Modia uses a

Modelica-like language. It shall be both simpler and

more powerful than Modelica 3.3 (Modelica Associa-

tion, 2014) and takes into account the experience gained

with Modelica in the last 20 years.

New algorithms have been already developed and

test-implemented in Modia and are described in the

companion paper (Otter and Elmqvist, 2017). For exam-

ple, arrays defined in a model stay as arrays in the gen-

erated code, even if (array) equations need to be differ-

entiated. This is a pre-requisite to handle much larger

models than what can be treated with current Modelica

tools.
In addition to equations, Modelica has a function con-

cept for procedural programming of tasks, such as table

look-up, media calculations and control system imple-

mentations. The function part of Modelica is, however,

not rich enough. There are no advanced data structures

such as union types, no matching construct. Type infer-

ence is missing with the implication that there are pres-

ently separate blocks for adding Reals, Integers and

Complex numbers. The evolution of Modelica has

slowed down since it’s a too large task to make a full

algorithmic language. Instead of inventing all such fea-

tures, it makes sense to use another language as a base.

Julia (Bezanson, et al., 2017) is a very promising lan-

guage design effort with focus on scientific computing

and has many of the properties needed to complement

the equational style for modeling. Julia also allows def-

inition of real equations (expression = expression). Fur-

thermore, advanced meta-programming features are

available which are suitable for symbolic treatment of

equations before just-in-time compilation.

Julia allows developing a modeling language together

with a public reference implementation so that language

features and symbolic/numeric algorithms are designed

tightly together. Native Julia functions are used in mod-

els and equations use Julia syntax.

Examples of other research oriented language designs

for modeling are: SOL (Zimmer, 2010), Hydra (Giorgi-

dze and Nilsson, 2009) and Modelyze (Broman and
Siek, 2012). There is also one experimental simulation

package for Julia called Sims (Short, 2012). Sims does

not make any structural and symbolic processing

though, but has event handling. It is based on ideas from

Modelyze and Hydra.

This paper introduces major language constructs of

Modia and proposes new language features for future

Modelica versions. Other aspects of Modia and its im-

plementation are given in (Elmqvist, et al., 2016). Mo-

dia is available from https://github.com/ModiaSim.

2 Modia Language Design

2.1 Model with differential equations

Modia is a domain specific language extension of Julia

by means of structured macros, that is, the Julia parser

is used to parse Modia models.

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

693

A simple first order example model is shown below:

@model FirstOrder begin

 x = Variable(start=1)

 T = Parameter(0.5, "Time constant")

 U = 2.0

@equations begin

 T*der(x) + x = u

 end

end

@model is a call to the Modia macro called model. The

first part after begin is used for variable and component

declarations by means of calling constructors. The sec-

ond part inside the @equations macro contains differ-

ential and algebraic equations as well as connections. #

starts a Julia comment. Semicolons can be omitted in

Julia.

The constructor Variable is used to declare x with

a start value of 1. In general it constructs instances of

ordinary variable types and arrays of those. It is a Julia

composite type which in addition to its value also allows

specifying type, min, max, variability, start value, info,

etc. The constructor Parameter is a specialization of

the Variable constructor which sets the variability to pa-

rameter, that is, a quantity that is changeable before sim-

ulation starts but constant during simulation. There is

also a special short hand notation to define parameters

by just giving a default value. This notation is used to

define the parameter u. The operator der() denotes the

time derivative of its argument.

The corresponding Modelica model is:

model FirstOrder

 Real x(start=1);

 parameter Real T=0.5 "Time constant";

 parameter Real u = 2.0;

equation

 T*der(x) + x = u;

end FirstOrder;

Modia uses the Julia way to declare variables with con-

structor calls. The benefit with respect to current Mod-

elica is a simpler syntax since value, variability, info,

etc. are all given in the constructor calls. This allows to

easily extending the language with new attributes/prop-

erties in the future.

2.2 Coupled models

In order to couple models, the interfaces need to be de-

fined. For simplicity of the language and its implemen-

tation, this is currently described as a @model (and

might be improved in the future by a dedicated @con-

nector macro):

@model Pin begin

 v = Float()

 i = Float(flow=true)

end

Float is a specialization of Variable with fixed type

Float64. The flow variable, i, is marked with an attrib-

ute flow=true. Such a Pin can be used to define the

terminals p and n of an electrical resistor:

@model Resistor begin

 p = Pin()

 n = Pin()

 v = Float()

 i = Float()

 R = Parameter(info="Resistance")

@equations begin

 v = p.v - n.v # Voltage drop

 0 = p.i + n.i # KCL within component

 i = p.i

 R*i = v # Ohm’s law

 end

end

An electrical component library has been developed

containing also Capacitor, Inductor, VoltageSource, etc.

A low-pass filter can then be defined as a set of con-

nected components:

@model LPfilter begin

 R = Resistor(R=100)

 C = Capacitor(C=0.001)

 V = ConstantVoltage(V=10)

@equations begin

 connect(V.p, R.p)

 connect(R.n, C.p)

 connect(C.n, V.n)

 end

end

The function connect has the same meaning as in Mod-

elica. Note, that no ground component is needed because

the missing ground can be automatically handled with a

new algorithm described in (Otter and Elmqvist, 2017).

Modia is used to evaluate whether this simplification is

reliable and transparent for the user. The diagram of a

corresponding Modelica model is shown in Figure 1.

Figure 1. Low pass filter (without ground object)

2.3 Inheritance

There are several electrical components that share the

property of having two Pins. Such components are

called OnePorts. Similarly to Modelica, it is possible to

describe the common properties once and inherit them.

The common properties are:

@model OnePort begin

 p = Pin()

 n = Pin()

 v = Float()

 i = Float()

@equations begin

 v = p.v - n.v # Voltage drop

 0 = p.i + n.i # KCL within component

 i = p.i

 end

end

The Resistor model can then be simplified:

@model Resistor begin

Innovations for Future Modelica

694 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

 @extends OnePort()

 @inherits i, v

 R = Parameter(info="Resistance")

@equations begin

 R*i = v # Ohm’s law

 end

end

The @extends macro incorporates all declarations and

all equations from OnePort. The OnePort variables

can be accessed by this.v and this.i in the equa-

tions of the Resistor. The @inherits macro enables

to directly use variables i and v.

2.4 Type and size inference

The Modelica Standard Library (Modelica Association,
2016) contains similar models operating on different

data types. One example is switches, which based on a

Boolean signal select between two Real, two Booleans,

or two Complex numbers. There is a desire in the Mod-

elica community to unify this situation by means of type

inference.

To experiment with type and size inference, such a

feature is included in Modia: Variable constructors do

not need to specify type and size. Types and sizes can

be inferred from the environment of a model or start val-

ues provided, either initial conditions for states or ap-

proximate start values for algebraic constraints.

A generic switch that can be applied to matrices and

strings as well, can be then defined as:

@model Switch begin

 sw = Boolean()

 u1 = Variable()

 u2 = Variable()

 y = Variable()

@equations begin

 y = if sw; u1 else u2 end

 end

end

2.5 Variable Declarations

There are, however, cases when size and type inference

based on start values is not natural, for example, when

algebraic equations form a linear system of real simul-

taneous equations. In such a case, the solution is inde-

pendent of any start value and only size needs to be

given.

It is possible to provide type information in variable

declarations using the type parameter T in the Varia-

ble constructor or its short version Var:

v1 = Var(T=Float64)

It is unspecified if the variable v1 is a scalar or array of

Float64. It is possible to provide information that a

variable is of array type with a certain number of dimen-

sions:

array = Var(T=Array{Float64,1})

matrix = Var(T=Array{Float64,2})

The size can be fixed using the size attribute:

scalar = Var(T=Float64, size=())

array3 = Var(T=Float64, size=(3,))

matrix3x3 = Var(T=Float64, size=(3,3))

The size is given with the tuple constructor according to

the result of the Julia size function. Empty tuple, (),

means scalar. A vector size is given as a tuple with the

size. Such a tuple with one element needs a comma to

distinguish it from an expression within parenthesis.

When the size attribute is given, T denotes the array el-

ement type.

There is also a FixedSizeArrays module for Julia

(Danish, 2014) which gives faster code since stack allo-

cation is possible and garbage collection avoided. The

corresponding Modia declarations are then:

fixedArray3 = Var(T=Vec{3,Float64})

fixedMatrix3x3 = Var(T=Mat{3,3,Float64})

SI units can be given using the Julia SIUnits module

(Fisher, 2013). It has predefined types such as: Meter,
KiloGram, Second, Ampere, Kelvin, Mole,

Candela, Radian, Steradian, Joule, Cou-

lomb, Volt, Farad, Newton, Ohm, Siemens,

Hertz, Watt, Pascal. A Modia variable with unit

Volt is declared as:

v2 = Var(T=Volt)

There is an option in the SIUnits module to use units

with shorter names (m, kg, etc) (and * is not needed be-

tween literal and identifier), for example:

m=2.5kg

length=5m

However, this feature is not useful since unit m would

then be in the same name space as the variable m. Inves-

tigations are being made to allow a local scope for units

after literals using a syntax with []:

m=2.5[kg]

length=5[m]

2.6 Type Declarations

To avoid repeatedly typing type and size information,

it’s possible to define alternative variable constructors

outside the @model macro:

Float3(; args...) = Var(T=Float64,

 size=(3,); args...)

Voltage(; args...) = Var(T=Volt;

 args...)

The notation "; arg... " denotes a list of keyword

arguments which are just passed to the Variable con-

structor using the same notation. This means that a 3-

vector with start attribute and a three-phase Voltage

variable can be declared as:

v3 = Float3(start=zeros(3))

v4 = Voltage(size=(3,), start=[220.0,

 220.0, 220.0]Volt)

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

695

2.7 Redeclaration of submodels

With the "replaceable" language element, Modelica has

a powerful concept to exchange submodels on a lower

level. However, it is complicated to understand and dif-

ficult to implement for tools. Furthermore, it is not pow-

erful enough for certain applications, because redeclara-

tions cannot be controlled by variables and they must be

planned in advanced, because only models can be re-

placed that are marked to be replaceable.

A simpler and more powerful concept for redeclara-

tions has been tested in Modia and follows naturally

from the constructor style of declaration using expres-

sions, as shown in the following example:

MotorModels = [Motor100KW,

 Motor200KW,

 Motor250KW] # Modia models

selectedMotor = motorConfig() # Int

@model HybridCar begin

 @extends BaseHybridCar(

 motor = MotorModels[selectedMotor](),

 gear = if gearOption1; Gear1(i=4)

 else Gear2(i=5) end)

end

In model BaseHybridCar every submodel can be re-

placed without being marked. In particular new motor

and gearbox models are provided. The motor model is

selected from an array of Modia models via an integer.

The gearbox model is selected based on a logical condi-

tion. Such flexible types of redeclarations cannot be for-

mulated in Modelica 3.3.

2.8 Multi-mode Modeling

Several attempts have been made to generalize the se-

mantics of Modelica to allow mode changes, for exam-

ple (Mattsson, et al., 2015). However, only a limited

classes of problems could be handled. One reason is the

imposed restriction that the equations are only processed

once, code is generated and this code should hold for all

mode changes. There are academic simulation proto-

types that dynamically process and switch equations

during run-time, such as (Zimmer, 2010; Höger, 2014).

The question is how to incorporate such ideas in to Mod-

elica and Modelica tools with the goal to solve real-

world industrial problems.

First investigations have been carried out in Modia to

experiment with changing model structure. Consider the

model of an electrical motor with a load in Figure 2. The

shaft between motor and load breaks at a certain time.

Figure 2. Electrical motor, load and breaking shaft.

The breaking shaft can be modelled as follows using

conditional equations:

@model BreakingShaft begin

 flange1 = Flange()

 flange2 = Flange()

 broken = Boolean()

@equations begin

 if broken

 flange1.tau = 0

 flange2.tau = 0

 else

 flange1.w = flange2.w

 flange1.tau + flange2.tau = 0

 end

 end

end

Figure 3 shows the angular speeds of the two inertias

when the shaft breaks at time = 100.

Figure 3. Angular speeds of inertias

The set of model equations and the DAE index is chang-

ing when the shaft breaks. The Modia environment

makes new symbolic transformations and just-in-time

compilation for each mode of the system. The final re-

sults of variables before an event is used as initial con-

ditions after the event.

Mode changes with conditional equations might in-

troduces inconsistent initial conditions causing Dirac

impulses to occur. This more general problem is treated

in (Benveniste, et al., 2017).

2.9 Other features

Other features, such as type and size inference, time

events, synchronous controllers, state events, multi do-

main models are exemplified in (Elmqvist, et al., 2016).

There are also ongoing development and experimenta-

tion regarding nested simulations, etc.

3 Model Examples

3.1 Multibody modeling

Multibody models uses vector and matrix equations. Be-

low, a tiny multibody library is defined with similarities

to package MultiBody of the Modelica Standard Library

Innovations for Future Modelica

696 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

(Modelica Association, 2016). First, convenient Varia-

ble constructors involving SIUnits are defined.

Position(; args...) =

 Var(T=Meter; size=(), args...)

Velocity(; args...) =

 Var(T=Meter/Second; size=(), args...)

Acceleration(; args...) =

 Var(T=Meter/Second^2; size=(), args...)

Angle(; args...) =

 Var(T=Radian; size=(), args...)

AngularVelocity(; args...) =

 Var(T=Radian/Second; size=(), args...)

AngularAcceleration(; args...) =

 Var(T=Radian/Second^2; size=(),

 args...)

Force(; args...) =

 Var(T=Newton; size=(), args...)

Torque(; args...) =

 Var(T=Newton*Meter; size=(), args...)

Mass(; args...) =

 Var(T=KiloGram; size=(), min=0,

 args...)

Based on these scalar Variable constructors, vector and

matrix constructors can be defined.

Axis3(; args...) =

 Var(T=SIPrefix; size=(3,), args...)

Position3(; args...) =

 Position(size=(3,); args...)

Velocity3(; args...) =

 Velocity(size=(3,); args...)

Acceleration3(; args...) =

 Acceleration(size=(3,); args...)

Rotation3(; args...) =

 Var(T=SIPrefix; size=(3,3),

 property=rotationGroup3D, args...)

AngularVelocity3(; args...) =

 AngularVelocity(size=(3,); args...)

AngularAcceleration3(; args...) =

 AngularAcceleration(size=(3,); args...)

Force3(; args...) =

 Force(size=(3,); args...)

Torque3(; args...) =

 Torque(size=(3,); args...)

Inertia3(; args...) =

 Var(T=KiloGram*Meter*Meter, size=(3,3);

 property=symmetric, args...)

It should be noted that Rotation3, the type for rotation

matrices, has a special property:

property=rotationGroup3D

In particular this means that the element declared in this

way is a 3x3 rotation matrix that has 9 elements with 6

implicit constraints between them. In case kinematic

loops are present, this property of rotation matrices

would lead to redundant constraint equations that are

difficult to handle. As discussed in (Elmqvist and Matts-

son, 2016), a tool can, however, automatically remove

this redundancy of a kinematic loop in a pre-processing

step, provided the rotation matrices are marked, as done

above. Compared to current Modelica, the benefit is that

no special operators Connections.branch/.root/.isRoot

etc are needed anymore. Note, these operators are awk-

ward, difficult to understand and it is easy to make mis-

takes.

Other properties can be defined as well. In particular,

the Inertia3 constructor specifies the matrix to be sym-

metric. This can enable better user interface for setting

parameters.

The coupling semantics is defined by Frames.

@model Frame begin

 r_0 = Position3()

 R = Rotation3()

 f = Force3(flow=true)

 t = Torque3(flow=true)

end

A Prismatic joint has two Frames. Axis of translation is

given by a vector parameter n.

@model Prismatic begin

 n = Axis3(value=[1,0,0],

 variability=parameter)

 frame_a = Frame()

 frame_b = Frame()

 s = Position(start=0*Meter)

 v = Velocity(start=0*Meter/Second)

 a = Acceleration()

 f = Force()

@equations begin

 v = der(s)

 a = der(v)

 frame_b.r_0 = frame_a.r_0 +

 frame_a.R’*(n*s)

 frame_b.R = frame_a.R

 frame_a.f = -frame_b.f

 frame_a.t + frame_b.t =

 cross(n*s, frame_b.f)

 # d'Alemberts principle

 f = -dot(n, frame_b.f)

 f = 0*Newton # Not driven

 end

end

A Revolute joint has similar structure.

@model Revolute begin

 n = Axis3(value=[0,1,0],

 variability=parameter)

 frame_a = Frame()

 frame_b = Frame()

 phi = Angle(start=0)

 w = AngularVelocity(start=0)

 a = AngularAcceleration()

 tau = Torque()

 R_rel = Rotation3()

@equations begin

 R_rel = n*n’ + (eye(3) - n*n’)*cos(phi)

 - skew(n)*sin(phi)

 w = der(phi)

 a = der(w)

 frame_b.r_0 = frame_a.r_0

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

697

 frame_b.R = R_rel*frame_a.R

 frame_a.f = -R_rel'*frame_b.f

 frame_a.t = - R_rel'*frame_b.t

 # d'Alemberts principle

 tau = -dot(n, frame_b.t)

 tau = 0*Newton*Meter # Not driven

 end

end

The skew function is defined as:

skew(x) = [0 -x[3] x[2];

 x[3] 0 -x[1];

 -x[2] x[1] 0]

Gravity is defined by the following function:

gravityAcceleration(r) =

 9.81*[0,-1,0]*Meter/Second^2

A Body has one Frame. The parameter r_CM gives the

vector from the frame to center of mass.

@model Body begin

 r_CM = Position3(variability=parameter)

 m = Mass(variability=parameter)

 I = Inertia3(variability=parameter)

 frame = Frame()

 r_0 = Position3()

 R = Rotation3()

 v_0 = Velocity3()

 a_0 = Acceleration3()

 w_a = AngularVelocity3()

 z_a = AngularAcceleration3()

 g_0 = Acceleration3()

 W = Var(T=Float64, size=(3,3))

@equations begin

 r_0 = frame.r_0

 R = frame.R

 g_0 = gravityAcceleration(r_0 + R'*r_CM)

 # Translational kinematic differential

 # equations

 v_0 = der(r_0)

 a_0 = der(v_0)

 # Rotational kinematic differential

 # equations

 W = der(R)*transpose(R)

 w_a = [W[3,2], W[1,3], W[2,1]]

 z_a = der(w_a)

 # Newton/Euler equations

 frame.f = m*(R*(a_0 - g_0) +

 cross(z_a, r_CM) + cross(w_a,

 cross(w_a, r_CM)))

 frame.t = I*z_a + (cross(w_a, I*w_a) +

 cross(r_CM, frame.f))

 end

end

The coordinate systems must be fixed for multibody dy-

namics. This is done by using a World object:

@model World begin

 frame = Frame()

@equations begin

 frame.r_0 = zeros(3)*Meter

 frame.R = eye(3,3)

 end

end

A simple sliding mass model is shown below:

@model TranslationalBody begin

 world = World()

 j = Prismatic(n=[1,1,1]/sqrt(3),

 v = Velocity(start=1*Meter/Second))

 body = Body(r_CM=[0.5,0,0]*Meter,

 m=1.0*KiloGram,

 I=1e-3*eye(3)*KiloGram*Meter^2)

@equations begin

 connect(world.frame, j.frame_a)

 connect(j.frame_b, body.frame)

 end

end

3.2 Functions and data structures

One of the reasons for developing Modia on top of Julia

is to have direct access to Julia algorithmic features, i.e.

much more powerful functions and data structures than

available in current Modelica.

One of the limitations of current Modelica is a con-

venient way of handling collisions of many objects for

DEM (Discrete Element Modeling). The problem is that

there are n*(n-1)/2 potential contacts possible for n ob-

jects. The user can of course not explicitly make these

connections.

One approach is that each object registers its position.

After that, the forces between each pair of objects in

contact are calculated. Then each object retrieves the

sum of the forces acting on the object. This force is used

in the equations of motion. In (Elmqvist et al., 2015), the

information about each object and the above calcula-

tions are handled in C/C++. A problem is that there is

no convenient method in current Modelica to make sure

all objects have registered their position before forces

are extracted. An elaborate scheme involving in-

ner/outer construct together with flow variables was

used.

An experimental feature has been included in Modia

to solve this problem. The built-in operator

allInstances(v) creates a vector of all the variables

v within all instances of the class where v is declared. It

can be seen as a specialization of the proposed Modelica

array constructor: [c.v for c in class Class], (Elmqvist,

et al., 2015b). This construct did not make it into Mod-

elica 3.4 due to concerns about self-reference and mu-

tual recursive loops. The allInstances operator is re-

ferring to the class where it’s used but has a more re-

stricted semantics.

Consider modeling a set of spherical balls moving on

a plane. We will assume the same radius for simplicity

and a force law of a spring-damper during contact. A

Modia model is shown below.

@model Ball begin

 r = Var()

 v = Var()

 f = Var()

Innovations for Future Modelica

698 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

 m = 1.0

@equations begin

 der(r) = v

 m*der(v) = f

 f = getForce(r, v, allInstances(r),

 allInstances(v), (r,v) -> (k*r + d*v))

 end

end

The force is dependent on the position and velocity of

all Balls, that is, the allInstances operator is used on

both r and v. The force law is provided as an anony-

mous function: (r,v) -> (k*r + d*v).

A set of Balls can easily be modelled by just instanti-

ation. The contact handling is automatic:

@model Balls begin

 b1 = Ball(r = Var(start=[0.0,2]),

 v = Var(start=[1,0]))

 b2 = Ball(r = Var(start=[0.5,2]),

 v = Var(start=[-1,0]))

 b3 = Ball(r = Var(start=[1.0,2]),

 v = Var(start=[0,0]))

end

In this case with three balls, the operator

allInstances(r) expands to [b1.r, b2.r, b3.r].

The force contributions from all other balls are calcu-

lated according to the spring-damper model by function

getForce:

const k=10000

const d=100

const radius=0.05

function getForce(r, v, positions,

 velocities, contactLaw)

 force = zeros(2)

 for i in 1:length(positions)

 pos = positions[i]

 vel = velocities[i]

 if r != pos

 delta = r - pos

 deltaV = v - vel

 f = if norm(delta) < 2*radius;

 -contactLaw((norm(delta)-

 2*radius)*delta/norm(delta),

 deltaV) else

 zeros(2) end

 force += f

 end

 end

 return force

end

The described technique opens up the possibility for fur-

ther important optimizations. In order to avoid O(n2)

complexity when deciding which objects that are in con-

tact, space partitioning by quad-trees or oct-trees can be

used, see (Elmqvist et al., 2015). This requires recursive

data structures that are available in Julia.

1 http://doc.modelica.org/om/Modelica.Media.html

3.3 Media Modelling

The Modelica.Media library within the Modelica Stand-

ard Library1 provides a large set of packages and func-

tions to compute media properties of one and two-phase

media dedicated for simulation. Although the Media li-

brary is powerful, it has conceptual limitations for the

modeling of media with multiple substances that have

multiple phases. Furthermore, the details of the library

are difficult to understand and difficult to support by

Modelica tools due to the extensive use of replaceable

packages and functions. There have been several at-

tempts to simplify the approach and making media mod-

eling more powerful.

Julia allows a fresh view on this difficult topic and it

seems that multiple dispatch and other Julia features al-

low a surprisingly simple way to model complex media:

Following the Modelica.Media library design, a me-

dium has the following orthogonal properties:

1. Medium states that define the independent variables

of the medium. A medium may have different types

of independent variables. For example, it might

have as independent variables pressure p and tem-

perature T or pressure p and specific enthalpy h. In

Julia they would be described as types.

2. Medium constant data that defines constants for

every instance of a specific medium. For example a

simple medium may have a constant d_const for the

mean density. In Julia constant data would be de-

scribed as constants in a module.

3. Medium immutable data that defines constants spe-

cific to an instance of a specific medium that cannot

be changed once the medium is instantiated. Typi-

cally reference points such as h_offset may have a

default value, but might be changed for particular

medium instances. In Julia such data would be de-

scribed as immutable types.

4. Medium functions that define properties of a me-

dium as function of the medium constant and immu-

table data and the medium states. For example den-

sity(medium,state) computes the density for a

medium using the given state description.

Below is a sketch of a new Media library design:

module Media # Interface of media models

 # Possible medium states

 type State_pT

 p::Float64

 T::Float64

 end

 type State_ph

 p::Float64

 h::Float64

 end

 # Possible medium functions

 density(medium,state)=error(..)

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

699

 specificEnthalpy(medium,state)=error(..)

 setState_pT(medium,p,T)=error(..)

 setState_ph(medium,p,h)=error(..)

 ...

end

In a generic module Media, the supported medium states

and the supported medium functions are collected. The

default implementation of the functions for every me-

dium are error messages. However, also concrete func-

tions could be added here that hold for every medium.

A specific medium is implemented with a Julia mod-

ule, as shown here for a simple water model:

module SimpleWater

 import Media

 # Constants of medium

 const cp_const = 4184.0

 const cv_const = 4184.0

 const d_const = 995.586

 const T0 = 273.15

 # Variables specific to an instance

 immutable Medium

 h_offset::Float64

 Medium(;h_offset=0.0) = new(h_offset)

 end

 # Functions of medium

 Media.density(

 m::Medium,

 state::Media.State_pT) = d_const

 Media.specificEnthalpy(

 m::Medium,

 state::Media.State_pT) =

 cp_const*(state.T - T0) + m.h_offset

 Media.setState_pT(m::Medium, p, T) =

 Media.State_pT(p,T)

 Media.setState_ph(m::Medium, p, h) =

 Media.State_pT(p,

 T0+(h-m.h_offset)/cp_const)

 ...

end

In a Modia model Julia data structures and functions can

be used. As a result, it is possible to instantiate a medium

model at some place with

medium1=SimpleWater.Medium()

medium2=SimpleWater.Medium(h_offset=10.0)

and then propagate this medium through all connected

fluid component models:

@model FluidPort begin

 # contains medium, p, h, ...

end

...

port = FluidPort()

...

port.medium = SimpleWater.Medium()

Inside a component model, medium properties are com-

puted. The implementation of such a component model

neither knows which concrete medium model is used,

nor which independent states the medium has, so the

component model can be used for all media that provide

an implementation of the used functions:

state = setState_ph(port.medium,

 port.p,

 port.h)

d = density(medium,state)

h = specificEnthalpy(medium,state)

Julia selects the concrete functions to be called based on

the medium type and the state type. This is the key in-

novation that makes media modeling suddenly so sim-

ple: a function is (statically) selected based on the types

of several arguments.

4 Implementation

The Modia implementation is made in Julia which pro-

vides meta-programming capabilities which are suitable

for symbolic treatment of the equations.

4.1 Meta-programming in Julia

Languages such as Modelica and Modia require sym-

bolic transformations of equations into executable code.

A mathematical expression is conveniently represented

by an AST (abstract syntax tree). The Julia language

(Bezanson, et al., 2017) allows creation of “quoted” ex-

pressions encapsulated as, ʺ:(…)ʺ.

julia> equ = :(0 = x + 2y)

:(0 = x + 2y)

Such an expression is stored as an AST. The AST can

be shown by using a built-in function, dump():

julia> dump(equ)

Expr

 head: Symbol =

 args: Array(Any,(2,))

 1: Int64 0

 2: Expr

 head: Symbol call

 args: Array(Any,(3,))

 1: Symbol +

 2: Symbol x

 3: Expr

 head: Symbol call

 args: Array(Any,(3,))

 typ: Any

 typ: Any

 typ: Any

equ is of type Expr which has three fields: head, args

and typ. equ.head is the Symbol = representing the

equality of the two expressions of the equation. The

right hand side is the sum of two expressions: x and 2y.

The operator + is represented as a function call:

equ.args[2].head. Which function to call is defined in

equ.args[2].args[1]. The operands of the + operator are

equ.args[2].args[2] and equ.args[2].args[3].

 A new AST can be built using the Expr constructor.

For example, solving an equation of the form:

0 = x + expression

can be done as follows:

Innovations for Future Modelica

700 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

julia> solved = Expr(:(=),

 equ.args[2].args[2], Expr(:call, :-,

 equ.args[2].args[3]))

:(x = -(2y))

It is also possible to create a quoted expression referring

to parts of equ by the use of “interpolation”, $().

julia> solved = :($(equ.args[2].args[2]) =

 - $(equ.args[2].args[3]))

:(x = -(2y))

The result is presented as a quoted expression. By as-

signing the variable y, it’s possible to calculate x using

the eval function on the AST solved:

julia> y = 10

10

julia> eval(solved)

-20

julia> @show x

x = -20

4.2 Symbolic Transformations of Modia

Models

The following list shows some of the structural and sym-

bolic transformations which are performed by the Modia

implementation:

 Instantiation

 Flattening

 Alias elimination

 Type and size inference

 Removal of singularities

 Index reduction and BLT of array equations

 Symbolic differentiation of matrix equations

 Symbolic solution of matrix equations

 Partial state selection and tearing

 Transformation to a special index one DAE

 Determining sparseness structure of Jacobian

Modia supports type and size inference, that is, the Var-

iable constructor does not need to specify type and size.

However, Pantelides algorithm and removal of singular-

ities require that types and sizes of variables and equa-

tions are known. Types and sizes are inferred from the

start values provided and by propagation. The left and

right hand sides of equations are evaluated with given

start values and the type and size inference of Julia is

used to determine the size and types of variables and

equations.

There are useful application models where structural

symbolic algorithms fail and may lead to strange error

messages during symbolic processing or to run-time er-

rors. For example, if an electrical circuit is not grounded,

the potentials of the electrical Pins can float, that is, the

system equations are underdetermined. On the other

hand, the equations are overdetermined regarding cur-

rents. Such singularities needs to be removed before fur-

ther structural processing. Details of such a technique is

described in the companion paper (Otter and Elmqvist,
2017).

The Pantelides algorithm and other structural index

reduction algorithms are designed for scalar variables

and equations. So Modelica tools typically symbolically

expand array equations into a set of scalar equations in-

volving the variable elements. This is not feasible if

large array equations are used, for example, for flexible

bodies or other discretized partial differential equations.

Generalizations of BLT and Pantelides algorithms to di-

rectly handle array equations can be found in (Otter and
Elmqvist, 2017).

Pantelides algorithm determines which array equa-

tions that needs to be differentiated. Special care are

needed when performing symbolic operations on array

and matrix equations since matrix multiplication is not

commutative. Solving for unknowns are done by a set

of rewrite rules. As an example, the right division oper-

ator, /, or the left division operator, \, is used depending

on whether the unknown is on the right or left side of a

multiplication operator. Special rules can be used for ro-

tation matrices to replace division by multiplication with

the transpose of the rotation matrix.

4.3 Numeric Solution of Modia Models

Numeric treatment and transformation of the resulting

differential algebraic array equations to index one form

is described in the companion paper (Otter and
Elmqvist, 2017).

5 Outlook

The Modia experimental language gives new possibili-

ties for creation of new innovative language elements

and algorithms to model and simulate more complex

models than is possible in current Modelica.

The suggested innovations of the companion paper

(Otter and Elmqvist, 2017) can be directly utilized in

current Modelica tools. A change in the Modelica lan-

guage is not needed for them. Part of the proposed inno-

vations in this paper for new language elements, such as

type inference, marking of rotational matrices in combi-

nation with new algorithms, or the allInstances(..) oper-

ator, could be included in a fully backwards compatible

form in a future Modelica 3.x version.

The use of native Julia for the algorithmic part would

simplify the Modelica effort considerably since Model-

ica does not need to be extended with new features in

functions. This means that evolution of Modelica could

be focused on the equational modeling aspects.

Contributions to Modia for language design and for

improved symbolic and numeric algorithms are wel-

come.

References

Benveniste A., Caillaud B., Elmqvist H., Ghorbal K., Otter

M., and Pouzet M. (2017): Multi-Mode DAE Models -

Challenges, Theory and Implementation. Lecture Notes on

Computer Science, submitted for review.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

701

Bezanson J., Edelman A., Karpinski S. and Shah V.B.

(2017): Julia: A Fresh Approach to Numerical Computing.

SIAM Review, Vol. 59, No. 1, pp. 65-98.

http://julialang.org/publications/julia-fresh-approach-

BEKS.pdf; see also: http://julialang.org/

Broman D., Siek J. G. (2012): Modelyze: a Gradually Typed

Host Language for Embedding Equation-Based Modeling

Languages, University of California at Berkeley, No.

UCB/EECS-2012-173, www2.eecs.berke-

ley.edu/Pubs/TechRpts/2012/EECS-2012-173.html.

Danish D. (2014): FixedSizeArrays, https://github.com/Si-

monDanisch/FixedSizeArrays.jl

Elmqvist H., Goteman A., Roxling V., Ghandriz T. (2015):

Generic Modelica Framework for MultiBody Contacts and

Discrete Element Method. Proceedings 11th International

Modelica Conference, Versailles.

http://www.ep.liu.se/ecp/118/046/ecp15118427.pdf

Elmqvist H., Olsson H., Otter M. (2015b): Constructs for

Meta Properties Modeling in Modelica. Proceedings 11th

International Modelica Conference, Versailles.

http://www.ep.liu.se/ecp/118/026/ecp15118245.pdf

Elmqvist H. and Mattsson S.E. (2016): Exploiting Model

Graph Analysis for Simplified Modeling and Improved Di-

agnostics. Proceedings EOOLT '16, April 18, Milano, It-

aly.

Elmqvist J., Henningsson T. and Otter M. (2016): System

Modeling and Programming in a Unified Environment

based on Julia. Proceedings of ISoLA 2016 Conference

Oct. 10-14, T. Margaria and B. Steffen (Eds.), Part II,

LNCS 9953, pp. 198-217.

Fisher K. (2013): SIUnits. https://github.com/Keno/SIUnits.jl

Giorgidze G., Nilsson H. (2009): Higher-Order Non-Causal

Modelling and Simulation of Structurally Dynamic Sys-

tems. In Proceedings of the 7th International Modelica

Conference, pages 208–218, Como, Italy.

http://www.ep.liu.se/ecp/043/022/ecp09430137.pdf.

Höger C.: Dynamic structural analysis for DAEs. In Pro-

ceedings of the 2014 SCS Summer Simulation Multicon-

ference, 2014.

Mattsson S.E, Otter M., and Elmqvist H. (2015): Multi-Mode

DAE Systems with Varying Index. Proceedings 11th Inter-

national Modelica Conference, Versailles.

http://www.ep.liu.se/ecp/118/009/ecp1511889.pdf

Modelica Association (2014): The Modelica Language Spec-

ification, Version 3.3 Revision 1, https://www.model-

ica.org/documents/ModelicaSpec33Revision1.pdf

Modelica Association (2016): The Modelica Standard Li-

brary, Version 3.3.2, https://github.com/modelica/Model-

ica

Otter M., and Elmqvist H. (2017): Transformation of Differ-

ential Algebraic Array Equations to Index One Form.

Modelica Conference 2017, Prague, May 15-17.

Short T. (2012): Sims - A Julia package for equation-based

modeling and simulations.

https://github.com/tshort/Sims.jl.

Zimmer D. (2010): Equation-Based Modeling of Variable

Structure Systems. PhD Dissertation, ETH Zürich. http://e-

collection.library.ethz.ch/eserv/eth:1512/eth-1512-02.pdf.

Innovations for Future Modelica

702 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

