Towards Virtual Validation of ECU Software using FMI

Lars Mikelsons!

Roland Samlaus’

IRobert Bosch GmbH

Abstract

Connected, Automated, Electrified. These three trends in
the automotive industry require rethinking of the use of
simulation respectively models. The use of models for
evaluation of new concepts or stimulating the unit-under-
test (in HiL testing), already firmly rooted in the develop-
ment process of software functions, will not be sufficient
to realize visions like autonomous driving or update-over-
the-air. One key enabler for such technologies is virtual
validation, i.e. the validation or release of software func-
tions in a pure virtual setup. That is, simulation is not only
a tool to shorten the development cycle, but one of the
key technologies to release future software functions, e.g.
highly automated or autonomous driving. In this contribu-
tion a feasibility study for the validation of FMI-based vir-
tual ECUs (VECUs) in a co-simulation setup is presented.
Thereby, the powertrain and the vECU are represented by
FMUs, while the tool CarMaker is used for vehicle dy-
namics. On the base of the gained experience require-
ments for the FMI standard are formulated that would al-
low to go for virtual validation of future software func-
tions. Keywords: FMI, virtual validation, ECU, vECU,
autonomous driving

1 Introduction

The use of models and simulation is firmly rooted in the
development process of automotive software as well as
hardware components. However, in the development of
software functions typically simulation is mostly used to
evaluate new concepts or to stimulate the unit-under-test,
e.g. HiL in testing. More precisely, the model of a a soft-
ware or hardware component is typically used during de-
velopment (Junghanns et al., 2014). Models and simula-
tion are rarely used for virtual validation, i.e. validation
or even release of a software function in a pure virtual
setup. There exist examples where software validation
was done virtually, e.g. ESC homologation (Holzmann
et al., 2012). However, the validation of ECU software is
mostly performed using real prototypes. In fact, although
in many cases models are exchanged between OEMs and
suppliers, it is not a standard workflow to use them for
the application of software functions. While for "‘old
fashioned"” software functions not using existing mod-
els may lead to a more costs, not using models is not an
options when it comes to concepts like autonomous driv-
ing or update-over-the-air. According to (Wachenfeld and
Winner, 2015) and (Winner et al., 2010), following ba-

sic statistics, between 100 million and 5 billion kilometers
of test driving are required in order to ensure that soft-
ware for autonomous driving is at least as save as a human
driver. Note that, the test procedure has to be repeated af-
ter every single update or modification. Clearly, it is not
possible to use real prototypes for those test drives due to
required time and costs (Google states that its 20 self driv-
ing cars drive 16.000 kilometers per week (goo, 2015)).
The same argumentation holds for update-over-the-air ex-
cept that typically the problem arises from the number of
variants and configurations that need to be tested. Thus,
here virtual validation has to be employed. Typically, for
technologies like autonomous driving one has to couple
models from different domains (xDomain vehicle simu-
lation), e.g. powertrain, vehicle dynamics or powernet.
One approach for xDomain vehicle simulation is to use
Modelica in order to model all involved domians in the
same tool respectively language. Though, in big compa-
nies the models for the different domains are generated
in different business units that prefer different simulation
tools (best suited for their specific problems). Hence, co-
simulation is typically the way to go. Designing such a
co-simulation setup for virtual validation leads to several
challenges. Typical questions that arise are

e What is the required level of detail for my models?
e How do I parametrize my models?

e How to validate a model?

e How big is the discretization error?

e How big is the coupling error?

e How can I integrate the software code into the simu-
lation?

e Which portions of the ECU code do I have to inte-
grate (where to cut)?

In this contribution only the last two questions are focused.
In fact, this contribution presents a feasibility study for in-
tegrating ECU code as an FMU into a co-simulation setup.
Thus it shows a possibility to integrate ECU code (in-
cluding the formulation of further requirements on FMI)
and discusses the problem of identifying the portion of
the software stack required for a specific validation task.
Note that, the used software function is part of a function
for highly automated driving (HAD). Future work aims
at treating this HAD function as sketched in this paper.

DOI
10.3384/ecp17132307

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

307



Towards Virtual Validation of ECU Software using FMI

In industry there are different meanings for vECU. Some
people just mean cross-compiled application code, others
mean ECU code running on a virtual OS and last but not
least a VECU can also include virtual hardware. In sec-
tion 2 a brief overview is given and the used approach for
the VECU used in section 3 is described. In section 3 the
co-simulation setup and generated results are discussed.
Starting from a yaw rate controller implemented in AS-
CET a vECU is generated. This vECU, is then integrated
in a co-simulation setup consisting of Model. CONNECT
from AVL as a co-simulation middleware, an FMU con-
taining a powertrain model generated with GT Suite from
Gamma Technologies and CarMaker from IPG for vehicle
dynamics simulation. Moreover, required additional fea-
tures in the used tools and standards are discussed. The
paper closes with a summary and an outlook.

2 Virtual ECUs

Virtual ECUs (VECU) aim at running target ECU code on
standard x86 systems by virtualization. This section in-
troduces use cases for virtual ECUs supporting the ECU
developer in creating software with higher quality faster
then with regular development processes. The basic soft-
ware architecture for ECUs is explained and it is distin-
guished between three types of virtual ECUs that differ in
the extent of the re-used target code. Finally the virtual
ECU used in the feasibility study is presented.

2.1 The AUTOSAR software architecture

The AUTOSAR (Automotive Open System Architecture)
standard defines an architecture (see figure 1) for embed-
ded software on ECUs. The idea is to "‘cooperate on stan-
dards - compete on implementation"’. AUTOSAR sys-
tems can be divided in six main components (see 1):

1. Application Software (ASW) is the software imple-
menting the unique features of an ECU, e.g., the be-
havior of the electronic stability program (ESP) or
HAD functions.

2. Runtime Environment (RTE) is the communica-
tion layer which distributes the signals directly be-
tween ASW components or using the base soft-
ware’s (BSW) communication stack. The idea of
AUTOSAR ASW components is that they can be dis-
tributed freely on different ECUs. The RTE will then
either dispatch the data from one component directly
to another component, if they are deployed on the
same ECU, or the data is send via the communica-
tion stack in the base software.

3. Base Software (BSW) is software that provides ba-
sic functionality of an ECU. Typical software com-
ponents are communication stacks such as CAN, au-
tomotive ethernet, or flexray. Other examples are
memory access and diagnosis functions. The extent
of the used base software on an ECU depends on the

AUTOSAR

MCAL

Figure 1. The AUTOSAR software architecture

use-case, e.g., ECUs for wipers need less functional-
ity than engine control units.

4. Operating System (OS) is a real-time system that
is responsible for executing code at the right time
and with a defined maximum duration. There-
fore, runnables that contain the executable code, are
scheduled using scheduling tables. The runnables are
assigned to recurring tasks of a defined maximum
duration. For simulation it is often desired to accel-
erate the execution of code. Therefore the tasks are
executed as fast as possible. Furthermore, the OS is
responsible for handling interrupts, e.g., when data is
received from a sensor. This pauses the execution of
runnables until the interrupt has been handled.

5. Microcontroller Abstraction Layer (MCAL) is the
driver layer and specific for the used ECU hardware.
This should be the single software component which
is hardware dependent. For simulation on x86 sys-
tems the MCAL layer has to be exchanged.

6. Complex Device Drivers (CDD) contain special
code which is not commonly used and this not part
of the AUTOASR specification, e.g., drivers for mag-
netic valves.

2.2 Categories of virtual vECUs

vECUs can roughly be classified into three categories:

1. VECUs that contain only the ASW and RTE (and op-
tionally an OS). This aims at quick testing of basic
functions of the ASW without using base software
components like communication. If the ASW code is
AUTOSAR compatible, vECUs for this use case can
be easily created since there are no hardware specific
parts. However, no realistic estimation of the execu-
tion behavior on real ECUs can be derived with this
kind of VECUs.

308

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132307



Session 6: Poster Session

Measurement & Calibration Testiing / Interface

Simulation
s-function
FMU/FMI

UuT

Unit under Test Remain Bus Simulation

CANoe
Busmaster

Bus systems | I

CAN Ethernet CAN-FD FlexRay Lin

Figure 2. Use cases for vVECUs

2. vECUs that consists of ASW, RTE, BSW, OS and a
virtual MCAL (for x86 systems). A more realistic
behavior of the real ECU can be simulated with this
kind of VECU. The scheduling of tasks is considered
and the functionality of the BSW can be tested. As
an example rest-bus simulation can be performed to
mock additional ECUs in the network to test for cor-
rect reaction of the simulated vECU.

3. If a more realistic behavior of the VECU is desired,
virtual hardware can be used. All software compo-
nents of the real ECU can be re-used, including the
target MCAL layer. The MCAL is used with detailed
hardware models which simulate real timing behav-
ior. Another benefit is the ability to perform fault
injection which can be problematic when done with
real hardware since the injected faults could cause
damage to the devices. A drawback of using hard-
ware models is reduced simulation speed since the
models are usually highly detailed.

2.3 Use cases for virtual ECUs

Virtual ECUs can be used for faster test of application
software. Based on the vVECU category used, BSW func-
tionality and timing behavior can also be considered. Typ-
ical use-cases for vVECUs are displayed in figure 2.

The XCP protocol is used by tools like ETAS INCA
to measure and calibrate parameters of the ECU software,
e.g. to optimize the gasoline injection for a certain en-
gine type. This can also be done virtually with VECUs.
Test APIs allow for automatic testing of the ECU soft-
ware. Examples for commonly used testing tools are
TPT and ECU-TEST. It is also possible to write custom
tests with arbitrary programming languages like Java. The
VECU can be exported as an FMU or S-Function for co-
simulation with physical and plant models. Virtual busses
(CAN, LIN, ...) can be connected to virtual ECUs using
the MCAL layer. This allows to analyze messages on the
busses and to perform rest-bus simulation with tools like
CANoe or Busmaster to simulate additional ECUs in a
network.

2.4 vECU for feasibility study

For the feasibility study a category 1 vECU has been
used. The vECU consists of an OS, the RTE and appli-
cation software. The application software has been gen-
erated as AUTOSAR 4 compatible code from an ASCET
model. Based on the application’s AUTOSAR description
the RTE has been generated. No BSW or MCAL has been
integrated at this point. This will be done as a next step
in order to send messages via CAN. This will enable to
investigate how a software function can be deployed on
more than one ECU.

2.5 vECU tool evaluation

Several tools of different vendors including ETAS ,
QTronic, Dassault, dSPACE and Mentor Graphics have
been evaluated for the creation of VECUs at Bosch. For
this contribution ETAS EVE is used since it is best suited
for the use case presented here (e.g. best integration into
the existing ECU build tool chain).

3 Feasibility study

In this section it is shown how FMI is used to integrate
and finally validate a software function in a co-simulation
setup. The vision is to validate HAD functions or software
for autonomous driving in the future. In this contribution,
not a complete function consisting of e.g. object recog-
nition, trajectory generation and follow-up control is used
but only the lateral control since the goal is demonstrate
the use of FMI to integrate ECU software into a simulation
for virtual validation (and not to investigate the numerical
properties).

In section 3.1 the co-simulation architecture is described,
while 3.2 gives a brief overview on the used models and
simulation results. In section 3.3 further requirements on
the FMI standard and the used tools are derived.

3.1 Co-Simulation Architecture

In order to setup a co-simulation one of the first things to
do is to define the integration platform, i.e. the tool that
executes the master algorithm. In some cases, especially
when not all involved tools offer an FMI export, it may
be the case that there is not one defined master algorithm.
Moreover, direct tool couplings (that do not rely on FMI)
written by different tool vendors tend to have different nu-
merical properties and to produce out-of-sync signals. An
approach to face those issues is to a co-simulation middle-
ware, that does not contain a model but only serves as a
master and coordinator. Consequently, the co-simulation
has a clean architecture with tool couplings that are con-
sistent with each other(see figure 3). Moreover, it is eas-
ily extendable and typically offers more options to con-
figure the co-simulation than simulation tools do. There
exist several open-source (e.g. PyFMI) as well commer-
cial (e.g. TISC from TLK Thermo, Cosimate from Chi-
asTek or Silver from QTronic that also includes VECU
generation) co-simulation middlewares. In this contribu-

DOI
10.3384/ecp17132307

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

309



Towards Virtual Validation of ECU Software using FMI

BEEE
&) =

i}

=~

Figure 3. Co-simulation architecture with typical vehicle do-
mains using a co-simulation middleware (purple rectangle)

tion Model. CONNECT from AVL is used.
3.2 Co-Simulation Setup

As already described above the co-simulation consists of
the following participants (see figure 4)

e CarMaker from IPG: Vehicle dynamics and driver
model for longitudinal control

e FMU: Powertrain model generated from GT Suite
from Gamma Technologies (see ??)

e FMU: vECU generated with EVE from ETAS GmbH

Throughout this section it is assumed that the software un-
der consideration can be validated by using the ISO dou-
ble lane change as maneuver. The software shall be val-
idated if the deviation in the yaw rate is rate is not big-
ger than 0.021/s and the deviation in the position in the
y-direction is not bigger than 30cm. The vehicle model
(and accordingly the software function) is parametrized
according to a luxury car, however details are neglected
here. Advanced co-simulation algorithms were not used,
i.e. the models communicate using a parallel scheme us-
ing zero order hold extrapolation. It is expected that this
has to be changed when using a more complex powertrain
model and a more complex software function. Input for
the software function is the actual yaw rate, the desired
yaw rate, the vehicle velocity and the steering angle. Note
that, the desired yaw rate is read from a table, that will be
replaced by a trajectory generator in the future.

Figure 5 indicate the the simulation result lies within the
specified error bounds. In fact the maximal error in the
yaw rate is 0.0151/s and 29.8cm in the y-direction of
the position of the vehicle. Thus (under the assumptions
stated above), the software function can be judged as val-
idated.

3.3 Derived Requirements for Tools and Inter-
faces

While it can be seen from the previous section that a vir-
tual validation of ECU software using FMI is possible in

aaaaaaaa

vvvvvvvvv

Figure 4. Setup of the co-simulation (screenshot from
Model. CONNECT from AVL) with two FMUs (VECU from
ETAS EVE and powertrain from GT Suite) and CarMaker

principle, there are some issues that prevent or will (in the
case of more complex functions) prevent FMI from being
suited for that use case. Beside issues described in (Link
et al., 2015) the following requirements were derived:

e For complex software functions lots of physical sig-
nals have to be connected to the vECU. Thus, FMI
should support vectors for easier workflows and bet-
ter models (w.r.t. clarity).

When it comes to software functions that are dis-
tributed over multiple ECUs, signals have to be ex-
changed between them. In many cases these sig-
nals are not just scalars or vectors (see above), but
structs. A typical example is the ADASIS protocol
(Ress et al., 2008) that is used to transmit the e-
horizon from an e-horizon provider to an e-horizon
reconstructor. Thus, in order to use FMI for vECUs
it should support structs.

In cases where not only the functionality, but also
the timing shall be validated the communication has
also to be modelled, e.g. using virtual CAN. Cur-
rently, the user (FMU generator and/or integrator)
has to care about the communication between FMUs
(at least for virtual busses etc.). In future versions it
would be desirable to have the communication mean
as part of FMI. Note, that this will be the case for the
Advanced Co-Simulation Interface (ACI) (Krammer
et al.).

Beside the requirements on FMI there are also some issues
on the tool side. Among these are

e According to the list above tools (simulation tools
and co-simulation middlewares) should support vec-
tors and structs.

e When more complex models are used and especially
in cases where numerically demanding couplings are
in place it is desirable to use a master algorithm that

310

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132307



Session 6: Poster Session

0.2

—Yaw rate
0.15 | —Desired yaw rate
——-Error bound
01F
0.05
I
I
e
LS
>
-0.05
0.1F
-0.15
-0.2 5
0 5 10 15 20 25 30 35
Time
4.5
—— Reference y-position -
4r y-position / ‘\

I
— — ~Error bound iy
I
i

Position

35

Figure 5. Variables used for validation including error bounds
for the double lane change including error bound

can iterate, i.e. repeat macro steps. This is currently
not supported by the used vECU, but will be sup-
ported in the future. However, many simulation tools
do not support this (optional) FMI feature. This situ-
ation should be changed.

e Tool: If common open source implementations of
virtual MCALSs would reduce development overhead
and enable switching between different vECU tools.

4 Summary & Outlook

This paper presents a feasibility study for the use of FMI
for the validation of future ECU software. Besides a brief
overview over the concept of vECUs different use cases
for the use of VECUs are considered. For a functional val-
idation (without timing) it is shown that the integration of
ECU Code into a co-simulation works in principle. How-
ever, for more complex functions than the yaw rate con-
troller used here, some issues arise that were collected in
section 3.

In future work a more complex (HAD) function will be
used. Consequently, more complex models have to be
used. Moreover, it is desired to do also timing investiga-

Figure 6. Screenshot showing the double lane change maneuver
in CarMaker

tions. Thus, virtual CAN will be used for signal exchange.
Therefore, the vVECU has to include the communication
stack. Last but not least an interface to connect calibration
software (e.g. INCA from ETAS) will be created.

References

Google self-driving car project monthly report. August 2015.

Henning Holzmann, Karl Michael Hahn, Jonathan Webb, and
Oliver Mies. Simulation-based esc homologation for passen-
ger cars. ATZ worldwide, 114(9):40-43, 2012.

Andreas Junghanns, Jakob Mauss, and Michael Seibt. Faster
development of autosar compliant ecus through simulation.
ERTS-2014, Toulouse, 2014.

Martin Krammer, Nadja Marko, and Martin Benedikt. Interfac-
ing real-time systems for advanced co-simulation - the acosar
approach.

Kilian Link, Leo Gall, Monika Miihlbauer, and Stephanie
Gallardo-Yances. Experience with industrial in-house appli-
cation of fmi. In Proceedings of the 11th International Mod-
elica Conference, Versailles, France, September 21-23, 2015,
number 118, pages 17-22. Linkoping University Electronic
Press, 2015.

Christian Ress, Dirk Balzer, Alexander Bracht, Sinisa
Durekovic, and Jan Lowenau. Adasis protocol for advanced
in-vehicle applications. In 15th World Congress on Intelligent
Transport Systems, page 7, 2008.

Walther Wachenfeld and Hermann Winner. Die freigabe des
autonomen fahrens. In Autonomes Fahren, pages 439—464.
Springer, 2015.

H. Winner, G. Wolf, and A. Weitzel. Freigabefalle des au-
tonomen fahrens/the approval trap of autonomous driving.
VDI-Berichte, (2106), 2010.

DOI
10.3384/ecp17132307

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

311



