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Abstract 

In systems which are sourcing their electric energy from 

a battery system, such as electric or hybrid electric 

vehicles, it is of crucial importance to monitor the 

battery’s condition in order to ensure its usability and 

longevity. The battery management system (BMS) is a 

control unit which supervises the physical variables in 

order to assess the condition of the battery. 

For the development and testing of control units in 

the automotive industry, such as the BMS, the 

AUTOSAR standard was introduced, which separates 

application code from platform-specific software. By 

using AUTOSAR tools and the model exchange via the 

Functional Mock-up Interface (FMI), this paper shows 

how BMS algorithms can be validated and tested in 

several abstraction layers. A sub-function of the 

algorithm is tested first in the Modelica-based system 

simulation tool Dymola on a personal computer and then 

on Hardware-in-the-Loop (HiL) platform which 

emulates the hardware of an automotive ECU. 

In order to provide realistic inputs of the physical 

variables, a battery model in Modelica is built using the 

Dymola add-on Battery Library by Dassault Systèmes. 

In order to run on the HiL platform the battery model is 

implemented such that it is real-time compliant. 

For both, the BMS algorithm and the battery model, 

it is described along the process which adjustments need 

to be made when switching from the simulation 

framework to the HiL platform. 

Keywords: battery model, battery management system, 
AUTOSAR, FMI, ASim, MiL, SiL, HiL, XiL, Co-

Simulation 

1 Introduction 

Today’s system- and software development teams 

work quite isolated from one another. Information 

exchange is usually limited on written specifications. 
With the example of the battery management system 

(BMS) we will show a method in which information can 

effectively be exchanged through a model based on the 

Functional Mock-up Interface (FMI) as executable 

specification. This allows both parties closed-loop 

simulation at different stages of the V-Cycle. This way, 

software developers can more thoroughly test their 

software in a virtual environment. At the same time the 

system simulation teams can simulate their whole 

system without the need to manually re-implement the 

software algorithms of the ECU code. 

This paper illustrates how based on FMUs 

(Functional Mock-up Units) source code from an 

AUTOSAR Battery Management Algorithm can be 

simulated on different abstraction levels in order to 

verify the algorithm for a failure mode. 

At first, in section 2, the physical battery model will 

be introduced along with example battery module which 

it represents. In a second step, the function and tasks of 

a battery management system will be explained. The 

focus will shift on the specific algorithm, the charging 

status estimation, which is chosen as an example in 

order to demonstrate the process for the overall BMS. In 

section 3, the AUTOSAR standard and the used tool 

chain will be described. 

2 Battery Simulation and Battery 

Management 

Proper battery modelling plays an important role in this 

context. On the one hand, the model needs to provide a 

proper representation of the inner workings of the 

battery so the battery management system receives a 

realistic and complete set of signals. 

On the other hand, the battery model needs to be 

performant enough in order to be compliant with real-

time requirements. In the following two sections, the 

battery model will be introduced. 

2.1 Battery Simulation Model 

The battery pack which is modelled is a 48 V module. It 

could be deployed in micro-hybrid systems for the on-

board electric power supply or as part of a traction 
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battery system. The module features two parallel-

connected rows of each 13 battery cells in serial electric 

connection. Their combined capacity of the 26 battery 

cells amounts to 140 Ampere hours. 

Table 1. Battery Cell Parameters. 

Parameter Unit Value 

Nominal Cell Capacity  Ah 2.7 

Nominal Cell Voltage V 3.6 

Maximum Voltage V 4.2 

Minimum Voltage V 2.5 

Maximum Internal Resistance mΩ 30 

Shape - round 

 

The battery module is modelled in Modelica using the 

Battery Library from Dassault Systèmes (Gerl, et al. 

2014). The physical battery cell models is made up of 

the physical domains relevant for the batteries behavior: 

electric and thermal. 

The main requirement for cell models used in system 

simulation is to provide accurate information on the 

macroscopic characteristics (e.g. voltage, current and 

state of charge) combined with reasonable computation 

time. This way, the impedance characteristics of the real 

cell are replicated. In many applications models using 

an electrical equivalent circuit fulfill these requirements 

The voltage of a battery U can be described as the 

difference between the open circuit voltage UOCV and a 

number of over potentials ηi caused by different 

electrochemical effects: 

𝑈 = 𝑈𝑂𝐶𝑉 + ∑ 𝜂𝑖 (1) 

These over potential can be modelled with equivalent 

electric circuit networks. In Figure 2 the voltage 

characteristic for the step current discharge of a NiMH 

cell is shown. The effect is similar for Lithium-Ion based 

cells, such as the ones used for this example. 

 

Figure 1 Voltage characteristic of an electrochemical cell 

(NiMH) (Jossen und Weydanz 2006) 

The over potential is divided into an ohmic over 

potential ηohm, over potential caused by charge transfer 

and the electrical double layer ηtrans and over potential 

due to diffusion ηdiff. An electrical equivalent circuit 
capable of reproducing the voltage characteristic from 

Figure 1 is shown in Figure 2, whereas the dynamic 

behavior of the over potentials are modelled using RC-

circuits. 

 

Figure 2 Voltages in the equivalent circuit model  

In order to determine the influence of varying temperatures 

on electrical and aging behavior a thermal model of the cell 

and its surrounding environment is required. The heat 

inside the cell is generated mainly due to Joule effects, 

while the chemical reactions are exothermic or even 

endothermic to a minor degree. Thus the generated heat 

corresponds to the calculated power losses of the resistors 

of the equivalent electric circuit which are therefore 

connected to the thermal model. 

 

Figure 3 Representation of the thermal cell model 

At the module level, where several cells form an 

electric, geometric and thermal entity, the major 

advantage in this context is that the battery pack can be 

adjusted according to the performance needs. In 

practical terms, this results in the question whether the 

battery cells are each represented as a Modelica object. 

A simplified approach would be modelling just one cell 

and scaling up the results to module size by multiplying 

the inputs and outputs by the cell numbers in accordance 

with their electrical wiring. Also, the thermal 

representation of the cells can be adjusted in the number 

of discretized elements. In the case of a round cell these 

elements are vertically slices which help to calculate the 

cell internal flow, as sketched in Figure 3. 

Of practical importance is the fact that the Hardware-

in-the-loop platform usually does not feature a data 

system. Modelica models in industrial environments 

might be parameterized by external parameter files. 

When exporting the model for the HIL environment, the 

data needs to be placed within the model without any 

external dependencies. 
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2.2 Battery Management System 

The battery management system has to process sensor 

data and on-board model simulation results in order to 

obtain information about the state of the battery. Tasks 

of the battery management system (BMS) include the 

determination whether the monitored variables are still 

within the acceptable limits. Apart from state-of-charge 

(SoC) and the state-of-health (SoH) usually the cell 

temperature, the cell voltage and the system voltage are 

monitored. In case one of these variables appears to be 

out of the operational limits, the battery management 

system sends a signal to the overall power management 

control unit which restricts the power usage of the 

consuming components. 

Especially the SoC and the SoH are variables, which 

need to be monitored to ensure overall system 

availability at any given moment (He, Wei and Brian 

2010). When the SoC reaches a critically low level in 

general in the range of 5-10%, the electrodes of the 

battery take severe damage and the battery voltage 

might drop below a level at which the battery system 

cannot provide the required power anymore. On the 

other hand, when the SoC exceeds 100% by too much, 

the battery cell stores excessive amounts of energy 

beyond a level which it can safely handle. In severe 

cases, this might even a cause a “thermal runaway”, a 

strong exothermal reaction after which the battery 

system is completely dysfunctional. 

Therefore in any case the battery management system 

should encompass a SoC estimation algorithm. In the 

following, the realization of such an algorithm will be 

discussed. 

2.3 Estimation of Battery State-of-Charge  

In a battery simulation model the change of the SoC can 

be calculated by balancing the electric charge and 

discharge current such as in equation (2). The SoC is by 

definition part of the overall amount of electric charge 

available for discharge with Cn being the nominal 

battery capacity in Ampere seconds (He, Wei and Brian 

2010).  

∆𝑆𝑜𝐶 =
∫ 𝐼 𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡0

𝐶𝑛
 (2) 

 However the SoC determination is more complex when 

being implemented on a battery ECU.  

First, integration is a mathematical operation which 

requires more resources in terms of on-board memory 

and computational time compared to other mathematical 

operations.  

Secondly, current sensors do not necessarily deliver 

a constantly precise measurement output. Calibration 

errors result in constant drifts of the recorded battery 

current. This drift might not significantly influence the 

quality of the estimation during a short period such as a 

short inner city ride. However during longer trips such 

as an inter-city highway tour the drift in the charging 

status estimation might accumulate to a point where the 

battery is depleted while the battery management system 

assumes the charging status as being sufficient. 

In order to ameliorate the quality of the SoC 

estimation, corrective back-up algorithms need to be 

included. A viable alternative is measuring the voltage 

of the battery when the battery is in electrochemical 

equilibrium, meaning that no electric load or charging is 

applied and excitation of previous electric load has 

faded. In this state the over potentials are negligible 

leaving the open circuit voltage as the dominant factor 

determining the cell voltage: 

As a matter of fact, the open circuit voltage is usually 

measured during the initial rating of new cell type and 

also typically used for the parameterization of 

equivalent circuit cell models as shown in Figure 2. 

Implementing the relationships presented in 

equations (2) and (3) in Modelica code could be drafted 

as followed: 

der(SoC_count) * C_n = current + error; 

SoC_est = SoC_count; 

when zeroCurrentTimer > fadingTime then 

  reinit(SoC_est, SoC_ocv); 

end when; 

 

In the first code line the charge counter (SoC_count) is 

implemented after the fashion of equation (2) with the 

error signal applied on the current signal. The output 

SoC_est is directly loaded with the result of the 

integration over the current and standardization with the 

nominal capacity C_n. 

The when-clause representing equation (3) becomes 

active at the time point at which the current has been 

close to zero for a time period, implementation shown 

in Figure 4, with the influence of charge transfer over 

potential has most likely faded, in this case more than 

the time constant fadingTime. The calculated SoC will 

be replaced then with a charging status which has been 

extracted from a look-up-table describing SoC over 

OCV. 

 

Figure 4 Counting time with current close to zero 

During the verification phase of the system 

engineering process, the battery management system 

needs to be verified if it lives up to battery safety 

requirements, i.e. if the variables describing the battery 

state are recorded properly, the operational limits are 

correctly determined and their violations duly signaled. 
 In context of this paper, the ability of the charging 

status estimation algorithm to correct an erroneous 

tableOCV 

NoCurrentTimeCounter 

0.1 

< 

absoluteCurrent 

abs 

socReset 

in_current 

in_voltage 

soc_estimation 

𝑆𝑜𝐶 = 𝑓(𝑈) = 𝑓(𝑈𝑂𝐶𝑉) for 𝜂𝑖 → 0 (3) 
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current measurement signal will be verified. For 

demonstration purposes the implementation is limited to 

charge counter and correction by voltage comparison as 

laid down in this chapter. A typical question answered 

during this process might be whether an estimation 

correction via cell voltage is sufficient to ensure that the 

battery management system and the driver are provided 

with the correct battery charging status. 

3 Virtual Testing of AUTOSAR compliant 

controller software using FMI 

3.1 What is AUTOSAR? 

AUTOSAR (AUTomotive Open System ARchitecture) 

is a well-accepted standard for developing software for 

automotive electronic control units (ECU), as 

documented by (Bertsch, et al. 2015) for Bosch ECUs. 

It defines a layered architecture, separating hardware, 

application software and basic software through 

standardized interfaces.  

 

Figure 5 AUTOSAR Layered Architecture 

As shown in Figure 5 the interface between 

application software components and the interfaces 

between application software and basic software (BSW) 

is handled through the runtime environment (RTE), 

which implements different types of communication 

mechanisms (AUTOSAR 2016). 

3.2 AUTOSAR Unit Test 

One essential part in the AUTOSAR software 

development is the testing of individual software 

components and the whole software architecture (top 

level composition). Ideally those tests should be 

executable without any hardware-dependencies to 

enable testing as soon as possible in the development 

cycle. AUTOSAR addresses this through the Virtual 

Function Bus (VFB) Abstraction Level. The 

AUTOSAR test environment ASim from Dassault 

Systèmes is also applying this concept taking a real 

AUTOSAR compliant operating system (OS) and RTE 

into account. This allows testing of software 

components on a very granular level, also considering 

effects through the OS, e.g. scheduling, or through the 

RTE, e.g. synchronize queued and non-queued 

communication. Even fixed-point arithmetic is taken 

into account using AUTOSAR datatypes. 

3.3 FMI-based Export of virtual AUTOSAR 

ECUs 

Unit tests are in general open-loop tests, which means 

the user has to define sufficient and reasonable test-

vectors and test-constraints, which is often quiet 

challenging and time-consuming. Hence integrating the 

software “model” in a virtual environment which closes 

the loop through a plant-model would make the 

conditioning of many of the software component-ports 

obsolete, as they will be fed directly through the 

connected plant model. In addition to that timing effects 

and delays could also be taken into account by a plant 

model. ASim opens this possibility through FMU export 

the extraction of a virtual AUTOSAR ECU which can 

then be integrated into other simulation platforms 

supporting the FMI-Standard. 

3.4 FMI-based XiL Tool Methodology 

The Modelica-based simulation tool Dymola supports 

the import, export and simulation of FMUs (FMI for 

Model Exchange and Co-Simulation, (Blochwitz, et al. 

2011)). Software- and plant-models can be simulated on 

different abstraction levels, which allows MiL- and SiL-

testing. FMUs can also be exported via the source-code 

generation capabilities. These can then be compiled for 

different HiL platforms. Based on a Battery 

Management Unit it is illustrated, how XiL-tests can be 

performed using the FMI-standard. 

4 Results and Discussion 

4.1 Model-in-the-Loop 

In general, system simulation starts at an earlier stage in 

product development than the software development. In 

this context both battery model and BMS algorithm are 

implemented as models to evaluate system behavior and 

the response algorithm together in a Model-in-the-Loop 

(MiL) simulation. One could argue that the BMS 

algorithms could be coded from the beginning in a 

software development platform for the ECU software 

instead of being implemented in the same simulation 

environment as the model itself. However when taking 

a closer look at the model equations and the required 

solvers, the advantage of this method will become 

obvious: 

Using an acausal object-oriented Modeling language 

like Modelica for modeling physical systems often 

results in a higher-order differential algebraic equation 

system (DAE) with slow dynamics, looking at the 

thermal behavior of the battery case and fast dynamics 

caused by the electrical cell behavior. An implicit solver 

like DASSL is designed to deal with those type of 

systems. As only explicit fixed-step solvers can be used 

in a real-time environment, numerical stability for the 
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sampling rate of the ECU has to be ensured. Testing the 

battery model in the modeling environment with the 

step-size matching the sampling rate reduces the use of 

generally much more expensive real-time hardware.  

In addition by using this approach the functionality of 

the battery model can be verified in parallel to the 

development of the battery management system by the 

functional development engineer resulting in an 

acceleration of the design phase. Moving forward in the 

product development, this procedure allows early 

simulation experiments.  

 

 

Figure 6 Model-in-the-Loop Simulation: SoC (top) and 

power load (bottom) over time in seconds. Negative power 

indicates discharging of the battery module. 

When coupling the Modelica implementation of the SoC 

estimation algorithm with the Battery Library model and 

applying a load cycle and environmental conditions, the 

following results are obtained as shown in Figure 6. The 

load power cycle consists of a discharge phase of 1 kW, 

an immediate recharge of 500 W and a subsequent 

unstressed time period at room temperature. One can 

observe that due to the forced condition offset error of 

+0.5 A on the current sensor, the output of the charging 

status estimation drifts away from the actual SoC up to 

the point where the divergence amounts to over one 

percentage point. A short time period later the power 

load is stopped. The cell voltage is largely no longer 

influenced by the electrochemically induced 

overpotentials but only by the open circuit voltage. The 

corrective algorithm steps into action, looks up the SoC 

value which matches the measured voltage. At second 

250 the reinit command is ignited and replaces the 

calculated SoC value with the one based on the 

measured cell voltage. 

 

 

Figure 7 Model-in-the-Loop Simulation: Different 

Methods of SoC over the course of the battery load cycle 

A comparison in Figure 7 between the SoC values also 

shows at this early software design stage why charging 

status based on the measured cell voltage cannot serve 

as a lone signal source, and why a certain time period 

needs to pass before the correction is applied. 

As the focus is the evaluation of the concept per se, 

the simulation is performed on a high-performing 

workstation with characteristics described in Table 2. 

Table 2 Technical Characteristics of the workstation 

(Intel Corporation 2016)  

Parameter Value 

CPU Type i7-4810MQ 

Instruction Set 64 Bit 

Number of CPU Cores 4 

Base Frequency 2.8 GHz 

L2 Cache size 1 MB 

L3 Cache size 6 MB 

RAM 16 GB 

 

With summoning such computing power while using a 

language which is native for the Dymola solver shows a 

satisfying result for simulation time: The 17671 

equations of the Modelica are integrated in 110 seconds 

while the CPU-time for one GRID interval is 0.365 

milliseconds. 

4.2 Software-in-the-Loop 

Once the algorithms of the BMS have been drafted and 

evaluated during the MiL testing, they are implemented 

as software functions for the ECU. Using the ASim 

plugin of the Autosar Builder, the BMS algorithm can 

be exported as FMU and coupled with the physical 

battery simulation model in Dymola. As the algorithm 

is now in the same format as on the ECU, this stage is 

called Software-in-the-Loop (SiL) simulation. 
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Figure 8 AUTOSAR Software Component of BMS. The 

interfaces for I/O and calibration are marked in blue, the 

internal behavior is marked green (presented in Figure 9). 

In this stage of the process, the stability is first 

verified with the ECU code coupled with the battery 

model in Modelica in Dymola and in a second step as in 

FMU both again imported in Dymola. Taking into 

account the sampling. time of the Hardware-in-the-Loop 

platform, it is to be tested whether coupled entities are 

running stable when being operated with a fixed-step 

solver with a sampling time of one millisecond. 

When implementing the charge status algorithm as 

sketched out in Modelica for the MiL simulation, some 

methods need to be altered in order to ensure a sufficient 

performance on an ECU for implementing the charging 

status estimation algorithm: 

As mentioned before in 2.3, the integration operation 

used in equation (2) would use too much on-board 

memory and is not always available in the ECUs 

instruction set, so it needs to be replaced by a discrete 

sum operation which accumulates the measured current 

with each time step. 

 

Figure 9 AUTOSAR Builder Screenshot of the internal 

behavior of BMS. The supervision algorithm for the 

operational limits is in the upper block FuncBmsControl, 

while the charging status estimation is in bottom block 

FuncBmsSocEstimate. 

 

 

 

As shown in Figure 10, in both cases the system of 

physical model and algorithm works stable with 

reasonable results similar as obtained in the Model-in-

the-Loop simulation in chapter 4.1. 

 

Figure 10 SiL Simulation: Results AUTOSAR-FMU and 

Modelica Model in Dymola.  

In the SiL simulation, the Dymola solver is now slowed 

down by processing the FMU. The integration time 

amounts now to 187 seconds with a 0.618 milliseconds 

per grid intervall. 

4.3 Hardware-in-the-Loop 

In the final stage of the verification of the charging 

status algorithm, the battery model in Modelica and the 

BMS algorithms in AUTOSAR C-code are exported as 

FMUs and executed on a platform which emulates the 

hardware of an ECU of the target system. This stage is 

therefor called Hardware-in-the-loop. At this point, the 

stability of the software in a real-time environment can 

verified. Additionally, hardware specific effects, such as 

the influence of signal propagation delays, limited 

memory, cache and processing speed are playing out as 

well.  

 

Figure 11 Toolchain and process for creating an FMU for 

a HiL platform. 

The battery model FMU and the Autosar FMU are 

both set on the HiL platform. For this purpose, a dSpace 

DS1006 Processor Board is employed as specified in 

Table 3. 

For being executed on the HiL platform, the 

AUTOSAR FMU had to be equipped with operating 

system functionalities such as scheduling. The toolchain 

is visualized in Figure 11 Toolchain and process for 

creating an FMU for a HiL platform.Figure 11. 
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Table 3 Technical Characteristic HiL platform’s CPU 

(dSpace GmbH 2016) 

Parameter Value 

CPU Type Opteron 

Instruction Set 64 Bit 

Number of CPU Cores 4 

Base Frequency 2.6 GHz 

L2 Cache size 1 MB 

L3 Cache size - 

RAM 128 MB 

 

For the virtual validation of the charging estimation 

algorithm, the output signals are compared to the results 

in the MiL simulation in chapter 4.1, as shown in Figure 

12. 

 

The important characteristic for ensuring real-time 

requirements is the turnaround rate in percentage points. 

It states which fraction or multiple of the fixed-step 

sample time interval is consumed for the execution of 

the software code. 

The turnaround time of the combined BMS FMU 

exported from AUTOSAR and battery model FMU 

exported from Dymola on the HiL platform is below 0.4 

milliseconds. With the HiL platform processing 

according to a step time of 1.0 millisecond, the 

turnaround indicating a performance fast enough in 

order to be real-time capable. 

 

Figure 13 HiL Simulation: Turnaround time when 

executing the combined FMUs on the HiL platform. 

 

5 Conclusion and Outlook 

In this paper, it could be shown that the detailed battery 

model based on Dassault Systèmes Battery Library can 

be used for real-time applications as the derived system 

could be solved using a fixed-step integration method 

with a step-size of one millisecond. The BMS 

functionalities developed in AUTOSAR could be 

validated using the battery model as a FMU on the HiL 

platform. 

With the example of the charging status estimation 

algorithm, it has been shown how BMS functions could 

be developed from draft to real-time verification using 

FMI across all stages of the process from MiL over SiL 

up to HiL. 

As outlook from the perspective of the tool chain it 

should be noted that currently the FMU generated from 

the ASim in the AUTOSAR Builder uses the VFB level, 

which doesn’t take the Basic Software or Complex-

Device Drivers (CCDs) into account. In a next step, 

parts of the AUTOSAR Basic Software or CDDs could 

be also modelled and exported with the FMU. This 

would then also allow the consideration of propagation 

delays induced by the Basic Software Layer. 
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