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Abstract
This paper presents a concept for online parameter iden-
tification intended to be used within cardiovascular re-
search labs and hospitals of the future featuring a data
network of medical sensors. It is based on iterative non-
linear optimization using a moving horizon scheme and
object-oriented Modelica models. Special FMUs have
been developed to interface the optimization module and
the sensor hardware. The concept is demonstrated on an
exemplary application of identifying the parameters of a
model for the systemic circulation. Unlike classical online
parameter identification methods, this concept allows for
quickly implementing changes of the underlying model.
Keywords: Online Parameter Identification, Moving Hori-
zon, FMI, ModeliChart, JModelica.org, CasADi, Cardio-
vascular, Medical

1 Introduction
Throughout many countries around the globe, public
health care systems are being faced by the ongoing trend
of increased demand for health care services. On the
one hand, this is due to the consequences of demographic
changes towards an aging population. On the other hand,
scientific progress allows for increased treatment possibil-
ities (European Commission, 2016). At the same time,
public hospitals, a major pillar within the health care sys-
tems, are faced by a lack of qualified health care personal.
Supporting health care personal in public hospitals by
smart technology might provide an essential component to
meet those challenges. In this regard, ongoing trends such
as digitalization of information, large scale data agglomer-
ation (’Big Data’), interconnection of devices (’IoT’) and
smart algorithms that allow for e.g. automated monitoring
of a patient’s status and early recognizing and possibly au-
tomatically resolving critical conditions can be expected
to find their way into hospitals in the future and have the
potential to improve the outcome of patients.

Within this context, the research focus of our interdisci-
plinary group consisting of engineers and physicians is on
improving the therapy of terminal heart failure, the most
prevalent cause of death in the western world (Nichols
et al., 2012). Specifically, we are working on control

strategies for technological heart assist devices, such as
blood pumps that are connected to the body to assist
the heart (Ventricular Assist Devices). Here, mathemat-
ical models of the cardiovascular system are applied in
many different ways, ranging from computer ’model in the
loop’ simulations of new control strategies (e.g. Habigt
et al. (2016); Ketelhut et al. (2017)) over driving test
benches for ’hardware and software in the loop’ hardware
tests (e.g. Misgeld et al. (2015)) to state estimation (e.g.
Rüschen et al. (2016)) and model based control (Gesen-
hues et al., 2016).

Although much literature exists describing the observed
behavior of the healthy body, few is known about the un-
derlying mechanisms and how they are affected by dis-
eases, drugs or the interaction with technical devices.
Consequently, the adaption, refinement and creation of
new models is an integral part within this field. Here,
over the years the object-oriented modeling paradigm us-
ing Modelica has turned out invaluable for its flexibility
for modifications and the concept of acausal formulation
of components (Gesenhues et al., 2017) and has motivated
the creation of libraries such as the Physiolibrary (Mateják
et al., 2014) or our in-house developed library HumanLib
(Brunberg et al., 2009).

Besides model structure, the identification of the con-
tained model parameters is important. When it comes to
biomedical dynamical systems such as the cardiovascu-
lar system, there is generally a great extent of variation
considering parameters. First of all, parameters vary with
countless individual characteristics of patients such as age,
height, weight, gender, lifestyle etc. Second, the presence
and extend of diseases directly affects the parameters. Fi-
nally, even in a specific single patient at a specific state,
the parameters vary because the body possesses numer-
ous physiological control mechanisms to adapt to external
conditions such as temperature, exercise or even the cur-
rent posture (standing upright or lying). Thus, the model
parameters need to be considered time varying and can
change within seconds. All in all, parameters identified
from measured data represent a snapshot of an individual
patient at a specific time.

For all of those reasons and having smart algorithms
and features of hospitals in the future in mind, an au-
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Figure 1. Architecture and components of the online identification concept. MH: Moving Horizon, CAN: Control Area Network,
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tomated online model parameter identification procedure
that is capable to be included in a hospital’s data network
and which continuously identifies model parameters based
on live patient data provides many benefits including diag-
nostic assistance to doctors (model parameters can be used
to asses a patient’s status), smart alarms that are raised
when selected parameters exceed a certain threshold up
to model based control of medical devices, for which an
adequately parametrized model is an essential prerequi-
site. In-vivo animal trials are an integral element of our re-
search. The infrastructure that we have developed to con-
duct such trials features a large number of sensors which
are connected to a data network (currently we are using
the Control Area Network (CAN) bus). This infrastruc-
ture bears resemblance to the possible infrastructure of fu-
ture hospitals. Thus, our trials and infrastructure provide a
test bed for the implementation of medical cyber-physical
systems.

The current state of technology includes many classi-
cal online and offline parameter identification methods,
which have been adapted and applied to virtually any
physical domain. Specifically for the cardiovascular sys-
tem, those include attempts using reformulation of model
equations to allow for (recursive) least square techniques
(Clark et al., 1980; Hann et al., 2006; Kosaka et al., 2002)
and Bayesian approaches like the (extended) Kalman fil-
ter (Yu et al., 1998). Although it has been shown that the
results yielded from classical approaches are valid and re-
liable, a major limitation consists in the fact that there is an
enormous effort to reformulate the model into the specific
form needed for the identification method. This generally
includes manually rearranging equations and to transform
the system by introducing new state variables and param-
eters (e.g. to resolve non-linearities). Shortly, classical
methods might be satisfactory when the underlying model
meets the requirements of the identification method and
can be considered ’frozen’ with the start of development
as revisions to the model at a later time can be laborious
and even impossible to implement.

As mentioned above, cardiovascular system models
are subject to frequent changes. Thus, the applicabil-
ity of classical methods is limited in this regard. Those
limitations motivate new online identification procedures
which do not require excessive reformulation efforts of
the underlying model. Recently, we have started to
consider non-linear optimization based identification us-
ing our Modelica models in combination with Optimica,
JModelica.org and CasADi as a possible solution. A re-
cent study focusing on the offline identification of patient
specific parameters using those tools comes to the conclu-
sion that patient specific parameter identification has the
potential to be a promising component for patient assess-
ment in the clinic (Moza et al., 2017).

The contribution of this paper is a concept that allows
for the automated online parameter identification based on
those ideas and tools which does not exhibit the described
limitations of the previous state of the art and can be used
within our animal trial infrastructure. The general idea
is to repeatedly (re-)identify the current parameter values
by solving a non linear optimization problem over a short
time interval. The paper is organized as follows: first, the
next section provides a general overview over the concept
and its components and the typical setup work flow in-
volved. Section 3 details the iteratively carried out opti-
mization procedure. Afterwards, the concept is demon-
strated by the exemplary application of identifying the pa-
rameters involved in a simple model of the systemic cir-
culation (Section 4). Finally, the results are presented and
a discussion on current limitations and further enhance-
ments is given (Section 5).

2 Concept Overview and Work Flow
The components involved within the presented concept
are summarized in Figure 1. The concept consists of our
FMU-master ModeliChart (see Section 2.2 below) which
serves as the central hub and graphical user interface and
of the optimization module, which constantly calculates
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current parameter values. It is further described in Section
3. The optimization module is implemented as a Python
routine. Data exchange between those two components is
realized through a TCP socket stream using a simple cus-
tom protocol. This design allows for either running the
optimization module on the same machine that is running
ModeliChart as well as running the optimization module
on a different machine (possibly outside of the lab) con-
nected to the local area network (LAN).

2.1 Interface FMUs
To realize the architecture depicted in Figure 1 two
FMUs complying with the FMI 2.0 co-simulation stan-
dard have been developed to allow for data exchange be-
tween the individual components of the concept. Both in-
terface FMUs have in common that they are fully config-
urable through the modelDescription.xml and addi-
tional configuration files provided as resources. So far,
both FMUs only support the Real data type. An arbi-
trary number of input and output channels that appear
as scalar FMU variables can be set. Input channels are
intended for receiving data, output channels, which are
marked with the attributes causality="parameter"
and variability="tunable" are intended to send
data. For each of both FMUs a convenient software tool
has been developed to automatically generate the accord-
ing modelDescription.xml, additional configuration
files and the packed FMU.

The first FMU constitutes a TCP/IP based network
socket interface used for the connection between the op-
timization module and ModeliChart. During the initial-
ization of the FMU, a TCP server accepting connections
on a configurable port is started waiting for a client (here
the optimization module) to connect. At this point, only
a single client is supported. On every execution of the
doStep(...) method, the values of the output channel
scalar variables are sent to the connected client using a
simple custom protocol. Similarly, the getReal(...)
function returns the latest value of the specified input
channel scalar variable. The client is allowed to send val-
ues at any given time.

The second FMU allows for the interaction with the
CAN bus of our infrastructure which distributes the sen-
sor signals. This FMU uses the API provided by the man-
ufacturer of the CAN interface hardware (PEAK-System
Technik GmbH, Darmstadt, Germany). The CAN FMU
listens to CAN messages of preconfigured message iden-
tifiers and returns the last received value whenever the cor-
responding getReal(...) function is called. Although
not required in the here presented application, the CAN
FMU also supports sending values to the CAN bus.

2.2 ModeliChart
ModeliChart is our self-developed freely available FMU
host. The original motivation has been to provide a free
and intuitive opportunity to asses and play with simula-
tion models to physicians. However, the ease of use and

the hardware interaction capabilities through the interface
FMUs described above have turned ModeliChart into a
’Swiss army knife’ for all steps during rapid control proto-
typing cycles. Based on the .NET framework (Microsoft,
Redmond, WA, US), it provides a simple intuitive graph-
ical user interface. ModeliChart supports FMUs comply-
ing with the FMI 2.0 co-simulation standard. The main
intended use case is real time operation by periodically
calling the doStep(...) method of all FMUs after a
configurable time interval. So called ’channel links’ al-
low individual FMUs to be connected: Internally, for each
channel link the SetReal(...) method of the receiving
FMU is called at each time step. More details on Mode-
liChart can be found in (Gesenhues et al., 2017).

Within the here presented application, three FMUs are
used. The CAN FMU is used to fetch the measurements of
the sensors of interest from the CAN bus. Through chan-
nel links, the measurement data is handed to the TCP/IP
FMU which in turn sends the measurement data to the op-
timization module. In this regard ModeliChart serves as
a CAN to TCP/IP bridge. After new identified parame-
ters are available from the optimization module, they are
sent to ModeliChart through the TCP/IP FMU. The third
FMU contains the model under investigation. Through
channel links the current parameter values are set to the
model FMU. In combination with the measurement data
from the CAN FMU used as input into the model FMU, it
is possible to compare chosen simulated signals with cor-
responding measured signals. Each channel can be plotted
allowing to observe trends of parameter values and to vi-
sually asses the validity of the results by comparing the
simulated and measured signals.

2.3 Typical Setup Work Flow
Typically, the setup starts with a Modelica model that con-
tains the parameters of interest. The model should con-
tain variables that correspond to measured signals. Ob-
viously it is required that the parameters are adequately
related to the variables representing the measured signals
(i.e. observability, correlation etc.). Next, an Optimica
file is created containing the optimization problem. The
optimization class should extend from the Modelica
model. In simple cases, it can be sufficient to just mark
the parameters to be identified as ’free’ when a quadratic
penalty cost function is to be used. Nevertheless it is also
possible to define custom cost functions. For consistency,
certain variable expressions for optimization parameters
such as final time or limits on allowed parameter values
can be used which are later overwritten when the Optim-
ica file is loaded in the optimization module. An exem-
plary Optimica file can be seen in Listing 2. Both files are
placed in a folder accessible for the optimization module.
Next, some adaption of the Python routine is necessary to
match the measurement data to the corresponding model
variables and to set optimization parameter settings (see
Section 3). Besides, an FMU of the Modelica model to be
used within ModeliChart is created and if necessary the
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Figure 2. Illustration of the moving horizon scheme.

configuration of the interface FMUs is adapted. Finally,
a ModeliChart setup (loading the FMUs and creating the
channel links) is created and optionally saved for later use.
As soon as the setup has been loaded in ModeliChart, the
optimization module can be started.

3 Optimization Module
The online parameter identification is realized through
continuously iteratively solving the optimization problem
defined within the Optimica problem using the measure-
ment data samples within a most recent finite time frame
(horizon). Using a moving horizon scheme (Figure 2), as
soon as enough samples for a new horizon spanning the
time TH and enough time since the preceding horizon T∆

has passed, a new optimization job on the current horizon
measurement data is dispatched.

The optimization module has been implemented as a
Python routine. It uses the modules provided by JMo-
delica.org (version 1.17) and in particular the integrated
CasADi based optimization tool chain (Åkesson et al.,
2010; Andersson et al., 2011). CasADi is a nonlinear
optimization framework that is capable to automatically
discretize the optimization problem using a collocation
scheme and to calculate the necessary derivatives through
algorithmic differentiation. The tool chain automatically
transforms the formulated Optimica problem to be solved
by a non linear optimization solver. Here, Ipopt has been
used (Wächter and Biegler, 2005).

Figure 3 provides an overview of the routine. Af-
ter the optimization module has been started, the Mod-
elica and Optimica files are loaded. The variable ex-
pressions in the Optimica file (see Listing 2) are re-
placed by the configured values within the routine, i.e.
%FINAL_TIME% is set to the value TH . Using the ac-
cording modules, the Modelica model is simulated with
artificial input signals over the time frame TH to pro-
vide initial trajectories of all variables. Afterwards, the
optimization problem is compiled and discretized us-
ing the prepare_optimization(...) function of the
transfer_optimization_problem module. The so
prepared discretized problem will be used for each of the
following optimizations. Since this compilation process
takes significantly longer than the actual solution of the
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Figure 3. Flow diagram of the optimization module routine.

optimization problem, reusing the prepared discretization
saves a lot of computation time. Afterwards, as soon the
connection to ModeliChart is established, incoming sam-
ples are awaited and buffered. As soon as a new horizon
is collected according to the described moving horizon
scheme, the samples within the horizon are set as the new
external data. Furthermore, the initial trajectories for the
solution of the optimization problem are set to the solution
trajectories of the preceding optimization. Afterwards the
solver is started.

For a number of reasons depending on the application
(some examples will be shown in Section 4), the solution
obtained from the solver might be invalid or the solver
might even fail to find a solution within a reasonable time.
At this point, it is just checked whether the found param-
eters are within defined limits to decide on the validity of
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Listing 1. Modelica model for the identification of the TEW
parameters. The associated Modelica library ’HumanLib’ can
be found as online supplement.

model Ident3ElemWK
import HumanLib.Basics.*
import HumanLib.Vessels.*
parameter Real param_Z=0.1;
parameter Real param_R=1;
parameter Real param_C=1;
Resistance Z(R=param_Z);
Compliance C(V_0=0, C=param_C,

V(start=100, fixed=false));
Resistance R(R=param_R);
Sources.PressureSource_Variable P_Ao;
Sources.PressureSource_Variable P_CV;
input Real AoP;
input Real CVP;
Sensors.FlowSensor Q_Ao;

equation
connect(Z.cnStreamOut, R.cnStreamIn);
connect(C.cnBloodStream, R.cnStreamIn);
connect(R.cnStreamOut, P_CVP.cnBloodStream

);
connect(P_Ao.P, AoP);
connect(P_CV.P, CVP);
connect(Z.cnStreamIn, Q_Ao.cnStreamOut);
connect(P_Ao.cnBloodStream,

Q_Ao.cnStreamIn);
end Ident3ElemWK;

Listing 2. Optimica optimization problem for the identification
of the TEW parameters.

optimization OptimizeWKParams(startTime=0,
finalTime=%FINAL_TIME%)

extends Ident3ElemWK(
param_Z(free=true,min=%MIN_Z%,max=%MAX_Z%),
param_R(free=true,min=%MIN_R%,max=%MAX_R%),
param_C(free=true,min=%MIN_C%,max=%MAX_C%)
);
end OptimizeWKParams;

the results but in the future it might make sense to evalu-
ate other criteria like residuals, solution time etc. There-
fore, an additional parameter is reported back indicating
whether the result is considered valid. This provides feed-
back for the user on which it can be decided to just ignore
’sporadically’ invalid results or to investigate the reason.

4 Exemplary Application: Identifica-
tion of the Systemic Circulation

The concept is demonstrated on the simple but relevant in
practice use case of identifying the parameters involved in
modeling the flow dynamics of the systemic circulation.
The systemic circulation refers to all blood vessels (arter-
ies, capillaries, veins) between the outlet of the left (side
of the) heart, which pumps the blood into the systemic
circulation and the right heart, which pumps blood into
the pulmonary (lung) circulation (Figure 4). The vessels

Aorta PAo(t)

Ascending

Descending

From (left) heart

Further Systemic Circulation:
Arteries, Capillaries, Veins

Central Veins PCV (t)

To (right) heart

Flow Sensor Q
Ao (t)

Figure 4. Schematic overview of the systemic circulation.

Resistance Resistance
ComplianceFlow Sensor

Pressure Source
Pressure Source

PAo(t) PCV (t)Z C RQAo(t)
TEW

Figure 5. Graphical representation of Listing 1: the three-
element-windkessel (TEW) in model combination with addi-
tional components for the parameter identification process.

within the systemic circulation start with the arteries and
branch up more and more into smaller vessels (ultimately
into so called capillaries) running through all parts of the
body (muscles, organs) except the lungs. The capillaries
end up in the veins, which in turn ultimately end in the big
central veins and finally in the right heart.

The large arteries, most importantly the aorta are elastic
and have the ability to distend with raising blood pressure
and recoil with falling blood pressure (indicated through
the dashed line in Figure 4). This leads to a damping of
the amplitude of the pulsating blood pressure wave com-
ing from the heart, an effect that is commonly referred
to as the physiological windkessel effect. A very simple
model for the systemic circulation is the three-element-
windkessel (TEW) model (Westerhof et al., 2009). It con-
sists of two hydraulic resistances (∆P = R · Q, with ∆P
being the blood pressure difference across the element, Q
the blood flow and R the resistance parameter) and a com-
pliance element (V =C ·P with V being the current blood
volume inside the element, P the current blood pressure
inside the element and C being the compliance parame-
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ter). For convenience, the elements and parameters will
be referred to as Z,R (resistances) and C (compliance). A
graphical representation of the model can be seen in Fig-
ure 5.

During a typical in-vivo animal trial on an anesthetized
pig, the chest is opened and the heart and the aorta un-
covered. This allows for the placement of various sensors.
For this application two invasive pressure sensors are used
that are placed inside the Aorta (PAo(t)) and inside one
of the central veins (PCV (t)). Furthermore, an ultrasonic
flow sensor is placed at the beginning of the Aorta (QAo,
see Figure 4). Listing 1 contains the complete Modelica
model based on components from our library ’HumanLib’
(Brunberg et al., 2009). The blood connector used in List-
ing 1 consists of the potential variable blood pressure (tra-
ditionally denoted in mmHg where 1mmHg = 133.3Pa,
referred to atmospheric pressure) and the flow variable
blood flow in ml/sec.

Listing 2 contains the according optimization prob-
lem. In this example the parameters to be identified are
marked free. The optimization problem consists in find-
ing those parameter values that minimize the quadratic
difference between the measured signals and the ’sim-
ulated’ signals. For this, the ExternalData class
of the pyjmi.optimization.casadi_collocation
module has been used. It allows to optimize for all three
sensor signals at the same time without the need for de-
ciding which signals are considered as input or output sig-
nals. The extend of individual signal differences can be
weighted against each other. Here, the parameters given
in Table 1 have been used to roughly normalize the sig-
nals.

To influence the parameters all sorts of experiments can
be performed during an animal trial. Here, we consider
the constriction of the aorta using a surgical band at two
different positions: at the ascending part right at the begin-
ning of the aorta and at the descending part of the aorta as
indicated by the dashed lines in Figure 4. It is important to
note that the pressure sensor measuring PAo measures the
aortic pressure right behind the constriction of the ascend-
ing position but way before the descending position. Each
of those constriction positions should have a different im-
pact on the model parameters.

5 Results and Discussion
For the results presented in this section, already available
raw data recorded during animal experiments conducted
on anesthetized pigs (approved by local animal care au-
thorities) has been used. There were no animal trials con-
ducted for this study. Accordingly, the infrastructure has
been emulated to generate the results presented in this sec-
tion. The raw data contained the sampled values of the
sensors at a sample rate of 1 kHz. The settings that have
been used are summarized in Table 1.

Two different experiments are investigated. The first
experiment is a short constriction of about 20 seconds

Table 1. Settings that have been used to obtain the presented
results. All other settings have been left at their default values.

Name Value

General:
Horizon length TH ,%FINAL_TIME% 1.5 sec
Time between horizons T∆ 0.8 sec
Validity criteria:
Maximal value %MAX_R%, %MAX_C% 3.5
Maximal value %MAX_Z% 1
Minimal value %MIN_R%, %MIN_C% 0.1
Minimal value %MIN_Z% 0.001
Quadratic penalty weight factors:
For PAo 10
For PCV 20
For QAo 1
Optimization settings:
Number of collocation elements 23
Max. Ipopt iterations 300

at the ascending position (Figure 6). The PCV signal is
not shown in the plots since it remains almost constant at
around 15 mmHg during the experiments. The pressure
PAo is measured behind the ascending occlusion position.
Hence, constricting the aorta at the ascending position
limits the blood flow but hardly affects the properties of
the systemic circulation. It can be seen that the parameters
change only slightly during the constriction and return to
their initial values some time after releasing the constric-
tion. The immediate parameter value changes (most no-
tably the sudden decrease of Z) can be explained by non-
linearities of the real system which become apparent when
the blood flow is significantly reduced. The slow changes
of parameters after the constriction are due to reactions
of the bodies regulation mechanisms; trough muscle cells
within the wall of some of the arteries the cross section
area of the vessel and thus the resistance of the vessel can
be controlled by the body. The increase in Z can be ex-
plained by the aim of the body to increase the pressure in
the aorta (the so called baroreceptor reflex). Similar, the
reduced supply of oxygen (hypoxia) leads to a widening
of the blood vessels to allow for increased blood flow and
results in a reduction of R. After the release, the regula-
tory mechanisms slowly revert the parameters back to the
original values.

For the second experiment, a constriction at the de-
scending position for several minutes is performed (Figure
7, release not shown in the figure). When the aorta is con-
stricted at the descending position, the overall resistance
of the systemic circulation is drastically increased which
is reflected in a significant increase of R. However, due
to impaired draining a significant expansion of the aorta
results in a reduction of Z due to the increase of the cross
section area of the aorta. For the same non-linearity rea-
sons as in the first experiment, the expanded aorta exhibits
a reduce elastance. Hence, the value of the compliance
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Figure 6. Short constriction of the aorta at the ascending position with subsequent release after about 20 seconds.

C decreases. Again, although small compared to the ef-
fects of the constriction, slight changes of the parameters
can be observed after the constriction due to the regulatory
mechanisms described above.

As seen in both experiments, the assumed proportional-
ity between pressure and volume to model the compliance
C is only valid within a limited range that has been ex-
ceeded during the experiments. Based on this findings it
can be considered to revise the model accordingly. Here,
the major advantage of the here presented concept consists
in the fact that such model adaption can be implemented
quickly.

The limitations considering what can be modeled are
mostly determined by the features yet supported by JMod-
elica.org, CasADi and Ipopt. A major limitation is the
requirement of the model equations to be twice continu-
ously differentiable (Wächter and Biegler, 2005) for each
optimization variable. This prohibits the use of switch-
ing components that commonly include if...else state-
ments. In our applications, this affects models containing
heart valves. To work around this limitation continuous
approximations have been used (Gesenhues et al., 2016,
2017).

On a standard personal computer, the average computa-
tion time for a valid result was 0.45 sec for the first exper-
iment and 0.36 sec for the second experiment. Since the

solution of the preceding optimization are used as the ini-
tial trajectories for the solver, the solution converges faster
if there is less change of the parameters between horizons.
Currently, a limitation of the current design of the rou-
tine of the optimization module is the requirement of the
preceding optimization being finished before the next op-
timization can be started. Consequently, the time between
two horizons T∆ needs to be chosen sufficiently high to
avoid additional delays from waiting for the preceding op-
timization to finish. Settings that affect the solution time
include the number of collocation elements and the num-
ber of collocation points within the discretization of the
optimization problem.

For verification purposes and to investigate the impact
of the length of the horizon TH , a test case has been con-
structed based on data obtained by a simulation of the
model. Here, the exact parameter values that should re-
sult out of the identification are known. All three parame-
ters have been varied during the simulation to evaluate the
dynamical effects of the identification procedure. Using a
sinus signal as input for PAo(t) and a constant signal for
PCV (t), the resulting QAo(t) was obtained. The so artifi-
cially created signals were used to emulate the sensor sig-
nals. The results of this test case are contained in Figure
8. As it can be seen, a smaller value for the horizon length
TH results in a faster response to changing parameters. On
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Figure 7. Long constriction at the descending position of the aorta.

the other hand, fluctuations are more damped for bigger
values of TH . Especially in the presence of noise, choos-
ing a bigger value for TH might be preferable. However,
significant parameter changes within the horizon lead to
invalid results (the outliers for TH = 5sec in Figure 8).

In the future, it is planned to further evaluate the con-
cept considering other aspects of the cardiovascular sys-
tem. Besides, further improvements to the optimization
module will be made to improve the robustness and the
performance. This includes canceling optimizations that
do not converge within a given time. Similarly, it will be
considered to adapt the time between horizons T∆ depend-
ing on the necessary solution time. Another interesting
idea that has come up is the synchronization of the hori-
zons to heartbeats. Besides, improvements will be made
to the setup work flow aiming at eliminating the need to
adapt the Python code for new setups. Furthermore, we
will be looking into changing the settings of within the
optimization module through the ModeliChart interface
without the need to stop and restart the optimization mod-
ule.

Concluding, the concept that has been integrated into
our lab infrastructure presents a valuable addition for our
research on the cardiovascular system and has the poten-
tial to be used as a clinical tool in the future.
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Figure 8. Verification trough identification of known parameter
values for different horizon lengths TH . The outliers in the TH =
5sec test are invalid results.
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