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Abstract

Stacked Auto-Encoder (SAE) is a rather new ma-
chine learning approach which utilize unlabelled
training data to learn a deep hierarchical represen-
tation of features. SAE:s can be used to learn a fea-
ture representation that preserve key information of
the features, but has a lower dimensionality than
the original feature space. The learnt representa-
tion is a non-linear transformation that maps the
original features to a space of lower dimensionality.
Hyperspectral data are high dimensional while the
information conveyed by the data about the scene
can be represented in a space of considerably lower
dimensionality. Transformation of the hyperspec-
tral data into a representation in a space of lower
dimensionality which preserve the most important
information is crucial in many applications. We
show how unlabelled hyperspectral signatures can
be used to train a SAE. The focus for analysis is
what type of spectral information is preserved in
the hierarchical SAE representation. Results from
hyperspectral images of natural scenes with man-
made objects placed in the scene is presented. Ex-
ample of how SAE:s can be used for anomaly detec-
tion, detection of anomalous spectral signatures, is
also presented.

1 Introduction

Hyperspectral imaging reveal information about
the scene that can not be perceived with a visual
camera. The spectrum radiated from each point
of the surfaces in the scene is captured in many
separate narrow wavelength bands. Usually a vi-
sual camera have three wavelength bands capturing
red, green and blue colours. A hyperspectral sensor

can capture tenths, hundreds and even thousands
of wavelength bands. The spectrum for single pix-
els can be viewed and compared with each other.
But an image could have millions of pixels each
with hundreds of wavelength bands. Thus an image
could be composed of 109 values. The information
in a hyperspectral image can not easily be compre-
hended by a human observer. On the other hand is
not unlikely that a scene only contains a handful of
materials suggesting that maybe the information
in the image can be found in a low dimensional
space. So how can we find a suitable space which
will fit the information without discarding any in-
formation? What dimension of the space can we
expect to find? What class of mappings between
the spaces should be expected to be efficient?

Here we will assume that the hyperspectral data
can be found in a subspace of the measurement
space. It is also possible that the scene consists of
a countable set of different spectrums. In this case
can the data be represented by an index number
referring to the spectrum found in each pixel.

But for now let us assume that the data is com-
posed of spectrums from a subspace of lower di-
mensionality.

Many analysis algorithms have a computational
complexity which is proportional to the number of
dimensions, some have exponential complexity, and
are thus costly to work with. If it is possible to map
the data to a space of lower dimensionality than less
computational resources will be needed.

Deep learning using stacked autoencoders have
shown in many examples to give a compressed rep-
resentation that is useful for many different appli-
cations. For example a representation trained for a
specific classifier has shown to be useful for classifi-
cation of classes not at all considered in the original
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training.
There is also a question of how easy it is to find

the important information. It may be possible that
the information in the encoded space is more diffi-
cult to find than the same information in the un-
coded data.

2 Hyperspectral imaging

A hyperspectral image can be viewed as set of
spectral measurements xi : i = 1, 2, . . . , N where i a
spatial index. Each measurement xi is represented
as a M -dimensional vector

xi = [Li(λ1), . . . , Li(λM )] (1)

where Li(λk) is the measurement of spectral
band λk and M is the number of spectral bands.
This representation stresses the spectral dimension
of the data, while the spatial relations are ignored.
As the focus of the paper is spectral dimensional-
ity reduction the spectral vector representation is
used.

2.1 Dimensionality Reduction

Hyperspectral images (HSI) contain both spatial
and spectral information about the scene at hand.
How much and what kind of information the spa-
tial and the spectral dimensions carry depends on
the situation. Often it is of interest to determine
how much and what information that is carried by
the spectral dimensions solely. The strong focus
on the spectral dimension in hyperspectral imag-
ing can partly be explained by the strong connec-
tion between hyperspectral signatures and material
properties in a scene. So, henceforth in this pa-
per we will only consider the spectral dimensions.
Thus, a hyperspectral image will be thought of as a
large number of pixels, each with a spectrum, and
with no spatial relation to any other pixels.

Hyperspectral data represented as vectors, Equa-
tion (1), is often of high dimensionality (i.e. the
number of sampled spectral bands are many). The
spectral bands are typically highly correlated which
indicate that the data resides in a space of lower
dimensionality than M . The dimensionality of the
hyperspectral space is also limited by the number of
materials with different spectral signatures. If there
is a countable number of materials in the scene and

each material has its own unique spectrum then the
scene can be represented by a number for each ma-
terial. In this case the information in the scene is
digital. If each material in the scene has its unique
spectrum and the radiation varies with the lighting
then it is possible to reduce the number of dimen-
sions needed to represent the data, and represent
the data in a common low dimensional space.

One way of considering dimensionality reduction
which is related to the sensor is to reduced the num-
ber of wavelength bands and possible adjust their
widths to find a smaller set of spectral bands con-
taining the interesting information about the scene.
In dimensionality reduction by sub-band selection
the problem is to determine how many and which
spectral bands that are required to solve the prob-
lem at hand. This kind of dimensionality reduc-
tion may influence the construction of the sensor.
Fewer spectral bands may mean less complexity in
the sensor.

Other kinds of dimensionality reduction requires
that all bands are captured and then transformed
into a space of lower dimensionality. It may still
be of importance to reduce the number of dimen-
sions to reduce complexity of signal analysis which
then can be done in a subspace of lower dimension-
ality. It is not given that analysis of the data in
the low dimensional space is less complex. How-
ever, many results show that the inner represen-
tation actually is meaningful and that the repre-
sentation is useful and makes for example classi-
fiers are more easily trained on the reduced rep-
resentation. Linear transformations of the hyper-
spectral data, such as Principal Component Anly-
sis (PCA) [4] and Independent Component Analy-
sis (ICA) [8], for dimensionality reduction are fre-
quently used pre-processing methods. Kernel-PCA
[5], which is a non-linear extension of the (lin-
ear) PCA-transformation, is also a frequently used
method.

Dimensionality reduction is an encoding problem
meaning that we seek an efficient representation of
the data and in this context efficient means few di-
mensions. Efficient representation could also mean
few bits if the information is discrete. Encoding
problems compared to classification and regression
means that no annotated data is needed for the
training. We assume that the data contain the in-
formation of interest and nothing else. If there is
some kind of noise that can be discarded this can

2 The 29th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS). 2–3 June 2016, Malmö, Sweden.



be captured by requiring that the data is recon-
structed at least as well as a limit on the given
error measure is obtained.

Neural network (NN), and recently deep neural
network, has been used for dimensionality reduc-
tion of hyperspectral images. Zeng an Trussel [10]
used NN to implicitly reduce the dimensionality of
hyperspectral images in a classification setting. A
data dependent error function - sum of square er-
ror (SSE) - was combined with a sparseness criteria
on the weight in the NN which penalizes non-zero
weights. The NN was trained for classifying hyper-
spectral signatures and was trained using classified
spectral signatures of different materials. The di-
mensionality reduction was implicit in the training
procedure through the sparseness criterion and no
explicit low dimensional representation of the spec-
tral signatures was generated.

Chen et al. [3] propose a DL based approach
for classification of hyperspectral signatures. Chen
et al. uses Stacked Auto Encoder (SAE), as de-
scribed in Section 3.1, to pre-train the NN using
unlabelled training data. The input features to
the AE:s are spectral signatures, spatial represen-
tation and a joint spectral-spatial representation.
The spatial information is represented with a flat-
tened neighbouring region of a PCA transformation
in the spectral domain. The SAE is fine tuned using
a labelled training set. Chen et al. [2] use a similar
approach but instead of using SAE in the unsu-
pervised pre-train step, they use layered Restricted
Boltzmann Machines (RBM). The dimensionality
reduction, using SAE:s and layered RBM, was im-
plicit and as an pre-processing step for supervised
learning of a classifier.

The paper addresses how SAE:s can be used
for dimensionality reduction of hyperspectral signa-
tures without explicitly connecting the learnt rep-
resentation to a specific classification task. What
spectral information is preserved?

3 Deep learning and Autoen-
coder

Deep Learning (DL) is a relatively new approach in
pattern recognition that has achieved remarkable
results in many applications ([9, 1, 6]). The key
concept in DL is to represent the features in a way

Encoding using a Stacked 
Auto-Encoder (SAE)

  Classi�er 1-D spectral
vector

Output:
class labels

HSI cube

Figure 1: A 1-D spectral feature vector is hierarchi-
cally represented - the red nodes - using a Stacked
Autoencoder (SAE). The output of the encoding
part of the SAE generate a compressed represen-
tation of the vector used as features for the clas-
sifier. The SAE - red nodes - is optimized using
an unlabelled training set (see figure 2), while the
classifier require labelled data.The ability represent
hyperspectral signatures in a low dimensional space
using SAE is investigated.

that improves further analysis. The features is, in
DL, represented hierarchically where the different
levels in the hierarchy represent different levels of
abstraction.

A hierarchical feature representation can, in prin-
cipal, be learnt from training data using a multi-
layer neural network (also called Multi Layer Per-
ceptron (MLP)). The weights in a MLP are ad-
justed by minimizing an error function, commonly
the mean-square error (MSE) - equation 9, over a
training set commonly using the Back-Propagation
(BP) algorithm. BP calculate the gradient, i.e. the
derivative of the error function with respect to the
weights, of the MLP and the weights are updated
by moving in the negative gradient direction.

It is hard, or even impossible, to train a deep
MLP, i.e. a MLP with 2 or more hidden layer, due
to the the vanishing gradient problem. BP calcu-
late the gradient by propagate the error from the
output layer toward the input layer and the deriva-
tives decreases as the error is propagated through
the layers in the MLP. The gradient is small in the
bottom layers of the MLP and the weights are al-
most unchanged after updating, which make learn-
ing very slow (or impossible).

Instead of training a deep neural network directly
it can be trained in two phases:

1. Pre-training In this phase unlabelled train-
ing data is used to learn a hierarchical rep-
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resentation of the data. A layer-wise greedy
strategy to learn a latent representation of the
unlabelled data is used. Autoencoders (AE)
and Restricted Boltzmann Machines (RBM)
are two frequently used techniques.

2. Fine-tuning The weights obtained from the
pre-training phase are used for initialising the
weights in the full deep neural network. The
hierarchical representation learnt in the pre-
training phase is a good starting point for fine
tuning the deep neural network using labelled
data and the back-propagation algorithm.

3.1 Autoencoder

An AutoEncoder (AE) is neural network trained to
reconstruct or reproduce its inputs as its outputs.
An AE is composed of two parts; an encoder and a
decoder. The encoder takes an input X and maps
it to a hidden (or latent) representation U . The la-
tent representation is often of lower dimensionality
which imply that the encoder compress the infor-
mation in the features. The decoder reconstruct
the input X from the latent representation U . An
AE is an neural network composed of one or more
hidden layers which maps the input features onto
itself. An AE can be learnt using the BP algorithm
and unlabelled training examples. No labels are re-
quired because an AE maps the input onto it self
independent of any class labels. In the training an
optimal encoder and decoder of the input features
though the latent representation is learnt. The la-
tent representation can be viewed as a compression
of the features containing the most important in-
formation.

Multilayer AEs, called Stacked AutoEncoders
(SAEs), are constructed using a greedy layer-wise
strategy. An AE is trained using an unlabelled
training set and some features X. The trained AE
maps the features X of the training set to the learnt
latent representation, called, U . U is a representa-
tion of lower dimensionality than the original fea-
tures. An AE is trained using U as features re-
sulting in a latent representation V of even lower
dimensionality and so on (See Figure 2).

A deep structure, SAE, is constructed by stack-
ing the greedy layer-wise learnt AEs. The encoding
part of the SAE maps the original features through
a hierarchical representation to a low dimensional

compressed representation.
Let {xi}Nt

i=1 be a set of training vectors where
each vector is the spectral information from one
pixel, xi = (x1, x2, ..., xM ), each vector describes
the spectral intensity of M spectral bands. Let
{v}iNv

i=1 be a set of validation vectors. Let Φ(x) be
a non-linear activation function in this case

Φ(x) = 1.7159 tanh(
2

3
x) (2)

A node in the neural network performs the func-
tion

fn(x) = Φ(w0 +
M∑
i=1

wixi) (3)

which can also be written

fn(x) = Φ(wx>). (4)

A layer in the network is composed of n nodes

f(x) = Φ(Wx>) (5)

where W is a matrix with one row for each node or
output signal and one column for each input signal.

An autoencoder (one layer in a stacked autoen-
coder) consists of two layers of nodes, a hidden layer
and a output layer. The output layer have a linear
activation function, thus

f(x) = WdΦ(Wex) (6)

where We is the parameters of the encoding layer
and Wd is the parameters of the decoding layer.

Training is done by iteratively adjusting the pa-
rameters of the network using backprogagation.

Let eSAE and dSAE be the encoder respective
decoder parts of the SAE then reconstruction of a
sample xn is defined as

x̃n = dSAE ◦ eSAE(xn) (7)

where ◦ is the function composition operator.
The reconstruction residual rn of a sample xn is
defined as

rn = xn − x̃n (8)

and reconstruction error is defined as ei = ‖ri‖.
Norms of interest include the ‖x‖L1

, ‖x‖L2
and

‖x‖L∞ = max(|x1|, |x2|, · · · , |xm|) norms. The re-
construction error ei of a hyper spectral signature
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Figure 2: Stacked Autoencoder (SAE) is a greedy strategy to learn a hierarchical feature representation
of the data. An AE which maps the features X onto it self though a hidden layer U is learnt. The hidden
layer U is a latent representation of lower dimensionality of the features. The latent representation U
is used as input to a another AE which learn a latent representation V and so on. A deep structure
is composed by stacking the layer-wise trained AEs and is hence called a SAE. A SAE can be used to
encode (and decode) original features to any of the dimension the latent representations.

indicate how well it can be approximated in the
subspace by the SAE.

The mean-square (reconstruction) error is de-
fined as

E =
1

N

N∑
n=1

‖ei‖22. (9)

where N is the number of samples in training set.
The mean-square reconstruction error of an SAE

indicate the performance of the hierarchical repre-
sentation of the features. The reconstruction error
also gives information about the dimensionality of
the original data i.e. the number of dimensions
which are required for a good reconstruction.

3.2 Dimensionality Reduction using
stacked autoencoder

There is a choice of the topology of the neural net,
that is the number of hidden layers and the number

of neurons in each layer. The topology will deter-
mine the number of parameters in the encoder.

There is a relationship between the number of
parameters and what the net can be expected to
represent, how complex data that can be encoded
with the mapping. There is also a relationship be-
tween the number of parameters and the amount
of training data that is required to be able to de-
termine the parameters. If there are too many pa-
rameters then there is a risk that the system will be
over trained meaning the the system will learn too
much detail of the data. If the system is overtrained
the system will not generalise well to coming data
from the same source.

There are two important variables, the number
of parameters and the reconstruction error.

This is a source coding problem. A small in-
crease in the reconstruction usually means a large
improvement in the data rate.

We assume or hope that data can be reduced
with respect to the number of dimensions while re-
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taining the information about the scene. Not much
is known and thus can be assumed about the space
in which the relevant aspects of the scene is repre-
sented. We hope that a trained multilevel NN will
be able to reconstruct the original data with little
distortion.

The output from one layer is the input to the
next layer so the output of the first layer should be
adapted to be suitable as input to the next layer.

A proper choice of the learning rate is critical for
the convergence of the learning algorithm in rea-
sonable time. However, there is no guarantee that
the algorithm will converge, converge at all or con-
verge to the global minimum point. The learning
rate depends on the number of inputs to the neu-
rons. In a SAE the learning rate should be adapted
to the depth of the layer, or to the number of inputs
that the neurons have in the particular layer.

First experiment. A hyperspectral image from
a natural scene was chosen. The scene contains a
gravel road and vegetaion close to the road. There
are man-made object placed in the scene. In the
context where the data were captured the detec-
tion of the objects is of interest as could also a
classification of the area in terms of different types
of terrain. If the data can be represented in a lower
dimensional space then the information might be
easier to access.

We could also try if the reduced representation
could be used for anomaly detection. If data does
not fit the trained implicit model then the recon-
struction should be worse than for common data
from which the model was trained.

The representation obtained with a stacked au-
toencoder could be compared to for example a
PCA, choosing spectral bands and representation
with a gaussian mixture model. What should be
compared is the number of parameters in the en-
coder, the number of dimensions in the obtained
representation and the reconstruction error. Also
the computational complexity of the methods is of
interest, both the using the encoder and determin-
ing the encoder.

4 Experiments

Let {xi}Nt
i=1 be a set of training vectors where each

vector is the spectral information from one pixel,
xi = (x1, x2, ..., xM ), each vector describes the

spectral intensity of M spectral bands. Let {v}iNv

i=1

be a set of validation vectors.
In our experiments we have used Rasmus Berg

Palm’s [7] Matlab implementation of a stacked au-
toencoder.

We have used hyperspectral images (e.g. see
Fig. 3) from a natural scene with man made ob-
jects placed on the ground. The scene is 5-10 x
5-10 meters and the objects are a few decimeters
in size. The images are mostly of undergrowth and
some tree trunks. There are also parts of a gravel
road. There are some calibration boards in the im-
ages but those are disregarded in the experiments.
Figure 3 shows a visual image of one of the scenes
and a mask showing where in the image to find
background, objects and calibration boards.

These hyperspectral images have been collected
for a project investigating among other things
methods for anomaly detection of surface laid ob-
jects. There is a number of different objects.

The available vectors were divided into a training
set and a validation set.

First we want to find out if it is possible to find
an efficient representation of the hyperspectral data
using a stacked autoencoder. With efficient we
mean a representation in a space with few dimen-
sions from which it is possible to reconstruct the
original data with a small reconstruction error us-
ing mean square error to measure the error. The
mean square error is a general error measure and
not very specific which seems reasonable since we
do not have a specific application in mind.

In our data (Fig. 4) the distribution of the in-
tensity varies between the wavelength bands which
means that the relative error of some bands con-
tribute much more then other bands to the total
mean square error. We hope that information in
the original hyperspectral signal is retained in the
encoded data.

We will use a stacked autoencoder to learn an
efficient representation of the background data ex-
cluding the man-made objects in the scene. The
compact representation could be used for anomaly
detection. Here we consider detection of anomalous
pixels since each spectrum is encoded separately
without any regard to any other pixels. In many
cases the objects have spatial properties that could
be considered. But in this case we only want to
explore the spectral properties.

If the man-made objects are different from the
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typical natural scene then they should be de-
tectable in the sense that the stacked autoencoder
fitted for the background will not be able to re-
construct the spectrum of the objects as well as
spectrums from the background.

The data was normalised to improve convergence
of the training algorithm by translation of each
spectral band to give zero mean. The total set of
spectral values was then normlised to unit variance.
Figure 5 shows a few normalised spectrums.

In classification problems there is a choice of tar-
get values. In our case with a stacked autoencoder
the last activation function was chosen to be a lin-
ear function. The training example data was shuf-
fled for every epoch of the training. There is a
choice of batch or stochastic training. In stochas-
tic training the net is adapted to one data vector
at a time. In batch learning the gradient is com-
puted as an average for a set of training vectors.
This will give a better approximation of the gradi-
ent but the stochastic training can get advantage
from the random walk. In the implementation we
used there was a significant difference in speed of
going through an epoch in the learning algorithm.
We choose a solution between the extremes by using
small batches. The learning rate was determined
by trial and error so that the learning algorithm
converged reasonable fast. If it learning rate was
chosen to high then the algorithm did not converge
but kept jumping around a minimum value.

The stacked autoencoder is trained layer by
layer. When the first layer is trained then the data
is mapped to the latent representation and then
these data are used to train the next layer. When
all layers are trained they are put together into
a stacked autoencoder with several hidden layers.
The full stack is trained to fine tune parameters. In
the case of a classifier the inner most hidden layer
is attached to a few layers used for classification of
the data and then the classifier is trained which in-
clude updates to the autoencoder layers apart from
training the layers doing the classification.

Figure 7 shows an example of the training. 7(a)
shows ten data vectors (spectrums) from the val-
idation set and 7(b) shows the reconstruction of
the spectrums given by the autoencoder and 7(c)
shows the reconstruction residual (Eq 8). The data
need to be normalised to suit the autoencoders
learning algorithm, 7(d) is the ten vectors of 7a
normalized.7(e) is the reconstructed vectors which

are reconstructed in 7(b). 7(f) is the reconstruction
residual (Eq 8) for the normalized vectors.

7(g) shows an image of the encoding matrix We

of the first layer in the stacked autoencoder. The
matrix has 60 rows one for each node and 240
columns, one for each insignal. Each point in the
image represents the coefficient of one insignal to
one node. 7(h) is the endcoded vectors and 7(i) is
the corresponding reconstructed vectors. An image
of the reconstruction matrix Wd is shown in 7(j).
This matrix has 60 rows, one for each insignal and
240 rows, one for each output signal.

This SAE is composed of two layers. 7(k) shows
an image of the parameters of the encoder in the
second layer which has 60 input signals (columns)
and 30 output signals (rows). 7(l) shows the en-
coded signals and finally 7(m) is an image of the
reconstruction matrix wich 60 rows (insignals) and
30 columns (outputs signals).

The data in the innermost layer supposedly con-
tain most of the information and this is shown by
a small reconstruction error. For a specific classi-
fier it is possible that it would suffice with fewer
dimensions. From our experiments it seems that
the original data has low dimensionality. Only a
few nodes is needed in the hidden layer, e. g. 240
- 8 - 240 nodes. This is consistent with using PCA
to reduce the dimensions. Only a few dimension
contain most of the energy of the signal.

The representation obtained by the autoencoder
may be used to detect anomalies. Figure 3 (bot-
tom) shows the reconstruction error. Most of the
man-made objects have considerably higher recon-
struction error than most background pixels. It
seems that the reconstruction error can be used as
a measure of anomaly.

We also made an experiment with constructed
data consisting of a handful of spectral signatures
or functions. In this case the problem could be seen
as a discrete coding problem. The innermost layer
need only represent the index of the spectral sig-
nal. Thus only one dimension would suffice with
the level indicating which spectral signal is cur-
rent. We did not find a stacked autoencoder with
only one node in the innermost layer but using 5
nodes in the innermost layer would give perfect re-
construction. In this case it means up to the noise
that was added to the training and validation data.

There is a significant difference with regard to
computation time when considering batch versus
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Figure 7: Data in the steps of a stacked autoencoder. The graphs are refeered to row by row as, a b c,
d e f, g h i j, k l m. The first row shows (a) ten original spectral data vectors, (b) the ten corresponding
reconstructed spectral data vectors from the SAE and (c) the reconstruction residual. The second row
shows (d) the corresponding normalized data vectors, (e) the corresponding reconstructed data vectors
and (f) the reconstruction residual. The fourth row shows (g) an image of the matrix with the encoder
parameters, (h) the latent representation of the data vectors, (i) the reconstructed data vectors and (j)
an image of the matrix with the decoder parameters. The fifth row shows (k) an image of the matrix
with the encoder parameters of the second layer, (l) the latent representation of the data vectors in the
second layer and (m) an image of the matrix with the decoder parameters of the second layer.

8 The 29th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS). 2–3 June 2016, Malmö, Sweden.



Figure 3: (Top) A visual image of the scene from
which the test data is taken. (Middle) The differ-
ent regions in the image, background (turquoise)
objects (yellow) and reference boards (blue). (Bot-
tom) The reconstruction error when spectrums
are represented by a stacked autoencoder with
240,60,30,60,240 nodes in the layers.
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Figure 4: Examples of spectrums from some pixels
in the test data.
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Figure 5: Examples of normalised spectrums used
in the training.
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Figure 6: Histogram of the RMS error per spectral
band for back- and forground pixels separately.
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random choice of a single training vector. There
is a significant gain in time to compute all vectors
once.

5 Conclusion

In this paper we describe how stacked autoencoders
(SAE) can be used to reduce the spectral dimen-
sionality of hyper spectral data. We show that the
hierarchical representation learned by a SAE can
encode the spectral information with small mean
square error. The results are shown using hyper-
spectral signatures from images of a natural scene
containing man-made objects. We also show how
the SAE can be used for anomaly detection, with
promising results, on the same dataset.

Even if SAEs is a promising tool for dimensional-
ity reduction and learning compact spectral repre-
sentations it is a rather steep learning curve before
one can apply SAEs.
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