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Abstract 
Based on a specific application example - the thermal 
management system of an internal combustion engine - 
a toolchain is presented for formulating and solving of 

nonlinear optimal control problems. Starting from 
graphical modeling of the thermal management system 
with the Modelica library TIL, the model is exported to 

the standardized model exchange format Functional 
Mock-up Interface (FMI). Furthermore, it is imported to 

the optimal control software package MUSCOD-II. 
Python is used as scripting language for the problem 
formulation, the numerical solution and the processing 

of results. By using FMI as an interface, models from 
any simulation and modeling tools can be used if there 
is an FMI model export and the models fulfill certain 

mathematical requirements (smoothness). 

Keywords: Optimal control, Functional mock-up 
interface, thermal management, cooling system 

1 Introduction 

When developing control concepts or superior operating 

strategies, frequently the question arises, what is the 
theoretically best possible control of a system. 
Questions of this kind can be mathematically expressed 

as Optimal Control Problems (OCP) describe. What is 
special about this class of optimization problems is the 
dynamics of the controlled system. Contrary to static 

optimization problems, not a finite number of 
parameters are free for optimization, but trajectories of 
system inputs. Therefore, an OCP is an infinite-

dimensional optimization problem, which usually 
cannot be solved directly. However, different 

mathematical methods exist to determine approximated 
numerical solution. Detailed introductions in the theory 
of optimal control can be found in (Bryson and Ho 1979) 

and (Betts 2001). The Direct Multiple Shooting Method 
according to (H. G. Bock and Plitt 1984) used in this 
article is explained in Section 3. 

 

Although these and other specialized OCP algorithms 

have existed for a long time, they have not yet made it 
into the broad industrial application. An exception to 

this is the aerospace industry, in which OCPs have been 

solved for optimal trajectory planning for decades. The 
largest (in our opinion) obstacle to a widespread 
industrial use of optimal control is the necessary time 

and knowledge-intensive effort. Successful work with 
existing software requires a high degree of expert 
knowledge. According to our experience, the by far 

largest time effort in optimization projects cannot be 
seen in performing the actual optimization calculations, 
but rather in the modeling of the system under 

consideration. On the one hand, derivative-based 
optimization algorithms require a certain numerical 

model quality (differentiability) that go beyond the 
requirements of pure simulation algorithms. On the 
other hand, it is important to depict the correct positive 

and negative effects, the superposition of which 
determines the optimum. The modeling process is 
almost always iterative. Reliable results can only be 

produced by repeatedly interpreting optimization results 
and changing modelling details. 

 

Based on the described experiences and observations, 
we suggest a tool chain in this article to use optimal 

control efficiently. The thermal management system of 
a combustion engine serves as a continuous example. 
Starting with the modeling of the controlled system in 

Section 2, the model is exported as FMU (Blochwitz et 
al. 2012) and imported into to the specialized 
optimization package MUSCOD-II (H. G. Bock and 

Plitt 1984; Diehl 2001; Leineweber et al. 2003). For the 
problem formulation, the numerical solution and the 

processing of results Python is used as scripting 
language. 
 

Other Modelica-related optimal control projects are 
described in (Åkesson et al. 2010), direct collocation 
(Imsland et al. 2010), single shooting, and (Franke 

2002), multiple shooting. 

2 Modelling of the controlled system 

The most important part in the successful work with 
optimal control is the dynamic model of the system 
under consideration. Mathematically, the system model 
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is described as a system of ordinary differential 

equations: 

d𝒙

d𝑡
= 𝑓(𝒙, 𝒖, 𝒑, 𝑡) (1) 

Here x denotes the vector differential states, u the vector 
of inputs, p the vector of parameters and t is time. It is 

also possible system models with additional algebraic 
implicit equations. Since this is not supported by the 
current FMI 2.0 standard and due to better readability, 

we limit ourselves to explicit ordinary differential 
equations (ODE) of the form shown above. 

 

Equation systems of this type are the mathematical basis 
of various industrially used system simulators such as 

Simulink or Dymola. In order to be able to exchange 
models between different simulators, the open standard 
Functional Mock-up Interface (FMI) was developed. 

We use FMI to link system models to optimization 
algorithms. Thus, it is possible to develop the system 

model of an optimum control problem in the modeling 
tool of choice. The only requirement is the availability 
of FMI exports. 

 

Models that are suitable for simulation need not yet be 
suitable for the use of derivative-based optimizers. 

Discontinuities in the model equations can lead to poor 
or even failing convergence behavior. In practice, 
however, the theoretical mathematical requirements for 

models must not be completely satisfied. Even if the 
continuous differentiability of all model equations is not 

fulfilled, for example by the linear interpolation of 
characteristic fields, reasonable results can be achieved 
with derivation-based optimizers. 

 

Thermal systems such as the thermal management 
system considered here, can be graphically modelled 

with the Modelica library TIL (Schulze 2013; Gräber et 
al. 2010; Richter 2008). Large parts of TIL are directly 

suitable for use in optimizers. This includes circuits with 
compressible liquids and ideal gas mixtures. Two-phase 
fluid circuits modeled with TIL are not yet suitable for 

optimization. However, current research deals with this 
topic. 
 

Figure 1 shows the thermal management system as a 
TIL model. The coolant (blue) is pumped through the 
engine block by an electrically driven pump. There, 

waste heat from the combustion engine is added as time-
dependent heat flow. The upper circuit through the 

heating heat exchanger is constantly flowed through. 
The lower circuit for heat dissipation to the environment 
can be connected via an electrical valve as required. 

 

 

Figure 1. Sketch of the thermal management system. 

Screenshot of Modelica / TIL system models.  

 

The manipulated variables of this system are: 

• Water pump speed 

• Cooling fan speed 

• Opening degree of the valve 

 

Both heat-exchangers are modelled according to the 
finite volume method with 5 discrete volumes. The 

system model has 36 differential states in total. 

 

The primary control task is temperature control of the 

engine, which is achieved by demanding a setpoint of 
90°C for the fluid temperature at the engine block outlet. 

Three manipulated variables and only one control 
variable leave two degrees of freedom. An open 
question is how to deal with these degrees of freedom. 

An obvious idea is to introduce the additional demand 
for the lowest possible energy consumption. Thus, the 
cost function to be minimized follows as: 

𝐶 = ∫ 𝑃pump + 𝑃fan + 𝑐(𝑇 − 𝑇set)
2d𝑡

𝑡f

0

 (2) 

The electrical power consumption of pump and fan as 
well as a squared penalty term for setpoint deviations are 

integrated over a given period of time. The two control 
objectives can be weighted with the factor c. High 

values result in higher energy consumption but 
temperatures closer to the setpoint.  
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The input trajectories within the period under 
consideration are free for optimization. However, upper 

and lower bounds for all manipulated variables are taken 
into account: 

𝒖lb ≤ 𝒖(𝑡) ≤ 𝒖ub    ∀ 𝑡 ∈ [0, 𝑡f] (3) 

 
In addition, the given initial state of the system model 

enters as equality constraint: 

𝒙(0) = 𝒙0 (4) 

 
The complete optimal control problem follows as: 

min
𝒙(∙),𝒖(∙)

𝐶(𝒙(∙), 𝒖(∙), 𝒑) 

s.t.    
d𝒙

d𝑡
(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒑, 𝑡)  ∀ 𝑡 ∈ [0, 𝑡f] 

                𝒖lb ≤ 𝒖(𝑡) ≤ 𝒖ub              ∀ 𝑡 ∈ [0, 𝑡f] 
             𝒙(0) = 𝒙0 

(5) 

3 Numerical solution of optimal 

control problems 

This section is based on (Gräber 2013) and attempts to 
explain the basic mathematical ideas behind the used 

numerical methods. For a deeper and more 
mathematical representation, references to further 
literature are given in several places. 

 

Optimal control problems of the above-described form 
are not directly solvable by numerical methods. 

Considering the continuous trajectories sought as a set 
of infinitely many individual points, it becomes clear 

that an OCP is an infinite-dimensional optimization 
problem. Deriving analytical solutions is only possible 
for very simple subclasses. For most real problems, only 

an approximate numerical solution is possible. 
 

Within the last decades, various methods have been 

developed to numerically solve optimal control 
problems. These can be divided into two large groups: 
indirect and direct methods. Indirect methods are based 

on Pontryagin's Maximum Principle. With the help of 
this necessary optimum condition, the OCP is 

analytically transformed into a boundary value problem 
with the original differential equations and additional 
adjoint equations. This boundary value problem can 

then be solved with various numerical methods. A 
frequently mentioned disadvantage of these methods is 
the difficult consideration of restrictions. Since it is 

necessary in many technical applications to limit state 
variables and controls to certain areas, this disadvantage 

is not insignificant. 

 

Recent work deals almost exclusively with direct 

methods. The term comes from the fact that not a 
transformed problem, but directly the original OCP is 

used. By discretizing the trajectories, the infinite-

dimensional OCP is approximated with a finite-
dimensional Nonlinear Program (NLP). This NLP can 

then be solved with common numerical methods such as 
Sequential Quadratic Programming (SQP) or Interior 
Point Method (IP). Within direct methods, a distinction 

is made between sequential and simultaneous methods. 

 

In direct sequential procedures, the control trajectories 

are described by piecewise defined functions – mostly 
polynomials. In the simplest case, the polynomials are 

of the order of zero, and the controls are piecewise 
constant functions over time. The coefficients of these 
polynomials are the free optimization variables. Using 

an ODE or DAE solver, the cost function can now be 
evaluated for given control trajectories and initial 
values. Coupled to an optimization algorithm, the OCP 

can be iteratively solved by repeatedly solving an initial 
value problem with different control trajectories. It has 

been shown, that particularly for ill-conditioned 
problems convergence and stability properties of such 
methods are not very good (Hans Georg Bock 1987; 

Albersmeyer and Diehl 2010). 

 

Direct simultaneous methods go one step further and 

discretize not only the control but also the state 
trajectories. In the case of direct collocation, the 
trajectories of all state variables and controls are again 

described by piecewise defined functions. The 
continuous ODE is converted into a system of difference 

equations using a suitable scheme. This equation system 
is included as an equality constraint in the optimization 
problem. Leading to a very large but finite-dimensional 

NLP, which can be solved with conventional methods. 
In order to reduce the computation time, the special 
structure of the equation systems can be exploited. 

(Biegler 2007) provides an overview of current 
simultaneous methods. 

 

Figure 2. Multiple Shooting Method. Control trajectories 

(red) are discretized with piecewise constant functions and 

state trajectories (black) are discretized by solving 

independent initial value problems. 
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The direct multiple shooting method used in this work 

is usually seen as simultaneous method, but could also 
be interpreted as a mixed form between the sequential 

and simultaneous methods. Control trajectories are 
discretized analogously to the methods described so far. 
The state trajectories are also divided into individual 

sections. However, the path within these sections is not 
described by polynomials. Rather, initial values for the 
states are introduced at the nodes of the multiple 

shooting grid. At node i, these additional variables are 

designated as 𝒔𝑖. Based on these initial values and the 
original ODE, the trajectories of the states are 
determined by solving several independent initial value 
problems. For an arbitrary choice of the initial values, 

the resultant total trajectories of the states have jumps, 
see Figure 2. Therefore, closing conditions are included 

in the OCP as additional equality constraints. The value 
of a state variable at the end of a section must be equal 
to the initial value of the next section. 

 
If an identical discretization grid with n intervals is 
chosen for controls and states and the controls are 

parameterized piecewise constant with the values 𝒒𝑖, the 
following NLP results from OCP (5): 

min
𝒔0 ,…,𝒔𝑛

𝒒0 ,…,𝒒𝑛−1

∑ 𝑘𝑖(𝒔𝑖, 𝒒
𝑖
, 𝒑)

𝑛

𝑖=0

 

s.t.        𝒔𝑖+1 = 𝒙𝑖(𝑡𝑖+1; 𝑡𝑖, 𝒔𝑖, 𝒒
𝑖
, 𝒑)          

                                                  ∀𝑖 ∈ {0, … , 𝑛 − 1} 
               𝒖lb ≤ 𝒒

𝑖
≤ 𝒖ub       ∀𝑖 ∈ {0, … , 𝑛} 

                𝒔0 = 𝒙0 

(6) 

 

It should be noted that the solution of an initial value 
problem is behind the evaluation of the cost functions 

𝑘𝑖(𝒔𝑖, 𝒒𝑖, 𝒑) and the determination of the states at the 

end of an interval 𝒙𝑖(𝑡𝑖+1; 𝑡𝑖, 𝒔𝑖, 𝒒𝑖 , 𝒑). In the solution of 
this NLP with derivative-based methods, it is of great 
importance to determine the derivatives of these 
functions with respect to the free optimization variables 

accurately and efficiently. This is a non-trivial task 
when using variable step size integrators. An extensive 
discussion of this topic can be found in (Bauer 1999) 

and (Albersmeyer 2010). 

 

To illustrate the multiple shooting method, the 

discretization for a simple example is shown in Figure 
2. On each shooting interval i, an independent initial 

value problem is solved with the initial value 𝑠𝑖 and the 

constant control 𝑞𝑖. The figure shows the result of an 
optimization iteration, that has not yet converged. The 
violation of the matching conditions for the state 
variables is clearly visible. 

4 Optimal Control of a Thermal 

Management System 

This section describes optimization results for the 

thermal management system described in section 2. 

 

The system model is graphically generated and 
parameterized in Dymola using the library TIL. With the 
Dymola FMI export functionality, the model is exported 

as FMU for Model Exchange 2.0. Control inputs must 
be declared as top level inputs in Modelica and 
variables, which are used in the cost function, as top 

level outputs. 

 

The coupling of the FMU to the optimizer MUSCOD-
II, and the complete configuration of the calculations is 
done in the Python language. The Python code used her 

is shown in Figure 3. 
 

 

Figure 3. Python code for the numerical solution of the 

optimal control problem. 

 

The scenario considered is a 10-minute drive up a 
mountain pass after a cold start at 20°C. This means that 

relatively much engine waste heat is introduced into the 
cooling circuit, which in turn has to be dissipated to the 
ambient air. Due to the comparatively low uphill speed 

the cooling fan has to be used more extensively. The 
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optimum control trajectories are calculated as piecewise 

constant curves with an interval length of 10s. A 
simulation of the thermal management system with a 

simple control concept is used as a basis for comparison 
For this purpose, the pump, such as a mechanical water 
pump, is operated at a rotational speed coupled to the 

motor speed. The valve is controlled by a P-controller 
and a setpoint of 85°C for the coolant temperature. 
While the fan controls the same temperature with a PI 

controller to the desired setpoint of 90°C. 

Figure 4 shows the optimum and simulated (with PI 

controllers) controls. Obvious differences are: 

• Maximum pump speed in the first minute of the 
optimal solution 

• The fan becomes active in the optimal solution 

earlier. 

The first difference is only to be explained by the fact 
that the electrical power of the pump is used to heat the 

coolant. At the beginning all temperatures are at 20°C. 
In order to reach the setpoint of 90°C as quickly as 
possible, it is worth (in the sense of the cost function) to 

use the electrical power of the pump to heat up the 
system. 

 

Figure 4. Controls from optimization and simulation. The 

optimum control uses the fan earlier and completely opens 

the valve later. 

The second difference can be explained by looking at 
figure 5. While the PI control of the temperature does 

not become active until the setpoint is exceeded, the 
optimum control reacts earlier. With increased fan speed 

and valve opening, cooling is started before 90°C is 
reached. An exact approach of the setpoint can thus be 
achieved, without overshooting. In addition, it is 

avoided that the fan is operated with maximum speed 
and disproportionately high energy demand. 

 

This second positive aspect is clearly visible in figure 6. 
The cumulative electrical energy consumption of both 
variants is shown, divided into fan and pump energy. 

The fan energy clearly dominates in both cases. In the 
case of PI control, the fan runs at a much higher speed 

compared to optimal control, especially between 

minutes 4 and 5. Within this time span, the PI controller 
reacts to the overshooting temperature. This has the 

consequence that the cumulative energy consumption 
increases sharply. Whereas the more uniform optimal 
control of the fan speed leads to total energy 

consumption reduced by 19%. The individual numerical 
values are listed in Table 1. 

 
Figure 5. Results from optimization and simulation. The 

primary control objective of keeping the coolant 

temperature at 90 ° C is achieved in both cases. The 

optimum control achieves the setpoint value somewhat 

earlier, without overshooting. 

 

 

Figure 6. Cumulative electrical energy consumption from 

optimization and simulation. The optimum control 

achieves a 19% reduction in energy consumption. 

For the described cold-start high-load scenario, the 

optimum control shows a significant reduction in energy 
consumption while at the same time better compliance 
with the setpoint for the coolant temperature. With the 

presented tool chain, such investigations can also be 
carried out for other systems and scenarios. Such 

optimal control results can be used for various purposes: 

• as reference for control concepts 

• finding heuristic (almost optimal) control laws 

• for online optimization (NMPC) 
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Table 1. Total consumed electrical energy for both 

variants. 

 Pump Fan Total 

PI control 0.18 MJ 0.98 MJ 1.16 MJ 

Optimal 
control  

0.20 MJ 0.74 MJ 0.94 MJ 

Difference +12% -25% -19% 

 

5 Summary 

With the presented tool chain Modelica/TIL → FMI → 

MUSCOD-II thermal system can be modeled 
conveniently and optimal control trajectories can be 
calculated rapidly. For the example application, thermal 

management of an internal combustion engine, 
electrical energy savings of 19% (fan and pump) 
compared to PI control are achieved. By comparing the 

optimization and simulation results, the causes for 
energy savings can be explained. 

 

Optimization calculations of this type can serve as a 
reference for control concepts to be developed. The 

interpretation of the optimal trajectories can also be used 
in finding heuristic (almost perfect) control laws. In 
principle, optimum control calculations are also suitable 

for online use in vehicles or other technical systems. 
Which is known as nonlinear model predictive control 
(NMPC). For prototypical NMPC applications on a 

Windows laptop, the presented tool chain can be used 
directly. However, it is not yet suitable for implemen-

tation on embedded control units. 
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