Abstract

In this paper we present a multimedia corpus of Pear film retellings by people with aphasia (PWA), right hemisphere damage (RHD), and healthy speakers of Russian. Discourse abilities of brain-damaged individuals are still under discussion, and Russian CliPS (Clinical Pear Stories) corpus was created for the thorough analysis of micro- and macro-linguistic levels of narratives by PWA and RHD. The current version of Russian CliPS contains 39 narratives by people with various forms of aphasia due to left hemisphere damage, 5 narratives by people with right hemisphere damage and no aphasia, and 22 narratives by neurologically healthy adults. The annotation scheme of Russian CliPS 1.0 includes the following tiers: quasiphonetic, lexical, lemma, part of speech tags, grammatical properties, errors, laughter, segmentation into clauses and utterances. Also analysis of such measures as informativeness, local and global coherence, anaphora, and macrostructure is planned as a next stage of the corpus development.

Keywords: aphasia, brain damage, discourse, Russian

1. Introduction

We present a corpus of Pear film (Chafe, 1980) retellings made by brain-damaged individuals and neurologically healthy speakers of Russian language. The primary aim of the Russian CliPS (Clinical Pear Stories) project is investigation of discourse abilities of people with aphasia (PWA) and right hemisphere damage (RHD) in comparison with neurologically healthy speakers. In the recent years there has been development in the studies of discourse in aphasia and other neurological conditions (Armstrong, 2000; Linnik et al., 2015), however, the effect of lesions in language-dominant and non-language-dominant hemispheres on discourse production and comprehension is still discussed. Aphasia is an acquired language impairment resulting from brain damage to the language-dominant hemisphere (usually left; Dronkers and Baldo, 2010). Aphasia of different types can manifest in disturbances in both production and comprehension of language on different levels: phonetic, lexical and syntactic. However, the research shows the discrepancy between the language competence of PWA on micro- and macro-linguistic levels (Armstrong, 2000; Linnik et al., 2015; Wright, 2011). Though early studies show that discourse structure is not impaired in aphasia (Ulatowska et al., 1983a, 1983b), some of the recent research demonstrates that it is not necessarily true. While several studies report that such discourse properties as informativeness and coherence are significantly different in discourse of PWA and healthy speakers (Van Leer and Turkstra, 1999; Nicholas and Brookshire, 1993; Wright et al., 2010), other studies report the opposite results (Glosser and Deser, 1990; Marini et al., 2005).

The damage to the non-language-dominant hemisphere (usually right) is not directly linked to any problems on micro-linguistic level; however there is evidence that people with RHD experience difficulties in language comprehension and production at discourse level (Brookshire and Nicholas, 1984; Tompkins et al., 1997). At the present moment the only large corpus of aphasic speech is AphasiaBank (MacWhinney et al., 2011). Discourse elicitation stimuli for AphasiaBank are several pictorial stimuli as well as a picturebook with a Cinderella story. Though texts from AphasiaBank are used for discourse research (for example Richardson et al., 2016), any additional annotation does not become part of the corpus.

The goal of the Russian CliPS project is to create a corpus that could be used as a research tool with its existent annotation, and on the other hand, would be constantly developed by new research and additional information.

2. Corpus compilation

2.1 Speakers

Brain-damaged individuals were recruited in the inpatient departments of Moscow rehabilitation centers. The individuals with aphasia had been admitted to the centers with reported language problems after stroke in the left hemisphere and were diagnosed with chronic aphasia (not less than 6 months post-stroke). Aphasia types were diagnosed using Luria’s classification (Akhutina, 2015; Luria, 1972), and the corpus contains stories by people with efferent motor, dynamic, acoustic-mnestic and sensory aphasia. Aphasia can be generally divided in two different types: with fluent and non-fluent speech output. The non-fluent aphasia types include efferent motor aphasia and dynamic aphasia. Russian CliPS corpus contains 10 stories by individuals with efferent motor aphasia and 9 stories by individuals with dynamic aphasia. Aphasia types with fluent speech output include sensory and acoustic-mnestic aphasia. Russian CliPS corpus contains 10 stories by people with sensory aphasia and 10 stories by people with acoustic-mnestic aphasia.
Individuals with RHD all were at least 6 months post-stroke and were right-handed. Speakers from the neurologically healthy group did not report any history of neurological disease or head traumas. All the participants were native speakers of Russian language. The information about all speakers is summarized in Table 1.

2.2 Material and procedure

The elicitation stimulus, the Pear film, was made at the University of California in Berkeley in 1975 specifically for elicitation and collection of narratives by people from various cultures and languages (Chafe, 1980). It is a color film, and though it is not silent, characters do not produce any language. The film has a unique plot that was written to not resemble any other film, or book, or tale. Some characters of the film are important for the plot, and some do not resemble any other film, or book, or tale. Some words in this tier appear in their regular spelling, however in the cases of a phonetic error or a specific pronunciation, the transcript reflects these declinations from regular language. For example, in Russian the word сейчаc ‘сеяхас’ – now in oral speech can appear in its full form or as a reduced variant саc ‘tschas’. In writing, however, only the full variant is acceptable in standard language. In this case the quasiphonetic transcript should follow pronunciation rather than standard language rules. Phonemic paraphasias (errors) that happen in speech of PWA are also reflected in this tier, for example велосипед – велосипел’ (the correct word is велосипед ‘velosiped’ – bike). At the quasiphonetic level all the pauses that are longer than 70ms are annotated, both absolute and filled pauses. If some segment of speech is not comprehensible, the note “incomprehensible” is used.

The quasiphonetic transcript makes it possible to capture some features of oral speech as well as phonemic paraphasias, but it would cause problems for analysis of lexical diversity and lexical density. The lexical transcript (Transcript) is aligned with the media files, and contains orthographic transcript of the speech recorded. Most words in this tier appear in their regular spelling, however in the cases of a phonetic error or a specific pronunciation, the transcript reflects these declinations from regular language. For example, in Russian the word сейчаc ‘сеяхас’ – now in oral speech can appear in its full form or as a reduced variant саc ‘tschas’. In writing, however, only the full variant is acceptable in standard language. In this case the quasiphonetic transcript should follow pronunciation rather than standard language rules. Phonemic paraphasias (errors) that happen in speech of PWA are also reflected in this tier, for example велосипед – велосипел’ (the correct word is велосипед ‘velosiped’ – bike). At the quasiphonetic level all the pauses that are longer than 70ms are annotated, both absolute and filled pauses. If some segment of speech is not comprehensible, the note “incomprehensible” is used.

The quasiphonetic transcript makes it possible to capture some features of oral speech as well as phonemic paraphasias, but it would cause problems for analysis of lexical diversity and lexical density. The lexical transcript (Transcript) contains the same information as the quasiphonetic tier, although all the spellings are brought to standard. Lexical transcript is used for calculating lexical richness, because different pronunciations of one lexeme are not counted as different words.

Table 1. Demographic information on Russian CliPS 1.0 speakers

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of speakers</th>
<th>Gender</th>
<th>Mean age</th>
<th>Age range</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic-mnemonic aphasia</td>
<td>10</td>
<td>5 female, 5 male</td>
<td>51.3</td>
<td>40-68</td>
<td>9.4</td>
</tr>
<tr>
<td>Dynamic aphasia</td>
<td>9</td>
<td>5 female, 4 male</td>
<td>51.8</td>
<td>41-68</td>
<td>8.1</td>
</tr>
<tr>
<td>Efferent motor aphasia</td>
<td>10</td>
<td>3 female, 7 male</td>
<td>48.6</td>
<td>30-57</td>
<td>8.0</td>
</tr>
<tr>
<td>Sensory aphasia</td>
<td>10</td>
<td>4 female, 6 male</td>
<td>59.3</td>
<td>33-81</td>
<td>8.1</td>
</tr>
<tr>
<td>RHD</td>
<td>5</td>
<td>2 female, 3 male</td>
<td>50</td>
<td>41-56</td>
<td>12.3</td>
</tr>
<tr>
<td>Brain damage (total)</td>
<td>44</td>
<td>19 female, 25 male</td>
<td>52.8</td>
<td>30-81</td>
<td>10.4</td>
</tr>
<tr>
<td>Healthy</td>
<td>22</td>
<td>11 female, 11 male</td>
<td>58</td>
<td>25-84</td>
<td>13.9</td>
</tr>
</tbody>
</table>

3. Corpus Annotation

The annotation of the corpus was performed in ELAN (Wittenburg et al., 2006). The annotation scheme 1.0 includes the following tiers: quasiphonetic, lexical, lemma, POS, grammatical properties, errors, laughter, segmentation into clauses and utterances.

The quasiphonetic tier (Transcript) is aligned with the media files, and contains orthographic transcript of the speech recorded. Most words in this tier appear in their regular spelling, however in the cases of a phonetic error or a specific pronunciation, the transcript reflects these declinations from regular language. For example, in Russian the word сейчаc ‘сеяхас’ – now in oral speech can appear in its full form or as a reduced variant саc ‘tschas’. In writing, however, only the full variant is acceptable in standard language. In this case the quasiphonetic transcript should follow pronunciation rather than standard language rules. Phonemic paraphasias (errors) that happen in speech of PWA are also reflected in this tier, for example велосипед – велосипел’ (the correct word is велосипед ‘velosiped’ – bike). At the quasiphonetic level all the pauses that are longer than 70ms are annotated, both absolute and filled pauses. If some segment of speech is not comprehensible, the note “incomprehensible” is used.

The quasiphonetic transcript makes it possible to capture some features of oral speech as well as phonemic paraphasias, but it would cause problems for analysis of lexical diversity and lexical density. The lexical transcript (Transcript) contains the same information as the quasiphonetic tier, although all the spellings are brought to standard. Lexical transcript is used for calculating lexical richness, because different pronunciations of one lexeme are not counted as different words.

Lemma tier (Lemma) contains initial forms of the words, and in the English lemma tier (Lemma_eng) all the words are translated into English, which, in combination with information from grammatical tiers, makes the data from Russian CliPS available for non-Russian speaking researchers.

The part of speech tagging scheme and the annotation of grammatical categories is based on the manual of Russian National Corpus (http://www.ruscorpora.ru/en/corpora-morph.html).

Laughter is annotated on a separate tier (Laughter) and is aligned with the sound wave. This annotation enables the analysis of laughter as a marker of failure to produce a correct word or interpretation of an event in the stimulus film, as well as dissatisfaction with the whole narrative (Khudyakova and Bergelson, 2015).

Grammatical, semantic and phonetic errors are annotated in the special tier (Error). Phonetic errors include replacement of one sound with another, for example сапка ‘shapka’ (the correct word is уана ‘shapka’ – hat), omission of a phoneme or inclusion of an extra one, for example поропал ‘poropal’ (the correct word is пропал ‘propal’ – got lost), and use of a word that is phonetically similar with the intended one, but is distant semantically, for example грустные ‘grustnye’ – sad, instead of грусти
'grushi'—pears. Semantic errors include use of a member of the same semantic category as the target word, for example apples instead of pears, or sheep instead of goat. In several cases the distinction between the two types of errors is impossible, for example use of sanovnik—dignitary instead of sadovnik—gardener can be interpreted both as a phonetic error (replacement of 'd'/ with a 'n'/) or as a semantic one (use of a wrong word from 'professions' category), and in this case both types of error are annotated. Grammatical errors include errors in agreement and number.

Segmentation into clauses is based on grammatical rather than prosodic (Kibrik and Podlesskaya, 2009) principle. Utterances include a main clause with all its subordinate clauses (Glosser and Deser, 1990). A ratio of clauses and utterances can be interpreted as a measure of grammatical complexity (Marini, 2012).

4. Corpus data

The current version of Russian CliPS contains 66 narratives. The total length of the recorded material is 4 hours 33 minutes. The mean length of each recording is 4 minutes 7 seconds (min – 38 seconds, max – 18 minutes 27 seconds, SD = 175 seconds).

The quantitative information on the current version of the Russian CliPS corpus is shown in Table 2.

At the present moment the Russian CliPS corpus is not publicly available.

5. Coreference Annotation

We started with coreference annotation. As an annotation tool, we have chosen the platform that was designed for the annotation of RuCore — Russian Coreference corpus (Toldova et al., 2014; http://qnt0.maimbava.net/). This platform was developed for the purpose of anaphora resolution systems evaluation campaign. It is based on MySQL database engine and has a convenient Web-interface that allows parallel annotation by several annotators and on-line tracking of discrepancies between annotators. It supports embedding of annotations, marking zero anaphora, annotation features enhancing by users and establishing links between markables. At start, this platform had built-in annotation scheme worked-out for coreference annotation of written texts (primarily, news). The scheme has a set of features concerning NP structure type, referential status type and coreferent NPs relation type.

We have completed pilot annotation of 10 narratives by healthy speakers and 5 narratives by PWA (effector motor). This pilot stage revealed steps needed for adaptation of the coreference annotation scheme designed for written texts for a genre of oral narrations.

Firstly, while in written texts discontinuous noun phrases are a special type of coreference relations (e.g. a referent is a group of two other referents before mentioned in a text), in oral texts disrupted NPs are a very frequent phenomenon. The disruption is due to pauses, discourse markers and filler words. The NP disruptions are even more frequent in narratives by people with non-fluent types of aphasia. Thus, we have to create additional functionality for our platform, namely, the annotation of two disrupted text pieces as one markable.

Another problem is the standard relation between two NPs denoting the same entity in written texts is a

<table>
<thead>
<tr>
<th>Group</th>
<th>Narrative length (ms)</th>
<th>Pauses (%)</th>
<th>Narrative length (words)</th>
<th>Narrative length (clauses)</th>
<th>Narrative length (utterances)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic-mnestic aphasia</td>
<td>Mean</td>
<td>231 196</td>
<td>43</td>
<td>281.1</td>
<td>52.6</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>85 229 - 473 025</td>
<td>25-55</td>
<td>76-480</td>
<td>18-84</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>106 700</td>
<td>10</td>
<td>122.2</td>
<td>19.7</td>
</tr>
<tr>
<td>Dynamic aphasia</td>
<td>Mean</td>
<td>406 023</td>
<td>60</td>
<td>220.4</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>196 132</td>
<td>13</td>
<td>91.1</td>
<td>9.4</td>
</tr>
<tr>
<td>Sensory aphasia</td>
<td>Mean</td>
<td>275 765</td>
<td>40</td>
<td>346.4</td>
<td>66.3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>117 912</td>
<td>9</td>
<td>174.7</td>
<td>29.6</td>
</tr>
<tr>
<td>Efferent motor aphasia</td>
<td>Mean</td>
<td>377 137</td>
<td>45</td>
<td>228.8</td>
<td>49.9</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>167 879 – 1 107 112</td>
<td>26-72</td>
<td>58-436</td>
<td>14-91</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>275 043</td>
<td>14</td>
<td>119.7</td>
<td>24.4</td>
</tr>
<tr>
<td>RHD</td>
<td>Mean</td>
<td>195 922</td>
<td>49</td>
<td>279</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>122 845 – 427 025</td>
<td>39-65</td>
<td>185-477</td>
<td>32-120</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>147 132</td>
<td>11</td>
<td>133.5</td>
<td>39.2</td>
</tr>
<tr>
<td>Healthy speakers</td>
<td>Mean</td>
<td>152 437</td>
<td>33</td>
<td>269.5</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>47 389 – 296 805</td>
<td>17-51</td>
<td>88-405</td>
<td>16-80</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>62 524</td>
<td>9</td>
<td>113.7</td>
<td>21.7</td>
</tr>
</tbody>
</table>

Table 2. Quantitative data on Russian CliPS 1.0
coreferential relation (the relation of referent identity),
though other relations such as apposition (c.f. a 10-year
boy, the one with a basket, …) or predicative relation (c.f.
this boy is a boy who …) are taken into consideration in
the built-in scheme. It oral texts, some NPs denoting the same
referent as a previous NP are just mere NP repetitions (c.f.
a boy, this boy, went…), or self-correcting (a farmer; a
farmer; went…). Thus, in order to distinguish the latter
from apposition we need additional labels for NPs
relational types (e.g. repetition, renaming). We also need
additional rules in the annotation instruction for the
differentiation of appositions vs. different types of
repetitions.
The third issue worth mentioning concerns the naming
problem in speech-impaired people. These are the cases of
semantic paraphasias (c.f. apples instead of pears).
Sometimes the speakers make self-correction during the
narration. These cases are also should be captured by our
scheme. The annotation scheme should also allow marking
potential coreference relations between an NP and more
than one potential referent.
Our pilot study has highlight some peculiarities of
coreference chaining in oral discourse and in speech of
different kinds of brain-damaged individuals and some
special issues in annotation process for this type of
discourse. Thus, this discourse level needs further
investigation and the coreference annotation scheme needs
further enhancing and adaptation.

6. Future Work
The Russian CliPS corpus at its present stage is annotated
on micro-linguistic level. Much discourse annotation is still
needed in order to evaluate the discourse abilities of
brain-damaged speakers.
The next version of Russian CliPS will also have
annotation of informativeness, global and local coherence,
and macrostructure of discourse.

7. Bibliographical References
story so far. Aphasiology 14, 875–892.
doi:10.1080/02687030050127685.
Comprehension of directly and indirectly stated main
ideas and details in discourse by brain-damaged and
non-brain-damaged listeners. Brain and language
21, 21–36.
Cultural, and Linguistic Aspects of Narrative
Production., ed. W. Chafe Norwood, New Jersey:
Ablex.
Dronkers, N. F., and Baldo, J. V. (2010). “Language:
Aphasia,” in Encyclopedia of Neuroscience
(Elsevier Ltd), 343–348.
Production among Neurological Patients with Fluent
Interpretation of “Embarrasement” Laughter in
Narratives by People with aphasias and
Non-language-impaired speakers. in Proceedings of
the 4th Interdisciplinary Workshop on Laughter and
Other Non-verbal Vocalisations in Speech, 14-15
April 2015 (Enschede).
Dream Stories: A corpus study of spoken Russian
discourse. Moscow: Languages of Slavonic Culture.
elicitation task on discourse coherence and cohesion
in adolescents with brain injury. Journal of
Communication Disorders 32, 327–349.
Discourse production in aphasia: a current review of
theoretical and methodological challenges. 7038.
Journal Devoted to the Study of the Nervous System
and Behavior 8, 34.
MacWhinney, B., Fromm, D., Forbes, M., and Holland,
discourse processing after damage to the right
hemisphere. Seminars in Speech and Language
Marini, A., Carlomagno, S., Caltagirone, C., and
Nocentini, U. (2005). The role played by the right
hemisphere in the organization of complex textual
structures. Brain and Language 93, 46–54.
for quantifying the informativeness and efficiency of
the connected speech of adults with aphasia. Journal
of speech and hearing research 36, 338–350.
Richardson, J. D., Dalton, S. G., Richardson, J. D.,
Grace, S., Main, D., Richardson, J. D., et al. (2016).
Main concepts for three different discourse tasks in a
large non-clinical sample. 7038.
Toldova, S., Roytberg, A., Ladygina, A., Vasilyeva, M.,
RU-EVAL-2014: Evaluating anaphora and
coreference resolution for Russian. Computational
Linguistics and Intellectual Technologies. Papers
from the Annual International Conference
Tompkins, C. A., Baumgaertner, A., Lehman, M. T.,
discourse comprehension in right brain-damaged
adults: A preliminary report. Aphasiology 11, 505–
519.
Ulatowska, H. K., Doyel, A. W., Stern, R. F., Haynes, S.

