
 

PDEModelica and Breathing in an Avalanche 

Jan Šilar*​+​, Filip Ježek​#​, Jiří Kofránek​+ 

+ Institute of Pathological physiology, First Faculty of Medicine, Charles University, Prague, Czech republic 
# Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic 
* Corresponding Author Institute of Pathological physiology, U nemocnice 5, Praha 2 128 00, Czech Republic, 
jansilar@jansilar.cz 
 
 

Abstract 

This paper presents an updated version of Modelica 
language extension for partial differential equations 
(PDE) called PDEModelica and implementation of its 
support in OpenModelica. This support is limited to 
1-dimensional problems and the first and second partial 
derivatives. PDEModelica is introduced by a string 
equation model and later by a real life model of 
respiration during a snow burial. This model describes 
CO​2​ advection and diffusion in snow described by 
advection-diffusion PDE. 

PDEModelica, PDE, avalanche survival 

Introduction 
PDEModelica is a Modelica language extension for 
partial differential equations (PDE). It was designed by 
Levon Saldamli ​(Saldamli, 2006)​. This original 
extension is currently not supported by any tool. We 
focused on a subset of this extension for 1-dimensional 
models only and introduced several changes and 
enhancements. Support for the renewed extension has 
been implemented in OpenModelica. We present the 
extension using a simple string equation model at first 
and then a real-life problem of modelling respiration 
during a snow burial.  

In the past four decades, avalanches were responsible for 
around 100 deaths annually in the European Alps only 
(Techel et al., 2016)​. When a victim is buried by an 
avalanche he or she repetitively inspires previously 
expired air as the motion of air in snow is restricted. The 
body metabolism consumes O​2​ and produces CO​2​ and 
thus the concentration of O​2​ decreases and the 
concentration of CO​2​ increases in the inspired and 
expired air. The concentrations of O​2​ and CO​2​ are 
partially restored by diffusion. But this process is not 
fast enough and if the victim is not rescued within 
approximately 15 minutes he or she may die of 

asphyxiation, i.e. a lack of oxygen supply to the cells. 
Asphyxia could be caused by a variety of situations, 
including excess of CO​2​. More than 75 % of deaths in an 
avalanche are caused by asphyxia ​(McIntosh et al., 
2007)​. However the content of oxygen in snow should 
satisfy the body needs – Radwin ​(Radwin et al., 2001) 
proved, that volunteers buried in snow with the removal 
of the expired gas did not have any problems even after 
an hour long burial. In contrast, no removal resulted in 
serious hypercapnia (i.e. an excessive amount of carbon 
dioxide in blood) within 10 minutes. In this paper, we 
focus on modeling of CO​2​ diffusion only, as the O​2​ is 
then a very similar problem. 

Modeling task 

It is assumed, that a potential cavity around the mouth 
and the nose significantly increase the chance of 
survival. Roubík et al. carried out an experiment ​(Roubík 
et al., 2015)​ where the volunteers were breathing 
through a tube whose end opened into a cavity in snow 
of various volumes. They proved that the size of the 
cavity has a significant impact on the concentration of 
O​2​ and CO​2​ in the inspired and expired air. There are at 
least two possible mechanisms causing this effect. First, 
the small cavity has a small surface of the air-snow 
boundary and so the resistance for the air flux is high. 
This causes an increase in the work of breathing, an 
increase in the metabolism rate and thus an increase in 
O​2​ consumption and CO​2​ production. Second, the 
expired air is mixed with more fresh air in the cavity and 
then the inspired air is also more fresh. Both 
mechanisms probably take place in the process. The 
question is which one dominates. We were asked to help 
with the investigation using a model. 
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Methods 

PDEModelica 

Let us introduce all new language elements of 
PDEModelica on the advection equation model: 

1​ model​ advection ​"advection equation" 
2  ​parameter ​Real​ pi =  

Modelica.Constants.pi; 
3  ​parameter ​DomainLineSegment1D​ omega(L =  

1, N = 100); 
4  ​field ​Real​ u( domain= omega); 
5​ initial equation  
6  u =​ sin​(2*pi *omega.x); 
7​ equation  
8  ​der​(u) +​ ​pder​(u, x) = 0 ​indomain omega​; 
9  u = 0 ​indomain omega.left​; 
10 u =​ extrapolateField​(u)  

indomain omega.right​; 
11​end ​advection; 
  

● The Domain ​omega​ represents the geometrical 
domain where the PDE holds. The domain is 
defined using the built-in record 
DomainLineSegment1D​ (line 3). This 
record contains among others ​L​ – the length of 
the domain, ​N​ – the number of grid points, ​x​ – 
the coordinate variable and the regions ​left​, 
right​ and ​interior​, representing the left 
and right boundaries and the interior of the 
domain. 

● The field variable ​u​ is defined using a new 
keyword ​field​ (line 4). The ​domain​ is a 
mandatory attribute to specify the domain of 
the field. 

● The​ indomain​ operator specifies where the 
equation containing the field variable holds. It 
is utilised in the initial conditions (IC) of the 
fields, in the PDE and in the boundary 
conditions (BC). The syntax is  

equation indomain domain.region 
If the ​.region​ is omitted, ​.interior​ is the 
default. 

● The IC of the field variable ​u​ is written using 
an expression containing the coordinate 
variable ​omega.x.​ (line 6). 

● The PDE contains a partial space derivative 
written using the ​pder​ operator (line 8). Also 
the second derivative is allowed (not in this 
example), the syntax is e.g.​ pder(u,x,x)​. It 
is not necessary to write e.g. ​omega.x​ in 
pder​, even though ​x​ is a member of ​omega​. 

● The BC is on line 9. The current limitation is 
that BCs may be written only in terms of 
variables that are spatially differentiated. 

● All fields that are spatially differentiated must 
have at each boundary either BC or 
extrapolation. This extrapolation should be 
done automatically by the compiler, but this has 
not been implemented yet. The current 
workaround is the usage of the 
extrapolateField()​ operator directly in 
the model. 

Comparison to the original version of 
PDEModlica 
Our extension is restricted to 1-dimensional models 
only. This allows much simpler domain definition using 
the built-in ​DomainLineSegment1D​ record 
compared to the original extension which enables 
arbitrary geometry domain definition in multiple 
dimensions.  

pder()​ is used instead of ​der()​ for partial 
derivatives. A shortcut to leave out the full qualification 
of the ​x​ coordinate is established. This was probably 
intended in the original extension also, but was not 
explicitly mentioned. 

indomain​ is used instead of ​in​ as it is suggested in 
(Fritzson, 2015)​  because ​in​ is already utilized in ​for 
loops. ​indomain​ is mandatory not only in the BCs but 
also in the ICs and the PDEs here. 

Field literals are written as expressions containing the 
coordinate variable ​x​ and thus the special syntax for the 
field literal constructor of the original extension was 
suppressed. 

Solution process 

The PDEs are solved using the method of lines (MOL) 
(Schiesser, 2012)​: during flattening of the model, the 
fields are replaced by arrays and the space derivatives 
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are replaced by finite differences (currently only the 
central difference is implemented)  

 

 

and thus the PDEs are converted into a system of ODEs. 
This resulting system may be written in standard 
Modelica and is solved by current OpenModelica 
solvers. The combination of the central space difference 
with an implicit Euler time solver results in a 
backward-time centered-space (BTCS) scheme which is 
a common finite difference method. The usage of the 
trapezoid time solver results in the Crank-Nicolson 
method ​(Strikwerda, 2004)​. Other time solvers may be 
also successful, even though the resulting methods were 
not investigated. A selection of a proper time solver is 
important.  

It is also substantial to select a proper time step, so that 
the Courant–Friedrichs–Lewy (CFL) condition ​(Courant 
et al., 1967)​ is fulfilled.  

To enable PDEModelica in OpenModelica, the compiler 
flag ​--grammar=PDEModelica​ must be set. 

The features for the plotting fields (arrays) have not been 
implemented in OpenModelica yet. We use Octave to 
load the result file and plot the desired variables. 

Model of breathing in snow 

For the first stages of the research, the problem is 
simplified into a gas flow to and from a spherical 
snowball (see Figure 1). Due to small pressure 
differences, the gas is modeled as incompressible. The 
only significant pressure difference could occur at the 
boundary between the cavity and the snow, but Roubík 
et al. ​(Roubík et al., 2015)​ did experience only small 
pressure differences. 

The snow is a porous material, formed by ice and air. 
The CO​2​ could flow and diffuse across the snow through 
the air gaps. Given the ice density (916 kg/m3) and the 
density of snow (100 - 400 kg/m3) the snow consists of 
at least 55 % of air. Therefore, the air could penetrate 
through the snow and mix with the air captured within 
the snow. For simplification, we exclude the solubility in 

ice and possible melted water. The gas has a volumetric 
concentration of CO​2​, the O​2​ is omitted, but it follows 
the same principles. The gas transport in snow is 
modeled using the advection-diffusion equation.  

 

Figure 1 – Model schematics. The organism is 
producing CO​2​  in a constant rate and it is concentrating 
in the lungs. The lungs expire to and inspire from a 
cavity, in which the air is ideally mixed. The air flux is 
given. The partial concentration of CO​2​ in the cavity is 
drained by advection and diffusion through the snow. 
The dead volume in the airways is omitted. 

Advection-diffusion equation and its 
formulation in PDEModelica 

The advection-diffusion equation assuming the 
incompressible gas flow is 

 

where ​c​ is the concentration, ​u​ is the velocity of 
advection and ​D​ is a diffusion coefficient. We express 
this equation in the spherical coordinates. As our 
problem is spherically symmetrical, all derivatives 
except the derivatives in a radial direction are equal to 
zero. Then we obtain 

, 

. 

Session 6: Poster Session

DOI
10.3384/ecp17132367

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

369



 

 ​where ​r​ is the radius and ​q​ is a volumetric flow given by 
the lungs. This equation contains two partial derivatives. 
Using the principles described in the paragraphs above, 
the formulation of the advection-diffusion equation in 
PDEmodelica is written in the Code listing 1. The full 
model of CO​2​ breathing is available online .  1

model​ sb1m 
  ​(...) 
  ​Real​ C_CS ​"concentration on cavity-snow 
interface"​; 
  ​DomainLineSegment1D​ ​omega(L = 0.5, N = 
100, x0 = R_C)​ "x is actually r, center on 
the left"; 
  ​field ​Real​ C_S(​domain = omega​) 
"concentration of CO2​ ​in snow"; 
(...) 
//Left BC during exhalation, extrapolation 
during inhalation 
  C_S = ​if ​exhale​ then ​C_CS​ else 
extrapolateField(C_S)​ ​indomain omega.left​; 
//The advection-diffusion equation 
  ​der​(C_S) + (q / (4 * pi * omega.x ^ 2)  

- 2 * D_S / omega.x) *​ ​pder​(C_S, x) 
       - D_S *​ ​pder​(C_S, x, x) = 0 

indomain omega​; 
end ​sb1m; 
Code listing 1: the advection-diffusion equation 
formulation in PDEModelica. New language elements 
are highlighted in purple. 

Note, that the boundary conditions are switched with 
extrapolation every breathing cycle as the flux direction 
changes. This demonstrates the acausality of the 
proposed approach. 

Results 
In the presented model, we use the arbitrary parameter 
values to demonstrate the principles of CO​2​ distribution. 
The exact identification of the values is a subject of 
additional research. However, the resulting trends are 
consistent with expectation and plausibility personally 
confirmed by the authors of ​(Roubík et al., 2015)​. 

 

1 ​https://github.com/jansilar/snowbreathing/ 

 
Figure 2 Concentration (fraction) in the cavity C_C (the 
Cavity volume 1 L) is changing between the inhale and 
the exhale. 
 

 
Figure 3: Average concentration C_C (average over 4 
full breathing periods) in the snow cavity in time for 
various cavity sizes (V_C) at 15min. 
 
The CO​2​ concentration in the cavity rises with each 
expiration (Figure 2) and is rising towards an 
equilibrium. However, when the concentration of CO​2​ is 
about 2 % the victim feels respiratory stimulation (here 
approx. 200s), at 6 % starts mental confusion (approx. 
400s), followed by unconsciousness at 10% (approx. 
800s) and later by death.  

 
In Figure 3 we investigate the influence of the cavity 
size - the larger cavity, the longer the subject could 
survive (i.e. the lower cavity CO​2​ concentration). If the 
volume of the cavity is smaller than 1L, CO​2 
concentration does not change significantly. The size of 
the cavity has a huge impact from 1 to 5 L, but then the 
response becomes nearly linear. Unfortunately, the CO​2 
concentration remains at unsatisfactory high levels.  
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Figure 4 The concentration gradient dependable on the 
radius of the snowball during the first exhale (a half of 
breath period), the cavity volume 1 L. 

 
Figure 5 The concentration gradient dependable on the 
radius of the snowball during a longer periods, at the 
end of the breath period (i.e. after the exhale), the cavity 
volume 1 L. 

We can see advection and diffusion of CO​2​ into snow 
during the first breath out close to the cavity (Figure 4). 
Thanks to the r​2​ attenuation of advection velocity, the 
CO​2​ concentration is virtually zero within a few 
centimeters of the snow. Note that for long time periods 
the CO​2​ proceeds further. Despite, the concentration is 
negligible in around 50 cm as the distribution volume 
grows rapidly with the radius (Figure 5).  

Solution process performance 
The model was translated and simulated several times 
with a different number of grid points. The trapezoid 
solver was used. The time step was chosen 
proportionally to the space step. The stop time (model 
time) was 5 minutes. The translation and simulation time 
and the size of the model binary file are in Table 1. 

 

N Step Trans Simul Size 

50 0.02 3,5 8,2 252 

100 0.01 4,9 13,7 418 

200 0.005 5,5 39,2 759 

500 0.002 12,2 224,9 1843 

Table 1 Performance comparison: N –  number of grid 
points, step –  the time step (s), trans – the time of 
translation (s), simul – the time of simulation (s), size – 
the size of the model binary (kB). 

The simulation time increase substantially with 
increasing number of grid points. The results seem 
satisfying even for the simulation using 100 grid points 
(plotted). On the other hand this results were not verified 
by comparison with a different PDE simulation tool. 

Discussion 

The snow-breathing model 
A mathematical model could help to study the 
countermeasures to avoid asphyxiation. This work 
supports the usage of devices for CO​2​ removal and 
explains the underlying processes with the goal to 
contribute to their construction. Some CO​2​ removal 
devices already exists, including a tube device to divert 
the CO​2​-rich exhale ​(Margid et al., 1998)​, but additional 
data are needed to prove their efficiency.  

Changes in the human metabolism as a consequence of 
the increasing hypercapnia and hypoxia during the snow 
burial are not included in the model. Thus the presented 
model cannot describe the real process of breathing into 
snow. Development of the full model that includes the 
human physiology as well is the aim of the subsequent 
work. The current model has been greatly simplified by 
omitting oxygen, dead space in airways, solubility of 
CO2 in other body compartments and in water contained 
in snow and also rising breath work, which produces 
more CO​2​. Thanks to Modelica implementation, it is 
planned to connect it directly with the most extensive 
open model of human physiology, the Physiomodel 
(Mateják and Kofránek, 2015)​. 

The current parameters of the model are set arbitrarily 
and are not confirmed by the measurements. Therefore, 
the results may be taken as demonstrative only. 
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Alternative to PDEModelica 
Instead of the presented solution, some other methods of 
using the PDEs in Modelica exists. One could make a 
usage of creating the PDEs in some other tool and then 
import them via FMI ​(Stavåker and Fritzson, 2014)​. For 
seamless Modelica integration, a dedicated library 
PDELib ​(Dshabarow et al., 2007)​ was developed. 
However, as it is not maintained, the examples are not 
working in the recent OpenModelica and Dymola 
versions. 

We could have employed a manual PDE discretization 
and thus converting the PDEs into an ODE or DAE 
system. However using the manual discretization is in 
conflict with Modelica declarative philosophy. Utilising 
the language extension the modeller may focus on the 
model itself rather than its numerical solution. Any 
model written using the extension is more 
understandable and maintainable compared to using the 
manual discretization.  

Conclusion 
The presented model of breathing while buried in an 
avalanche has several limitations. The main purpose of 
this contribution was to demonstrate the ability of 
PDEModelica to solve PDE models. This enhancement 
is documented on the advection equation and then the 
advection-diffusion equation modelling breathing in 
snow after the avalanche burial. PDEModelica was able 
to successfully express these example models and the 
extended OpenModelica was able to solve them. 
Nevertheless the project is not finished and more work 
should be done. Automatic extrapolation on boundaries 
must be implemented. Both PDEModelica language 
extension and its implementation in OpenModelica have 
to be yet tested thoroughly on several different models 
and by comparison of results with reference PDE 
simulation tools.  
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