
Validation of a Battery Management System based on AUTOSAR

via FMI on a HiL platform

Leonard Janczyk1 Klemens Esterle1 Stephan Diehl1

Michael Seibt1 Arthur Gauthier2 Viry Guillaume3
1Dassault Systèmes Deutschland GmbH, Munich, Germany

2Dassault Systèmes SE, Plouzané, France
3Dassault Systemes KK, Tokyo, Japan

leonard.janczyk@3ds.com, klemens.esterle@3ds.com, stephan.diehl@3ds.com,

michael.seibt@3ds.com, arthur.gauthier@3ds.com, guillaume.viry@3ds.com

Abstract

In systems which are sourcing their electric energy from

a battery system, such as electric or hybrid electric

vehicles, it is of crucial importance to monitor the

battery’s condition in order to ensure its usability and

longevity. The battery management system (BMS) is a

control unit which supervises the physical variables in

order to assess the condition of the battery.

For the development and testing of control units in

the automotive industry, such as the BMS, the

AUTOSAR standard was introduced, which separates

application code from platform-specific software. By

using AUTOSAR tools and the model exchange via the

Functional Mock-up Interface (FMI), this paper shows

how BMS algorithms can be validated and tested in

several abstraction layers. A sub-function of the

algorithm is tested first in the Modelica-based system

simulation tool Dymola on a personal computer and then

on Hardware-in-the-Loop (HiL) platform which

emulates the hardware of an automotive ECU.

In order to provide realistic inputs of the physical

variables, a battery model in Modelica is built using the

Dymola add-on Battery Library by Dassault Systèmes.

In order to run on the HiL platform the battery model is

implemented such that it is real-time compliant.

For both, the BMS algorithm and the battery model,

it is described along the process which adjustments need

to be made when switching from the simulation

framework to the HiL platform.

Keywords: battery model, battery management system,
AUTOSAR, FMI, ASim, MiL, SiL, HiL, XiL, Co-

Simulation

1 Introduction

Today’s system- and software development teams

work quite isolated from one another. Information

exchange is usually limited on written specifications.
With the example of the battery management system

(BMS) we will show a method in which information can

effectively be exchanged through a model based on the

Functional Mock-up Interface (FMI) as executable

specification. This allows both parties closed-loop

simulation at different stages of the V-Cycle. This way,

software developers can more thoroughly test their

software in a virtual environment. At the same time the

system simulation teams can simulate their whole

system without the need to manually re-implement the

software algorithms of the ECU code.

This paper illustrates how based on FMUs

(Functional Mock-up Units) source code from an

AUTOSAR Battery Management Algorithm can be

simulated on different abstraction levels in order to

verify the algorithm for a failure mode.

At first, in section 2, the physical battery model will

be introduced along with example battery module which

it represents. In a second step, the function and tasks of

a battery management system will be explained. The

focus will shift on the specific algorithm, the charging

status estimation, which is chosen as an example in

order to demonstrate the process for the overall BMS. In

section 3, the AUTOSAR standard and the used tool

chain will be described.

2 Battery Simulation and Battery

Management

Proper battery modelling plays an important role in this

context. On the one hand, the model needs to provide a

proper representation of the inner workings of the

battery so the battery management system receives a

realistic and complete set of signals.

On the other hand, the battery model needs to be

performant enough in order to be compliant with real-

time requirements. In the following two sections, the

battery model will be introduced.

2.1 Battery Simulation Model

The battery pack which is modelled is a 48 V module. It

could be deployed in micro-hybrid systems for the on-

board electric power supply or as part of a traction

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

87
__

mailto:leonard.janczyk@3ds.com
mailto:klemens.esterle@3ds.com
mailto:stephan.diehl@3ds.com
mailto:michael.seibt@3ds.com
mailto:arthur.gauthier@3ds.com
mailto:guillaume.viry@3ds.com

battery system. The module features two parallel-

connected rows of each 13 battery cells in serial electric

connection. Their combined capacity of the 26 battery

cells amounts to 140 Ampere hours.

Table 1. Battery Cell Parameters.

Parameter Unit Value

Nominal Cell Capacity Ah 2.7

Nominal Cell Voltage V 3.6

Maximum Voltage V 4.2

Minimum Voltage V 2.5

Maximum Internal Resistance mΩ 30

Shape - round

The battery module is modelled in Modelica using the

Battery Library from Dassault Systèmes (Gerl, et al.

2014). The physical battery cell models is made up of

the physical domains relevant for the batteries behavior:

electric and thermal.

The main requirement for cell models used in system

simulation is to provide accurate information on the

macroscopic characteristics (e.g. voltage, current and

state of charge) combined with reasonable computation

time. This way, the impedance characteristics of the real

cell are replicated. In many applications models using

an electrical equivalent circuit fulfill these requirements

The voltage of a battery U can be described as the

difference between the open circuit voltage UOCV and a

number of over potentials ηi caused by different

electrochemical effects:

𝑈 = 𝑈𝑂𝐶𝑉 + ∑ 𝜂𝑖 (1)

These over potential can be modelled with equivalent

electric circuit networks. In Figure 2 the voltage

characteristic for the step current discharge of a NiMH

cell is shown. The effect is similar for Lithium-Ion based

cells, such as the ones used for this example.

Figure 1 Voltage characteristic of an electrochemical cell

(NiMH) (Jossen und Weydanz 2006)

The over potential is divided into an ohmic over

potential ηohm, over potential caused by charge transfer

and the electrical double layer ηtrans and over potential

due to diffusion ηdiff. An electrical equivalent circuit
capable of reproducing the voltage characteristic from

Figure 1 is shown in Figure 2, whereas the dynamic

behavior of the over potentials are modelled using RC-

circuits.

Figure 2 Voltages in the equivalent circuit model

In order to determine the influence of varying temperatures

on electrical and aging behavior a thermal model of the cell

and its surrounding environment is required. The heat

inside the cell is generated mainly due to Joule effects,

while the chemical reactions are exothermic or even

endothermic to a minor degree. Thus the generated heat

corresponds to the calculated power losses of the resistors

of the equivalent electric circuit which are therefore

connected to the thermal model.

Figure 3 Representation of the thermal cell model

At the module level, where several cells form an

electric, geometric and thermal entity, the major

advantage in this context is that the battery pack can be

adjusted according to the performance needs. In

practical terms, this results in the question whether the

battery cells are each represented as a Modelica object.

A simplified approach would be modelling just one cell

and scaling up the results to module size by multiplying

the inputs and outputs by the cell numbers in accordance

with their electrical wiring. Also, the thermal

representation of the cells can be adjusted in the number

of discretized elements. In the case of a round cell these

elements are vertically slices which help to calculate the

cell internal flow, as sketched in Figure 3.

Of practical importance is the fact that the Hardware-

in-the-loop platform usually does not feature a data

system. Modelica models in industrial environments

might be parameterized by external parameter files.

When exporting the model for the HIL environment, the

data needs to be placed within the model without any

external dependencies.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

88 DOI
10.3384/ecp1612487

__

2.2 Battery Management System

The battery management system has to process sensor

data and on-board model simulation results in order to

obtain information about the state of the battery. Tasks

of the battery management system (BMS) include the

determination whether the monitored variables are still

within the acceptable limits. Apart from state-of-charge

(SoC) and the state-of-health (SoH) usually the cell

temperature, the cell voltage and the system voltage are

monitored. In case one of these variables appears to be

out of the operational limits, the battery management

system sends a signal to the overall power management

control unit which restricts the power usage of the

consuming components.

Especially the SoC and the SoH are variables, which

need to be monitored to ensure overall system

availability at any given moment (He, Wei and Brian

2010). When the SoC reaches a critically low level in

general in the range of 5-10%, the electrodes of the

battery take severe damage and the battery voltage

might drop below a level at which the battery system

cannot provide the required power anymore. On the

other hand, when the SoC exceeds 100% by too much,

the battery cell stores excessive amounts of energy

beyond a level which it can safely handle. In severe

cases, this might even a cause a “thermal runaway”, a

strong exothermal reaction after which the battery

system is completely dysfunctional.

Therefore in any case the battery management system

should encompass a SoC estimation algorithm. In the

following, the realization of such an algorithm will be

discussed.

2.3 Estimation of Battery State-of-Charge

In a battery simulation model the change of the SoC can

be calculated by balancing the electric charge and

discharge current such as in equation (2). The SoC is by

definition part of the overall amount of electric charge

available for discharge with Cn being the nominal

battery capacity in Ampere seconds (He, Wei and Brian

2010).

∆𝑆𝑜𝐶 =
∫ 𝐼 𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡0

𝐶𝑛
 (2)

 However the SoC determination is more complex when

being implemented on a battery ECU.

First, integration is a mathematical operation which

requires more resources in terms of on-board memory

and computational time compared to other mathematical

operations.

Secondly, current sensors do not necessarily deliver

a constantly precise measurement output. Calibration

errors result in constant drifts of the recorded battery

current. This drift might not significantly influence the

quality of the estimation during a short period such as a

short inner city ride. However during longer trips such

as an inter-city highway tour the drift in the charging

status estimation might accumulate to a point where the

battery is depleted while the battery management system

assumes the charging status as being sufficient.

In order to ameliorate the quality of the SoC

estimation, corrective back-up algorithms need to be

included. A viable alternative is measuring the voltage

of the battery when the battery is in electrochemical

equilibrium, meaning that no electric load or charging is

applied and excitation of previous electric load has

faded. In this state the over potentials are negligible

leaving the open circuit voltage as the dominant factor

determining the cell voltage:

As a matter of fact, the open circuit voltage is usually

measured during the initial rating of new cell type and

also typically used for the parameterization of

equivalent circuit cell models as shown in Figure 2.

Implementing the relationships presented in

equations (2) and (3) in Modelica code could be drafted

as followed:

der(SoC_count) * C_n = current + error;

SoC_est = SoC_count;

when zeroCurrentTimer > fadingTime then

 reinit(SoC_est, SoC_ocv);

end when;

In the first code line the charge counter (SoC_count) is

implemented after the fashion of equation (2) with the

error signal applied on the current signal. The output

SoC_est is directly loaded with the result of the

integration over the current and standardization with the

nominal capacity C_n.

The when-clause representing equation (3) becomes

active at the time point at which the current has been

close to zero for a time period, implementation shown

in Figure 4, with the influence of charge transfer over

potential has most likely faded, in this case more than

the time constant fadingTime. The calculated SoC will

be replaced then with a charging status which has been

extracted from a look-up-table describing SoC over

OCV.

Figure 4 Counting time with current close to zero

During the verification phase of the system

engineering process, the battery management system

needs to be verified if it lives up to battery safety

requirements, i.e. if the variables describing the battery

state are recorded properly, the operational limits are

correctly determined and their violations duly signaled.
 In context of this paper, the ability of the charging

status estimation algorithm to correct an erroneous

tableOCV

NoCurrentTimeCounter

0.1

<

absoluteCurrent

abs

socReset

in_current

in_voltage

soc_estimation

𝑆𝑜𝐶 = 𝑓(𝑈) = 𝑓(𝑈𝑂𝐶𝑉) for 𝜂𝑖 → 0 (3)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

89
__

current measurement signal will be verified. For

demonstration purposes the implementation is limited to

charge counter and correction by voltage comparison as

laid down in this chapter. A typical question answered

during this process might be whether an estimation

correction via cell voltage is sufficient to ensure that the

battery management system and the driver are provided

with the correct battery charging status.

3 Virtual Testing of AUTOSAR compliant

controller software using FMI

3.1 What is AUTOSAR?

AUTOSAR (AUTomotive Open System ARchitecture)

is a well-accepted standard for developing software for

automotive electronic control units (ECU), as

documented by (Bertsch, et al. 2015) for Bosch ECUs.

It defines a layered architecture, separating hardware,

application software and basic software through

standardized interfaces.

Figure 5 AUTOSAR Layered Architecture

As shown in Figure 5 the interface between

application software components and the interfaces

between application software and basic software (BSW)

is handled through the runtime environment (RTE),

which implements different types of communication

mechanisms (AUTOSAR 2016).

3.2 AUTOSAR Unit Test

One essential part in the AUTOSAR software

development is the testing of individual software

components and the whole software architecture (top

level composition). Ideally those tests should be

executable without any hardware-dependencies to

enable testing as soon as possible in the development

cycle. AUTOSAR addresses this through the Virtual

Function Bus (VFB) Abstraction Level. The

AUTOSAR test environment ASim from Dassault

Systèmes is also applying this concept taking a real

AUTOSAR compliant operating system (OS) and RTE

into account. This allows testing of software

components on a very granular level, also considering

effects through the OS, e.g. scheduling, or through the

RTE, e.g. synchronize queued and non-queued

communication. Even fixed-point arithmetic is taken

into account using AUTOSAR datatypes.

3.3 FMI-based Export of virtual AUTOSAR

ECUs

Unit tests are in general open-loop tests, which means

the user has to define sufficient and reasonable test-

vectors and test-constraints, which is often quiet

challenging and time-consuming. Hence integrating the

software “model” in a virtual environment which closes

the loop through a plant-model would make the

conditioning of many of the software component-ports

obsolete, as they will be fed directly through the

connected plant model. In addition to that timing effects

and delays could also be taken into account by a plant

model. ASim opens this possibility through FMU export

the extraction of a virtual AUTOSAR ECU which can

then be integrated into other simulation platforms

supporting the FMI-Standard.

3.4 FMI-based XiL Tool Methodology

The Modelica-based simulation tool Dymola supports

the import, export and simulation of FMUs (FMI for

Model Exchange and Co-Simulation, (Blochwitz, et al.

2011)). Software- and plant-models can be simulated on

different abstraction levels, which allows MiL- and SiL-

testing. FMUs can also be exported via the source-code

generation capabilities. These can then be compiled for

different HiL platforms. Based on a Battery

Management Unit it is illustrated, how XiL-tests can be

performed using the FMI-standard.

4 Results and Discussion

4.1 Model-in-the-Loop

In general, system simulation starts at an earlier stage in

product development than the software development. In

this context both battery model and BMS algorithm are

implemented as models to evaluate system behavior and

the response algorithm together in a Model-in-the-Loop

(MiL) simulation. One could argue that the BMS

algorithms could be coded from the beginning in a

software development platform for the ECU software

instead of being implemented in the same simulation

environment as the model itself. However when taking

a closer look at the model equations and the required

solvers, the advantage of this method will become

obvious:

Using an acausal object-oriented Modeling language

like Modelica for modeling physical systems often

results in a higher-order differential algebraic equation

system (DAE) with slow dynamics, looking at the

thermal behavior of the battery case and fast dynamics

caused by the electrical cell behavior. An implicit solver

like DASSL is designed to deal with those type of

systems. As only explicit fixed-step solvers can be used

in a real-time environment, numerical stability for the

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

90 DOI
10.3384/ecp1612487

__

sampling rate of the ECU has to be ensured. Testing the

battery model in the modeling environment with the

step-size matching the sampling rate reduces the use of

generally much more expensive real-time hardware.

In addition by using this approach the functionality of

the battery model can be verified in parallel to the

development of the battery management system by the

functional development engineer resulting in an

acceleration of the design phase. Moving forward in the

product development, this procedure allows early

simulation experiments.

Figure 6 Model-in-the-Loop Simulation: SoC (top) and

power load (bottom) over time in seconds. Negative power

indicates discharging of the battery module.

When coupling the Modelica implementation of the SoC

estimation algorithm with the Battery Library model and

applying a load cycle and environmental conditions, the

following results are obtained as shown in Figure 6. The

load power cycle consists of a discharge phase of 1 kW,

an immediate recharge of 500 W and a subsequent

unstressed time period at room temperature. One can

observe that due to the forced condition offset error of

+0.5 A on the current sensor, the output of the charging

status estimation drifts away from the actual SoC up to

the point where the divergence amounts to over one

percentage point. A short time period later the power

load is stopped. The cell voltage is largely no longer

influenced by the electrochemically induced

overpotentials but only by the open circuit voltage. The

corrective algorithm steps into action, looks up the SoC

value which matches the measured voltage. At second

250 the reinit command is ignited and replaces the

calculated SoC value with the one based on the

measured cell voltage.

Figure 7 Model-in-the-Loop Simulation: Different

Methods of SoC over the course of the battery load cycle

A comparison in Figure 7 between the SoC values also

shows at this early software design stage why charging

status based on the measured cell voltage cannot serve

as a lone signal source, and why a certain time period

needs to pass before the correction is applied.

As the focus is the evaluation of the concept per se,

the simulation is performed on a high-performing

workstation with characteristics described in Table 2.

Table 2 Technical Characteristics of the workstation

(Intel Corporation 2016)

Parameter Value

CPU Type i7-4810MQ

Instruction Set 64 Bit

Number of CPU Cores 4

Base Frequency 2.8 GHz

L2 Cache size 1 MB

L3 Cache size 6 MB

RAM 16 GB

With summoning such computing power while using a

language which is native for the Dymola solver shows a

satisfying result for simulation time: The 17671

equations of the Modelica are integrated in 110 seconds

while the CPU-time for one GRID interval is 0.365

milliseconds.

4.2 Software-in-the-Loop

Once the algorithms of the BMS have been drafted and

evaluated during the MiL testing, they are implemented

as software functions for the ECU. Using the ASim

plugin of the Autosar Builder, the BMS algorithm can

be exported as FMU and coupled with the physical

battery simulation model in Dymola. As the algorithm

is now in the same format as on the ECU, this stage is

called Software-in-the-Loop (SiL) simulation.

0 50 100 150 200 250 300
0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

time [s]

SoC (real)
SoC (estimated)

0 50 100 150 200 250 300
-1200
-1000

-800
-600
-400
-200

0
200
400
600

time [s]

Battery Load [W]

0 50 100 150 200 250 300
0.70

0.75

0.80

0.85

0.90

0.95

1.00

time [s]

SoC (real)
SoC (estimated)

SoC (voltage-based)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

91
__

Figure 8 AUTOSAR Software Component of BMS. The

interfaces for I/O and calibration are marked in blue, the

internal behavior is marked green (presented in Figure 9).

In this stage of the process, the stability is first

verified with the ECU code coupled with the battery

model in Modelica in Dymola and in a second step as in

FMU both again imported in Dymola. Taking into

account the sampling. time of the Hardware-in-the-Loop

platform, it is to be tested whether coupled entities are

running stable when being operated with a fixed-step

solver with a sampling time of one millisecond.

When implementing the charge status algorithm as

sketched out in Modelica for the MiL simulation, some

methods need to be altered in order to ensure a sufficient

performance on an ECU for implementing the charging

status estimation algorithm:

As mentioned before in 2.3, the integration operation

used in equation (2) would use too much on-board

memory and is not always available in the ECUs

instruction set, so it needs to be replaced by a discrete

sum operation which accumulates the measured current

with each time step.

Figure 9 AUTOSAR Builder Screenshot of the internal

behavior of BMS. The supervision algorithm for the

operational limits is in the upper block FuncBmsControl,

while the charging status estimation is in bottom block

FuncBmsSocEstimate.

As shown in Figure 10, in both cases the system of

physical model and algorithm works stable with

reasonable results similar as obtained in the Model-in-

the-Loop simulation in chapter 4.1.

Figure 10 SiL Simulation: Results AUTOSAR-FMU and

Modelica Model in Dymola.

In the SiL simulation, the Dymola solver is now slowed

down by processing the FMU. The integration time

amounts now to 187 seconds with a 0.618 milliseconds

per grid intervall.

4.3 Hardware-in-the-Loop

In the final stage of the verification of the charging

status algorithm, the battery model in Modelica and the

BMS algorithms in AUTOSAR C-code are exported as

FMUs and executed on a platform which emulates the

hardware of an ECU of the target system. This stage is

therefor called Hardware-in-the-loop. At this point, the

stability of the software in a real-time environment can

verified. Additionally, hardware specific effects, such as

the influence of signal propagation delays, limited

memory, cache and processing speed are playing out as

well.

Figure 11 Toolchain and process for creating an FMU for

a HiL platform.

The battery model FMU and the Autosar FMU are

both set on the HiL platform. For this purpose, a dSpace

DS1006 Processor Board is employed as specified in

Table 3.

For being executed on the HiL platform, the

AUTOSAR FMU had to be equipped with operating

system functionalities such as scheduling. The toolchain

is visualized in Figure 11 Toolchain and process for

creating an FMU for a HiL platform.Figure 11.

0 50 100 150 200 250 300
0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810

time [s]

SOC (estimated)
SOC (real)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

92 DOI
10.3384/ecp1612487

__

Table 3 Technical Characteristic HiL platform’s CPU

(dSpace GmbH 2016)

Parameter Value

CPU Type Opteron

Instruction Set 64 Bit

Number of CPU Cores 4

Base Frequency 2.6 GHz

L2 Cache size 1 MB

L3 Cache size -

RAM 128 MB

For the virtual validation of the charging estimation

algorithm, the output signals are compared to the results

in the MiL simulation in chapter 4.1, as shown in Figure

12.

The important characteristic for ensuring real-time

requirements is the turnaround rate in percentage points.

It states which fraction or multiple of the fixed-step

sample time interval is consumed for the execution of

the software code.

The turnaround time of the combined BMS FMU

exported from AUTOSAR and battery model FMU

exported from Dymola on the HiL platform is below 0.4

milliseconds. With the HiL platform processing

according to a step time of 1.0 millisecond, the

turnaround indicating a performance fast enough in

order to be real-time capable.

Figure 13 HiL Simulation: Turnaround time when

executing the combined FMUs on the HiL platform.

5 Conclusion and Outlook

In this paper, it could be shown that the detailed battery

model based on Dassault Systèmes Battery Library can

be used for real-time applications as the derived system

could be solved using a fixed-step integration method

with a step-size of one millisecond. The BMS

functionalities developed in AUTOSAR could be

validated using the battery model as a FMU on the HiL

platform.

With the example of the charging status estimation

algorithm, it has been shown how BMS functions could

be developed from draft to real-time verification using

FMI across all stages of the process from MiL over SiL

up to HiL.

As outlook from the perspective of the tool chain it

should be noted that currently the FMU generated from

the ASim in the AUTOSAR Builder uses the VFB level,

which doesn’t take the Basic Software or Complex-

Device Drivers (CCDs) into account. In a next step,

parts of the AUTOSAR Basic Software or CDDs could

be also modelled and exported with the FMU. This

would then also allow the consideration of propagation

delays induced by the Basic Software Layer.

Acknowledgements

We would like to thank Dan Henriksson from Dassault

Systèmes AB in Lund, Sweden, for his support on the

HiL platform.

References

AUTOSAR. 2016. Technical Overview.

February 06.

http://www.autosar.org/about/technical-

overview/.

Bertsch, Christian, Jonathan Neudorfer, Elmar

Ahle, Siva Sankar Arumugham,

Karthikeyan Ramachandran, and

Andreas Thuy. 2015. "FMI for physical

models on automotive embedded

targets." 11th International Modelica

Conference. Versailles, France. 43-50.

doi:10.3384/ecp1511843.

Blochwitz, Otter, Bausch, Clauß, Elmqvist,

Junghans, Mauss, et al. 2011. "The

Functional Mockup Interface for Tool

independent Exchange of Simulation

Models." 8th International Modelica

Conference. Dresden, Germany.

dSpace GmbH. 2016. "DS1006 Processor

Board." Technical Details. February 06.

http://www.dspace.com/en/pub/home/pr

Figure 12 HiL Simulation: Results of the combined BMS

FMU exported from AUTOSAR and battery model FMU

exported from Dymola on the HiL platform.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

93
__

oducts/hw/modular_hardware_introducti

on/processor_boards/ds1006.cfm.

Gerl, Johannes, Leonard Janczyk, Imke Dr

Krüger, and Nils Modrow. 2014. "A

Modelica Based Lithium Ion Battery

Model." 10th International Modelica

Conference. Lund, Sweden: Linköping

University Electronic Press. 335-341.

He, Yongsheng, Liu Wei, and Koch J. Brian.

2010. "Battery algorithm verfication and

development using hardware-in-the-loop

testing." Journal of Power Sources

(195): 2969-2974.

doi:10.1016/j.powersour.2009.11.036.

Intel Corporation. 2016. "Intel® Core™ i7-

4810MQ Processor." Specifications.

February 06.

http://ark.intel.com/products/78937/Intel

-Core-i7-4810MQ-Processor-6M-Cache-

up-to-3_80-GHz.

Jossen, Andreas, and Wolfgang Weydanz. 2006.

Moderne Akkumulatoren richtig

einsetzen. Reichhardt Verlag.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

94 DOI
10.3384/ecp1612487

__

