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Abstract 
This paper presents the development of a new advanced 

control method suitable for variable temperature District 

Heating Systems (DHS). The proposed controller 

determines optimal planning for the on/off status and 

power of the heat generators as well as for the supply 

temperature and differential pressure at the production 

plant level. Compared to existing methods, the original 

features of the developed solution are to fully exploit the 

thermal storage capacity of the network and to 

determine the best compromise between pumping costs 

and heat losses. A numerical case study based on a 

representative DHS is used to evaluate the method over 

a heating season (5 months). Results show that our 

method reduces production costs up to 8.3 % when 

compared to a more classical controller. Moreover, the 

observed computing time is compatible with the 

requirements of the receding time horizon principle, 

ensuring that the method is tractable on real DHS. 

Keywords:     District Heating, Model Predictive 

Control, Dynamic Simulation, Mixed Integer Linear 
Programming  

1 Introduction 

Nowadays, many research works devoted to District 

Heating Systems (DHS) are performed on low and very 

low temperature systems, mainly because of their 

energy performance and their ability to use renewable 

energy sources. However, High Temperature District 

Heating Systems (HTDHS) represent an important share 

of the existent systems in Europe. For instance, systems 

with temperature over 110 °C account for more than 50 

% of the heat delivered by French DHS (SNCU, 2013).  

The energy load of HTDHS is generally supplied by 

numerous generators and fuels. On the other hand, their 

distribution network usually bears large variations in 

temperature and differential pressure. Thus, HTDHS are 

affected by non-constant production costs yet they 

natively comprise important thermal storage capacities, 

i.e. network storage, if an adequate supply temperature 

control is used. Additionally, HTDHS are subject to 

complex dynamic behaviors originating both from the 

variability of the demand and the significant 

temperature transportation delay. Finally, heat can be 

delivered to the consumers using various combinations 

of temperature and mass flow rate. Lowering network 

temperature would limit the thermal losses; however, 

the mass flow rate shall increase in order to maintain the 

same heat flow, and this will cause pumping work to 

rise. Contrary to what is generally considered, in many 

practical situations, particularly recurrent in HTDHS, 

the optimal balance between pumping work and heat 

losses may be obtained with high supply temperature 

and low differential pressure. 

As pointed in (Lund, 2014), the intelligent control for 

optimal operation is a future challenge for the 

improvement of DHS. Due to its complexity and high 

parameters combinatorics, the determination of optimal 

production and distribution plans in DHS is difficult, if 

not impossible, when solely based on empirical laws 

and/or expert judgement. In this context, decision 

support/making tools relying on a Model Predictive 

Control (MPC) scheme are very useful. Despite 

significant progress, there is still an important room 

for improvement in this domain.  

This paper focuses on the optimal control of 

pressurized water DHS. For this application, we have 

developed and tested an algorithm that optimizes, given 

a load prediction, the use of production means as well as 

supply temperature and differential pressure. Compared 

to existing methods, the original features of the 

developed solution are, firstly, to fully exploit the 

thermal storage capacity of the network. Secondly, our 

controller is suitable for determining the best possible 

combination between electrical costs for pumping and 

heat production costs compensating distribution losses. 

Though generic, the proposed control method is 

particularly adapted to existing HTDHS.  

Our controller is based on a MPC scheme. At each 

time step, a dynamic non-linear model of the 

distribution network is simulated over a finite time-

horizon. In the present work, this model is built using 

the equation-based object-oriented language Modelica 

along with the simulation platform Dymola and an in-

house component model library named DistrictHeating 

(Giraud b), 2015). The simulation results are then used 

to formulate a linearized model of the distribution 

network. Combined with other linear constraints 

representing the technical limitations of the different 
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pieces of equipment and with a linear cost function, the 

model forms a Mixed Integer Linear Program (MILP). 

In a last step, this program is solved yielding the optimal 

trajectories for the various control variables of the 

problem. 

In section 2, we present a literature review on 

advanced control for DHS. Section 3 firstly describes 

the algorithmic aspects of the proposed controller, 

secondly presents the non-linear network model used for 

dynamic simulation and finally details the formulation 

of the linear optimization problem. A case study 

consisting of a virtual yet representative HTDHS is then 

described in section 4. In section 5, the simulation 

results obtained for various controllers over a heating 

season are presented and discussed. Section 6 includes 

the conclusions and perspectives of our study. 

2 Existing DHS Control Methods  

The approach currently used to determine the control 

variables of DHS (e.g. supply temperature, differential 

pressure, load distribution between different heat 

production units …) often relies on heuristic methods, 

i.e. a formalization of common sense, simple logic or 

expert judgement. As an example, we can recall here the 

determination of supply temperature using a single or 

even multi-variable heating curve. Though simple to 

implement and robust with respect to production or 

demand uncertainties, the efficiency of such control 

methods is always limited when applied to a system 

comprising several sources, variable energy purchase 

prices and energy storage capacity. This is partly due to 

the fact that anticipative control strategies are difficult if 

not impossible to formulate in this framework. Another 

difficulty is that production goals may be multiple and 

conflicting (e.g. power and heat generation in combined 

heat-and-power units).  

To overcome the aforementioned difficulties, an 

MPC scheme is an interesting alternative. The MPC 

approach consists of a load prediction module and an 

optimization procedure used to determine the best 

possible path for control variables, i.e. the one 

minimizing an objective function while meeting 

different technical and operational constraints. 

Depending on the formulation of the quantitative 

objective to minimize, operating costs and/or CO2 

content of the delivered heat may be significantly 

improved. 

However, building an MPC scheme to control a DHS 

is a complex task. This explains why most previous 

works done on this subject only consider some parts of 

the problem. On the one hand, numerous studies deal 

with production optimization only, i.e. they address the 

unit commitment and load dispatch problems. In 

(Eriksonn, 1994), the author determines the heat power 

planning for each production unit considering starting 

costs, minimal load of each generator and bounds for 

heat power ramp rates. This approach is mostly used in 

studies interested in combined heat and power plants 

since electricity must be produced when it is the most 

profitable. On the other hand, several works only 

consider the supply temperature determination. 

Important features here are to reduce heat losses and to 

use the network capacity for heat storage. For instance, 

the supply temperature is optimized in (Nielsen, 2005) 

using the Finite Impulse Response method to linearize a 

dynamic distribution network model and then to solve 

the linear optimization problem. Few works study both 

the load dispatch problem and the supply temperature 

determination. The integer variables, representing for 

instance the heat generators’ statuses, are then not taken 

into account in these cases in order to reduce the 

combinatory.  

More recently, both the supply temperature and heat 

power planning have been determined in order to 

minimize the production costs yet without considering 

the time delays in the network (Fang, 2015). Another 

possible approach, quite popular in the Modelica 

community, consists in modeling, formulating and 

solving a dynamic optimization problem using the 

JModelica.org tools (Akesson, 2011). Following this 

method, (Runvik, 2015) also solve a short-term 

production planning problem for a DHS using a two-

steps optimization procedure including production and 

distribution variables. However, due to prohibitive 
computational costs, the network representation only 

includes three customers.       
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Figure 1: Proposed optimal control 

algorithm for DHS. 
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In conclusion of this review, no method has been 

identified in the literature that adequately optimizes the 

production and the distribution considering network 

storage for DHS. In the following, we present such a 

method and study its benefits on a representative 

HTDH.     

3 Optimal Control of DHS  

 

In this section, we describe the optimal control method 

we designed. The objective is to determine the optimal 

trajectory for the control variables over a defined 

anticipation horizon. Taking into account the relatively 

slow dynamics of a DHS requires anticipation, i.e. using 

load predictions and optimizing of control variables so 

that the system produces the desired effects in the future. 

Additionally, periodically revising the optimization is 

mandatory in order to cope with load prediction 

uncertainties. 

To address these challenges, we combine a dynamic 

nonlinear model of the DHS with linear optimization 

methods, similarly to other works like those of 

(Benonysson, 1991) and (Sandou, 2006). For each 

anticipation horizon, our system encompasses both 

production and distribution optimization and controls 

heat powers, generators’ statuses, supply temperature 

and differential pressure. To guarantee the applicability 

of the control trajectories, the optimization is 

constrained by the technical limits of the DHS’s pieces 

of equipment. 

This section first gives a general description of the 

algorithm, then details the dynamic nonlinear model, 

which we illustrate more specifically in the case study. 

It ends with a description of the linear optimization 

problem’s formulation. 

3.1 General Description 

Figure 1 depicts the proposed algorithm. The dynamic 

nonlinear network model is first simulated using initial 

guesses for the distribution control variables, namely the 

supply temperature and differential pressure at 

production plants. We then extract relevant input data 

for the optimization problem and we formulate a linear 

relaxation of the optimization problem using the MILP 

formalism. The optimizer finally computes a new set of 

control variables. Iterations between the dynamic 

network model and the MILP optimizer are conducted 

until convergence is reached, using a criteria defined by 

a threshold on the supply temperature increment. 

We then periodically revise the optimization using 

the receding time horizon. At time 𝑡, the optimization 

procedure is performed for the predictive horizon t+Nt 

yet only the first output values for time slot [𝑡: 𝑡 +  𝑟] 
are applied to the system. At time t+Pr, the calculation 

is repeated for the optimization horizon t+Pr+Nt. This 

algorithm is illustrated in Figure 2 in a situation where 

the receding horizon Pr is chosen equal to 1.   

3.2 The dynamic distribution network model 

The proposed algorithm requires the simulation of a 

dynamic model representing the distribution network.  

Figure 3 depicts the mesh-free layout of the 

distribution network considered in the case study. Since 

we study our control strategy on a mid-scale DHS, our 

dynamic network model is based on a detailed physical 

representation of the system by gathering component 

models that we previously developed and validated. The 

components models are taken from an in-house 

Modelica library named DistrictHeating and presented 

in (Giraud b), 2015). The heat generators are represented 

considering equivalent heat and momentum sources. 

Moreover, the model enables the control of supply 

temperature and differential pressure at the production 

plant level. The distribution pipe model that we use is 

based on the method of characteristics, also called node 

method in the specific DHS related literature see 

(Benonysson, 1991). This model accounts for heat 

propagation delays, heat losses, tube thermal inertia and 

pressure losses. Concerning the substation 

representation, we use an explicit model comprising a 

heat exchanger, a regulation valve and an ideal 

controller (see (Giraud a), 2015) for details).  

3.3 Formulation of the Linear Optimization 

Problem 

The linear optimization problem is an approximation, or 

relaxation, of the complete, strongly nonlinear problem 

that would take into account all the physical and 

technical constraints of the system. However, 

Figure 2: Receding horizon principle 
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formulating the linear problem using appropriate 

assumptions yields usable results in a limited 

computating time. This section details the formulation 

of the linear problem we adopted, which  includes the 

MILP variables, the cost function to minimize, the 

technical limits of the DHS, the critical curve describing 

consumer’s constraints and a linearized model of the 

distribution network. 

3.3.1 MILP variables 

The optimization variables of the problem are identified 

by an asterisk and typed in bold to better readability. All 

of them are time discretized and considered constant 

over one time step. 

 

Continuous variables 

   
 (𝑡) : Represents the heat power produced by each 

generator g at the time t. 

    
 (𝑡) : Represents the supply temperature in the 

network at the time t. 

 𝒕𝒐𝒕
 (𝑡) : Represents the total mass flow rate at the 

production plant at the time t. 

     
 (t) : Represents the differential pressure at the 

production plant at the time t. 

𝑾   
 (t) : Represents the pump work at the time t. 

 

Binary variables 

  
 (𝑡) : Represents the on/off status of each 

generator, i.e. it is equal to one when generator 𝑔 is on 

and to zero otherwise. 

  
 (𝑡) : Identifies the timing of each generator start-

up, i.e. it is equal to one only when    
  switches from 0 

to 1 and to zero otherwise. 

3.3.2 The cost function 

The function to be minimized, presented in expression 

(1), reflects the integral of operational costs over a finite 

time-horizon. The first term in equation (1) represents 

the fuel consumption and it is thus proportional to the 

𝐶𝑔
 ℎ parameters standing for fuel prices. The second term 

accounts for specific costs linked to generator start-up 

and they are therefore proportional to fixed monetary 

amounts denoted 𝐶𝑔
 𝑓𝑓/  

. The last term accounts for 

electricity consumption due to pump’s operation. It is 

therefore proportional to a time variable electricity 

purchase price hereafter denoted 𝐶 𝑙(𝑡). Pumping and 

heat generation efficiencies are accounted for 

respectively using the 𝜂    and 𝜂𝑔 constant parameters.   

 

∑ (∑(
𝐶𝑔
 ℎ

𝜂𝑔
∙    

 (𝑡) ∙ 𝑑𝑡 + 𝐶𝑔
 𝑓𝑓/  

𝑔 .. +𝑃 

∙   
 (𝑡)) +

𝐶 𝑙(𝑡)

𝜂   

∙ 𝑾    
 (𝑡)

∙ 𝑑𝑡) 

(1) 

To guarantee the applicability of its outcomes, the 

minimization calculation must be performed in the 

presence of linear constraints on the optimization 

variables. Inequality constraints will be presented first. 

In a second step we present the equality constraints 

accounting for the mass, energy and momentum balance 

equations governing the relations between the operating 

variables. 

3.3.3 Inequality constraints 

Several continuous variable are considered with lower 

and upper bounds representing physical limitations of 

DHS components as presented in inequalities (2), (3) 

and (4). Each parameter noted with a  𝑖𝑛 or  𝑎𝑥 

superscript is a known and fixed parameter of the 

problem. 

 

    
   ≤     

 (𝑡) ≤     
 𝑎𝑥 (2) 

     
   ≤      

 (𝑡) ≤      
 𝑎𝑥 (3) 

Figure 3: Layout of the distribution network case study in Modelica/Dymola. 
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   ≤   𝒕𝒐𝒕

 (𝑡) ≤      
 𝑎𝑥 (4) 

 

To limit thermal fatigue, we bound supply 

temperature and heat power variations with expressions 

of the following type, written for a sample variable 𝒁 : 
 

  𝑍 𝑎𝑥 ≤ 𝒁 (𝑡)  𝒁 (𝑡  1) ≤  𝑍 𝑎𝑥  (5) 

 

Inequalities (6) are used to  confine    
 between 𝑄 𝑔

    

and  𝑄 𝑔
 𝑎𝑥 when generator 𝑔 is started. Otherwise,    

  

is set to 0. 

 

  
 (𝑡) ∙ 𝑄 𝑔

   ≤    
 (𝑡) ≤   

 (𝑡) ∙ 𝑄 𝑔
 𝑎𝑥 (6) 

 

Finally, inequalities (7) are considered to define the 

timing of each generator start-up, i.e. variable    
 . 

 

  
 (𝑡)    

 (𝑡  1) ≤    
 (𝑡) ≤   

 (𝑡) (7) 

3.3.4 Critical conditions to supply heat demand 

Supplying the requested heat demand to a DHS 

customer is only possible when the local network 

temperature exceeds a threshold called the critical 

temperature and hereafter denoted      
    (𝑡). The present 

section firstly discusses how to derive the formula  used 

to evaluate      
    (𝑡) and secondly presents the linear 

inequality constraints necessary in the MILP problem to 

guarantee that heat demand is fulfilled. 

We consider in this study that the substations are of 

the indirectly connected type and that they are composed 

of one counter-flow heat-exchanger, free of any by-pass, 

and a primary control valve used to regulate the building 

heating system temperature at a requested level. For 

such system, as long as the consumer heat demand 𝑄   is 

fulfilled, a static energy balance applied on the primary 

side of the heat exchanger yields the mathematical 

expression (8) relating 𝑄  , the primary mass flow rate 

   , the primary inlet and outlet temperatures (      and 

      ) and the fluid specific heat capacity 𝐶𝑝. 

 

   (𝑡) =
𝑄  (𝑡)

𝐶𝑝 ∙ (     (𝑡)        (𝑡))
 (8) 

 

On the other hand,     cannot exceed the value 

reached when the primary control valve is fully open. 

Such maximal value, denoted    
 𝑎𝑥(𝑡), can be 

calculated assuming a quadratic dependency between 

the local  differential pressure of the network, namely 

   , and the mass flow rate. This is shown in equation 

(9) used for valve modeling. In this equation,    
    and 

   
    are nominal values of the primary mass flow rate 

and the differential pressure. 

 

   
 𝑎𝑥(𝑡) =    

   ∙ √
   (𝑡)

   
   

 (9) 

 

The critical temperature is obtained by assuming that 

the demand is fulfilled while     equals    
 𝑎𝑥. Thus, 

combining equations (8) and (9) leads to expression (10) 

for the critical temperature: 

 

     
    (𝑡) =       (𝑡) +

𝑄  (𝑡)

𝐶𝑝 ∙    
   ∙ √

   (𝑡)
   

   

 
(10) 

 

At this stage, it is worth mentioning that an additional 

heat-exchanger model is requested to evaluate formula 

(10) since the primary outlet temperature, namely 

      (𝑡), has not been determined yet. In our study, the 

Logarithmic Mean Temperature Difference method is 

used for this purpose. 

    

𝑄   

      

    

      

Figure 4: Consumer critical temperature as a function of the differential pressure and heat demand (left) – 

Cut-plane for a fixed heat demand (right). 
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As a consequence, heat demand of consumer 𝑐 will 

only be satisfied if local network conditions in terms of 

temperature and differential pressure are above critical 

values shown in Figure 4, i.e. if inequality (11) is 

verified: 

 

     (𝑡) ≥       (𝑡) +
𝑄  (𝑡)

𝐶𝑝 ∙    
   ∙ √

   (𝑡)
   

   

 
(11) 

  

This last expression is adapted to our problem using 

piecewise linear approximations compatible with the 

MILP formalism: 

 

     (𝑡) ≥ 𝑓𝑙𝑖𝑛  𝑙(   (𝑡))       𝑙 = 1 …  𝐿 (12) 

 

In expression (12), the 𝑓𝑙𝑖𝑛  𝑙 functions are a set of 𝐿 

linear functions approximating the critical temperature 

calculated from the right hand-side of expression (11). 

Bearing in mind that the algorithm aims at producing 

optimal planning for the supply temperature and the 

differential pressure, we then consider linear relations 

between the variables at the consumers’ sides and those 

at the production plant level where the control variables 

are applied. The heat propagation equation (13), detailed 

in (Benonysson, 1991), is used to express the consumers 

inlet temperature       as a function of the supply 

temperature     
 . It considers a propagation time delay 

   and heat losses using the   ℎ      thermal time 

constant and the   𝑥  parameter representing the 

ambient temperature surrounding the distribution pipes. 

 

     (𝑡) =   𝑥 + (    
 (𝑡    (𝑡))    𝑥 )

∙ 𝑒
−

𝜏𝑐 ( )
𝜏𝑡ℎ𝑒𝑟𝑚 𝑐 

(13) 

 

At this point, one can note that temperature 

propagation delay    introduces nonlinearities into the 

optimization problem. Thus, propagation delays    are 

not handled directly in the MILP problem but are 

provided by the dynamic model presented in section 3.2.  

For the differential pressure losses, a linearized 

relation, well verified on the Grenoble DHS, is 

considered as shown in expression (14): 

 

   (𝑡) =      
 (𝑡)  𝐾 ∙  𝒕𝒐𝒕

 (𝑡) (14) 

 

Expression (12) is then re-written using (13) and (14) 

to introduce the     
 ,  𝒕𝒐𝒕

  and      
  optimization 

variables. This yields the linear inequality constraints 

(15) that are used in our MILP problem to guarantee that 

consumer satisfaction is not sacrificed. 
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  𝑥 + (    
 (𝑡    (𝑡))    𝑥 ) ∙ 𝑒

−
𝜏𝑐 ( )

𝜏𝑡ℎ𝑒𝑟𝑚 𝑐  

≥ 𝑓𝑙𝑖𝑛  𝑙 (     
 (𝑡)  𝐾 

∙  𝒕𝒐𝒕
 (𝑡))         𝑙 = 1 …  𝐿 

(15) 

3.3.5 The linearized distribution network model 

The relations between the optimization variables 

accounting for distribution network mass, momentum 

and energy conservation laws are considered thanks to a 

set of linearized equality constraints that are presented 

in this section. 

First, the pumping work 𝑾    
  appearing in the cost 

function (1) is expressed linearly using a first order 

Taylor expansion limited to differential pressure and 

mass flow rate variations. The fluid density 𝜌 are 

therefore assumed constant, which leads to expression 

(16): 

 

𝑾    
 (𝑡)

=
     (𝑡) ∙      

 (𝑡) +  𝒕𝒐𝒕
 (𝑡) ∙      (𝑡)

𝜌

 
      (𝑡) ∙      (𝑡)

𝜌
 

 

(16) 

In this last expression,      (𝑡),      (𝑡) and 𝜂    

are provided by the dynamic simulation model 

described in section 3.2. 

Second, a linearized version of the network energy 

balance is obtained. This point is crucial if one wants to 

benefit from the possibility to store heat directly in the 

distribution network. By following the derivation 

presented in (Giraud, 2016), the subsequent expression 

can be obtained:  

 

∑   
 (𝑡)

𝑔

=∑𝑄  (𝑡)

 

∙ [1 + 𝑭 
 (𝑡)]

 𝑾    
 (𝑡) 

(17) 

 

In expression (17), 𝑭 
 (𝑡) is a modulation term that 

depends on past and present values of supply 

temperature.  

3.3.6 Summary 

Our MILP DHS production and distribution optimizer is 

composed of a linear cost function (see equation (1)) 

subject to linear equality (see equations (16) and (17)) 

and inequality (see equations (2)-(7), (15)) constraints 

representing the physical conservation laws and the 

technical limitations of the DHS.   

4 The case study 

The operation of our advanced controller has been 

evaluated by simulation means relying on a 

representative case-study. This section explains how the 

case-study has been designed and it details the models 

composing it.  

The CCIAG company and our research group are 

currently involved in a joint research program devoted 

to the development of advanced decision 

support/making tools for operational management of 

DHS. CCIAG operates the second largest DHS in 

France in the city of Grenoble. This system yearly 

delivers 900 GWh of heat using 225 km of distribution 

pipes and liquid pressurized water as heat carrier fluid. 

This system is actually managed using variable supply 

temperatures and differential pressures respectively 

ranging from 110 °C to 180 °C and 5 to 15 bars. These 

features are similar to systems in other French and 

European cities (e.g. Metz, Chambéry, Vienna, 

Warsaw…). Therefore, we have built the case-study 

used in the present paper upon the Grenoble HTDH 

system. However, in order to limit the modelling work 

during the first stages of our research project we 

considered only a portion of the Grenoble distribution 

network. 

On the production side, we have considered 15 heat 

production units as it is representative of the installed 

capacity in Grenoble. All the 15 heat production units 

form a unique production plant represented in the 

dynamic model by equivalent heat and momentum 

sources. The sample network serves 26 heat consumers 

modelled using load profiles taken from an historical 

database (15 min sampling period) provided by CCIAG. 

The substation models are parametrized using the 

dimensioning rules applied on the Grenoble DHS. 

To increase the relevance of the model, the main 

parameters used to model the production units in the 

MILP model have been proposed by CCIAG, our 

industrial partner in the project. For confidentiality 

purposes, the fuel prices denoted 𝐶𝑔
 ℎ, the cost of a 

generator start up denoted 𝐶𝑔
 𝑓𝑓/  

 and the daily 

electricity price profile used for pump operation, 

denoted 𝐶 𝑙 are not reported here.  

4.1 Simulation settings 

The simulation period covers the full 2013/2014 French 

heating season, i.e. from November 2013 to mid-April 

2014. The heat demand normalized by the installed heat 

power capacity (designed for an external temperature of 

-11 °C) and the external temperature over that period are 

shown in Figure 5. Outside this period, low cost heat 

from the waste incineration unit is produced in excess of 

demand thereby limiting the usefulness of advanced 

control strategy. Moreover, the heating season 

represents over 80 % of annual production costs. 

The simulations were conducted with an elementary 

time step of 15 minutes. The optimization time-horizon 
is set to 24 hours and the receding horizon is fixed at 6 

hours. For control in real conditions, affected by many 

sources of uncertainty (e.g. load prediction errors …), 

Session 4D: Control Systems I

DOI
10.3384/ecp17132141

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

147



the receding horizon would be chosen equal to the 15 

min elementary time step to increase robustness and 

stability. A complementary study on this topic is 

currently under investigation. 

A 1 K threshold on the supply temperature increment 

is used to decide that convergence between the dynamic 

model and the MILP problem is reached. We set the 

relative MIP gap tolerance to 0.03. That instructs 

CPLEX to stop as soon as it has found a feasible integer 

solution proved to be within three percent of optimal. 

This tolerance is less than the error due to the 

uncertainties of the predictions. There is no relaxation in 

our resolution method since no approximation scheme 

is used, so we always find a solution within 3% from the 

optimal which is a global minima. It could be interesting 

to compute a relaxation of the MIP and compare the 

exact and the approximate resolutions, but the good 

performance of our model in terms of computational 

time makes the exact resolution compatible with the on-

line application of our controller on a real DHS. 

4.2 Implementation 

The overall algorithm is programmed using an in-house 

optimal control framework named PEGASE. PEGASE 

is based on the FBSF platform developed by the L3S 

company (L3S, 2016). FBSF enables multi-models 

simulation based on the FMI 2.0 co-simulation standard.  

Figure 6 illustrates the architecture of the PEGASE 

optimal control framework. The lower layer is the FBSF 

simulation platform, which provides the basic services 

for running multi-model simulations. The middle layer 

is the optimal control layer, which performs the optimal 

control algorithm presented in the previous sections. 

The upper layer contains the dynamic simulation models 

used by the optimal control layer, as well as other 

prediction models and generic OPC connectivity 

services.   

For the application described in this paper, we use 

only one dynamic simulation model, which consists of 

the Modelica model of the distribution network. This 

model is converted into a 2.0 co-simulation FMU by 

DYMOLA 2017. For other applications, several 

dynamic simulation models can be used together, either 

in the form of FMU or with FBSF-specific C++ code. 

Within the optimal control layer, we express the 
MILP optimization problem using an in-house C++ 

code and solve it relying on CPLEX (IBM, 2009). 

CPLEX can easily and quickly solve numerous 

problems with high combinatory owing to 

parallelization and application of the branch and bound 

method to reduce the search space (Brah, 1991). As a 

result, the computational time is generally lower than 

with other MILP solvers. 

5 Results and Discussion 

The simulation results obtained over the heating season 

are presented and discussed in this section. The 

numerical performance of the controller are also 

described. The current limitations of the proposed 

controller are finally presented at the end of this section.  

For evaluation purposes, we compared the 

performance of our advanced controller to a more 

classical controller based on expert laws. This controller 

is still a popular method used in many existing systems 

owing to its simplicity and robustness. The standard 

controller is based on the piling method for the 

production planning. On the distribution side, the supply 

temperature is determined using a static heating curve 

while the differential pressure is maximized. To limit a 

chattering effect on the on/off status of heat production 

units, a hysteresis time-dependence is considered in the 

determination of generators starts and stops. 

As displayed in Figure 7, results point that our 

method significantly reduces production costs both with 

and without the consideration of uncertainties. The 

production cost’s decrease is explained in the following 

section. 

Table 1. Computational time and iterations for a 24 hours 

predictive horizon. 

Computational time Number of iterations 
Mean Max Mean Max 

37.8 s 273.7 s 3 29 

 

On the production side, the optimal controller often 

keeps several peak generators at minimal load to 
anticipate future peak demands and avoid start-up costs 

when the produced heat is low (particularly during 

nights). As a consequence, the number of generator 

Figure 6: Normalized production costs over the 

2013/2014 heating season for a standard (1) and an 

optimal controller (2). 

Figure 7: Architecture of the PEGASE 

optimal control framework 

Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear
Programming

148 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132141



startups over the season is significantly reduced between 

the expert law control and the optimal controller.  

On the distribution side, due to the optimization of 

     and      , results are very specific for the optimal 

controller. On the one hand, the supply temperature is 

often minimized and the differential pressure is 

maximized. As a result, the heat losses are reduced and 

the pumping work is increased for a global energy 

consumption reduction. This is due to the low pumping 

costs compared to the heat production costs encountered 

in this case study. On the other hand, our optimal 

controller is able to use the storage capacity of the 

network to anticipate future peak demands thereby 

increasing the use of base generators and avoiding the 

use of additional and expensive heat generators. To 

benefit from the network storage capacity, our control 

strategy increases the supply temperature prior to a peak 

demand. Accordingly, differential pressure is decreased 

without impacting the supplied heat demand. As a 

consequence of using the network storage capacity, the 

number of generators’ startups is further decreased.  

Table 1 presents the mean and maximal values of 

computational costs and iterations for a 24 hour 

predictive horizon. Using a 15 min time step, the 

optimization problem contains 5430 variables including 

2460 binary variables and 5530 constraints. The mean 

and maximal computational time are respectively less 

than 40 s and about 4 minutes. These figures are 

compatible with the on-line application of our controller 

on a real DHS.  

The controller, as described in the present paper, is 

currently restricted to DHS comprising one single 

heating plant feeding a non-meshed network. 

Application of the method to a multiple supply points 

DHS and a meshed network is the subject of ongoing 

work. Another point worth mentioning is that the 

number of constraints of the MILP problem grows 

linearly with respect to the number of consumers (see 

inequality (15)). Thus, the application of the proposed 

method to large-scale DHS impose to consider a set of 

critical consumers in the network. As suggested in 

(Nielsen, 2005), such consumers may be selected so that 

if the  -   (see inequality (15)) requirements for them 

are satisfied then the requirements for all consumers are 

satisfied. It has been verified that the current CPLEX 

MILP solver could handle problems comprising a set of 

several hundreds of critical consumers. This testing can 

be considered positive with respect to the scalability of 

the proposed controller.    

6 Conclusions 

In this paper, we present a new control method for DHS 

management which simultaneously optimizes the 

production and the distribution variables. For each 

anticipation horizon, an optimized planning for the 

status and power of each generator as well as for the 

Figure 8: Snapshot of a dynamic simulation of the Grenoble DHS within the PEGASE 

simulation framework. 
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supply temperature and the differential pressure is 

proposed. Based on the heat demand prediction of each 

consumer or group of consumers, our controller 

determines autonomously the combination of supply 

temperature and differential pressure necessary to 

supply the heat demand. The method is based on an 

algorithm minimizing the production costs and 

respecting a family of constraints representing the 

conservation laws and the physical limitations of the 

generators and the distribution network. We consider 

the nonlinearities of the distribution network thanks to 

an iterative method between the dynamic network 

simulation and the optimizer. Once implemented on a 

DHS, this generic control strategy will autonomously 

select the best compromise  among the control variables 

to minimize the production costs. 

We also compared the proposed method to a more 

classical controller based on expert law. The 

comparison is based on the simulation over a heating 

season of a virtual DHS representative of the Grenoble 

case. Results show that our global optimization method 

improves the seasonal production costs by more than 8 

% compared to empirical methods. The proposed 

controller decreases the production costs by taking 

advantage of the network storage capacity. The use of 

expensive peak heat generators is then minimized 

whereas base heat generators operation is maximized.  

The distribution network dynamic model used in the 

present study was built by gathering components taken 

from the Modelica DistrictHeating modelling library. 

However, due to efficiency issues well described in 

(Casella, 2015), such modelling approach is currently 

not suitable for the representation of large-scale DHS 

comprising thousands of consumers and encompassing 

several hundreds of kilometers of distribution pipes. For 

such systems, we developed a dedicated C++ simulation 

code, not detailed in the present paper, and applied it to 

the Grenoble DHS (see Figure 8). This last development 

paved the way to the application and testing of our 

optimal controller on the 400 MWth Grenoble DHS 

during the 2016-2017 heating season.  
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