A Use Case for Linguistic Research on Dutch with CLARIN

Jan Odijk
Utrecht University, the Netherlands
j.odijk@uu.nl

Abstract

In this paper I describe a particular Dutch linguistic problem and I show that it can be addressed in a better, more efficient, and more user-friendly manner than ever before, thanks to CLARIN. Most of the data that are used in the investigation could only be used by technical experts a few years ago but are now available to all linguists through a variety of easily accessible web applications developed in CLARIN with interfaces dedicated to their intended users. However, it also shows that still a lot of further extensions and improvements can and must be made. Fortunately, most of these are being implemented in currently running projects.

1 Introduction

In this paper I describe a particular Dutch linguistic problem and I show that it can be addressed in a better, more efficient, and more user-friendly manner than ever before, thanks to CLARIN. Most of the data that are used in the investigation could only be used by technical experts a few years ago but are now available to all linguists through a variety of easily accessible web applications developed in CLARIN with interfaces dedicated to their intended users, linguists.1

The relevant problem was first defined in unpublished work (Odijk, 2011). This report also specified what kinds of search actions would be needed to address this problem. At the time, almost none of these search actions were possible, or only with great difficulty, and they required expert knowledge on the relevant resources and programming or scripting skills. In 2014, (Odijk, 2014a) showed in a lecture that many of the desired search actions had become possible, in a simple manner, and through applications with interfaces dedicated to the targeted users, linguists. At the same time, it was observed that not everything was possible yet in an easy way, and new requests arose by using the relevant applications. Since neither (Odijk, 2011) nor (Odijk, 2014a) was published, I report on their findings in this paper, and I will show new functionality created to accommodate the newly arisen needs. This paper thus serves as an example of a report on a research pilot: a project to use functionality offered by the infrastructure with the twin goals of furthering the research but also of identifying novel functionality that the infrastructure should offer to be able to further the research.

I introduce the basic facts to be investigated in section 2, make an assessment of these facts in section 3, and list a few of the many research questions that these facts raise in section 4. I then show that a variety of web applications developed in CLARIN for searching in linguistic resources (lexicons and corpora), for enriching corpora and for analysing search results make research into this problem possible that is based on more data, which are found faster and easier than was possible ever before. The web applications considered are OpenSONAR (section 5.1), the LASSY Word Relations Search engine (section 5.2), GRETEL (section 5.3), CORNETTO (section 5.4), COAVA (section 5.5), and PaQU (section 5.6). All applications mentioned are available in the CLARIN infrastructure and can be accessed via the CLARIN-NL portal.2 I summarize the conclusions in section 6.

1This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://creativecommons.org/licenses/by/4.0/
2CLARIN as a whole of course targets all humanities researchers, but the applications discussed in this paper target linguists.

http://portal.clarin.nl/
This paper shows that great progress has been made since 2011 in the number of applications offered in the CLARIN infrastructure, and it shows a significant increase in the functionality that they offer, but it also identifies functionality that was desired from the start as well as novel desired functionality that have not been implemented yet. Section 7 describes future work that can and must be done to address the research questions.

2 Basic facts

In this section I introduce the basic facts related to the problem that I want to investigate. It is a specific case of the problem of the acquisition of lexical properties by first language (L1) learners.

The three Dutch words heel, erg and zeer are near-synonyms meaning ‘very’, i.e. (stated informally) they modify a word that expresses a gradable property or state and specify that its modifiee has the property or state it expresses to a high degree. Of these, heel can modify adjectival (A) predicates only, while erg and zeer can modify not only adjectival, but also verbal (V) and adpositional (P) predicates. This is illustrated in example (1)

(1) a. Hij is daar heel / erg / zeer blij over
 ‘He is very happy about that’

 b. Hij is daar *heel / erg / zeer in zijn sas mee
 ‘He is very happy about that’

 c. Dat verbaast mij *heel / erg / zeer
 ‘That surprises me very much’

In (1a) the adjectival predicate blij ‘glad’ can be modified by each of the three words. In (1b) the (idiomatic) prepositional predicate in zijn sas can be modified by zeer and erg but not by heel. The same holds in (1c) for the verbal predicate verbaast.\(^3\) In English, something similar holds for the word very: it can only modify adjectival predicates. For verbal and prepositional predicates one cannot use very but one can use the expression very much instead:

(2) a. He is very happy about it

 b. He is very *(much) in love with her

 c. It surprised me very *(much)

There is a lot more to say about these data, and there are more relevant data to consider and some qualifications to be made. Some of these will be discussed below. I refer to (Odijk, 2011), (Odijk, 2014a) and (Odijk, 2015a) for further details.

3 Assessment of the facts

The distinctions I illustrated in the preceding section are purely syntactic in nature. The words heel, zeer and erg are synonyms or near-synonyms, and the expressions blij and in zijn sas are near-synonyms as well, which makes it unlikely that the difference can be derived from semantic properties.\(^4\) It is also not in any way obvious how the differences could follow from universal principles of language or language acquisition.

There are other differences among the words heel, erg and zeer. (Odijk, 2015a, section 4) describes these differences. If any of these differences is somehow related to the difference under investigation then it must be a difference in which heel opposes the other two words erg and zeer. However, (Odijk, 2015a, section 4) shows that this is not the case for any of these differences.

\(^3\)or maybe the whole VP verbaast mij.

\(^4\)See (Odijk, 2011) for more examples supporting this conclusion.
I conclude that the differences in modification potential of the words heel, erg and zeer cannot be derived from other facts and must be acquired by learners of Dutch.

4 Research questions

The simple facts described in the preceding sections are interesting for a number of reasons. First, they constitute a kind of minimal pair in first language acquisition: though heel on the one hand and zeer, erg on the other are (near-)synonyms, their syntactic modification potential differs. They also illustrate acquisition of a negative property: L1 learners must learn that heel can NOT modify verbal or prepositional predicates. These facts therefore raise many research question related to language acquisition. Examples of these research questions are:

(3) a. How can children acquire the fact that erg and zeer can modify A, V and P predicates (in L1 acquisition)?
b. How can children acquire the fact that heel can modify A but can NOT modify V and P predicates (in L1 acquisition)?
c. What kind of evidence do children have access to for acquiring such properties?
d. Is there a relation with the time of acquisition?
e. Is there a role for indirect negative evidence (i.e., absence of evidence interpreted as evidence for absence)?

Obviously, this paper cannot address all these questions. The main purpose of this paper is to show that, by using CLARIN, research questions such as the ones in (3) can be addressed in a better and more efficient manner than without CLARIN. In this paper, I will focus on research question (3c)

In order to address these research questions, data are needed that can provide evidence on these questions. Fortunately, many such data exist. We will mention several relevant sets in the coming sections. However, though most of these data existed before CLARIN, they were hardly usable for supporting linguistic research at the time.

5 Search and Analysis with CLARIN web applications

I described the problem of section 2 in (Odijk, 2011), as an example user scenario for search applications to be developed in CLARIN. At the time, many of the search actions I would like to be able to carry out were not possible yet, or could only be carried out with great difficulty and only with expert knowledge of the relevant data sets and query options. Some queries suggested there involve search in metadata, an area where much progress has been made since then, though some of the specific queries suggested are still not possible (and there are many other problems with searching for data via metadata through the Virtual Language Observatory5, as described in (Odijk, 2014b)). We will not discuss this here anymore. Other suggested queries involve search in the data themselves. I list most of them here, together with an indication where they will be dealt with in this paper:

• search for synonyms, hyponyms, and co-hyponyms for the words heel, erg and zeer (discussed in section 5.4)
• search for bi-grams in corpora with linguistic annotations on tokens (discussed in section 5.1)
• search in the Dutch CHILDES corpora, in the children’s speech, and the speech by adults addressing children (discussed in section 5.5)
• search in treebanks (discussed in sections 5.2 and 5.3)
• search in CHILDES corpora enriched with syntactic structures / PoS-tags (discussed in section 5.6)

5https://vlo.clarin.eu/?0
In March 2014, I investigated what was possible at the time, and reported on that in a lecture (Odijk, 2014a). Some crucial functionality which was still lacking was identified, which led to plans for the creation of two new applications, PaQu (see section 5.6) on which (Odijk, 2015a) reported extensively, and AutoSearch (briefly discussed in section 5.6). The easiest way to get a first overview of what kind of applications developed in CLARIN-NL can be used for humanities research is via the CLARIN-NL portal⁶, which allows faceted search by research domain, tool task, language and other facets. For a more detailed assessment of the suitability of a certain application for a specific research question, the application has to be studied in more detail through its documentation or via a tutorial (see the CLARIN-NL portal’s Educational Packages Section for available educational material.)

Several suggested queries can be now carried out, but many are not yet possible. We will take up this issue in section 7.

5.1 OpenSONAR

OpenSONAR⁷ is a web application that enables search in and analysis of the large scale Dutch reference corpus SONAR⁸ and SONAR New Media⁹ (Oostdijk et al., 2013). In part because of the size of the corpus (500 million tokens¹⁰), accessing the information contained in the data set has proven to be difficult. OpenSONaR facilitates the use of the SoNaR corpus by providing a user-friendly online web interface tuned to the intended users, linguists. No software or data need to be downloaded, no programs installed, and no programming knowledge is required.

SONAR is a reference corpus of contemporary written Dutch for use in different types of linguistic (incl. lexicographic) and HLT research and the development of applications. It was created in the STEVIN (Spyns and Odijk, 2013) funded SONAR project (2008-2011) that built on the results obtained in the earlier STEVIN projects D-Coi and Corea.

SONAR contains over 500 million tokens of full texts from a wide variety of text types from conventional media. SONAR New Media contains texts from the social media (Twitter, Chat, SMS) with about 35 million tokens. These corpora have been tokenized, tagged for part of speech and lemmatized, and Named Entities have been labelled. All annotations were produced automatically, no manual verification took place.

OpenSONAR is an online application for exploration of and searching in the SoNaR corpus. In the Exploration interface one can look into the corpus distributions, request statistics from sub-corpora, retrieve n-grams from sub-corpora and search for specific documents using the SoNaR document ID. In the Search interface one can use any of four different search strategies: simple, extended, advanced or expert.

OpenSONAR makes it easy to search for two adjacent tokens (bigrams) via their properties lemma, word, and part-of-speech (pos). For example, one can search for a token with lemma=”heel” immediately followed by a token with pos=”preposition”, or the same with lemma=”zeer” instead of ”heel”, or for a token with lemma=”heel” immediately followed by a token with pos not equal to adjective.

Adjacency of tokens does of course not imply a grammatical relation of modification. Therefore the search results will contain many false hits. Nevertheless the search results are useful, in particular because the search results can be sorted and grouped in various ways, which reduces the effort of separating correct from false hits.

Analysis of the search results yield several new results. Firstly, it turns out that heel can modify certain PPs, in particular certain adverbial PPs, such as

(4) a. heel in het begin
 very in the beginning

¹⁰I use the term token in this paper as a term for occurrence of an inflected word form.
These examples do not undermine our earlier claims on the data, but do add a new set of data that clearly should be incorporated in the analysis.

Secondly, heel does indeed also occur with predicative PPs in SONAR as in (5):

(5)
 a. heel buiten zijn verwachting
 very outside his expectation
 completely unexpectedly
 b. heel in de mode
 very in the fashion
 completely fashionable
 c. heel in de vakantiestemming
 very in the holiday-mood
 completely in the mood for a holiday
 d. heel in het zwart
 very in the black
 completely without paying taxes
 e. heel in orde
 very in order
 completely OK

I find all examples of (5) ill-formed. The mere occurrence of such examples in a corpus need not be significant, since corpora contain examples of actual language use, which may contain errors. However, their number is sufficiently large to suspect that we are dealing here with a genuine instance of variation in the Dutch language. Though I glossed the word heel here as very, I think that people who use such expressions intend heel here in the sense of geheel or helemaal (‘completely’), and the translations I provided in (5) reflect this. Obviously, one would like to investigate further properties of these utterances (e.g., genres that they occur in, origin of the utterer (Netherlands or Flanders), his/her gender and age etc.), but that is not so easy with the current version of OpenSONAR: The search output contains many false hits. Though one can cross-classify all search results with metadata information, one cannot mark a subset of search results for such a cross classification with metadata. An extension of OpenSONAR is required for this (see section 7).
5.2 LASSY Word Relations Search Engine

As mentioned above, adjacency of two words does not imply that these two words entertain a grammatical dependency. What one would actually want is a database in which grammatical dependencies between words are represented and are searchable. This information is available in treebanks, but the databases that contain this information are much smaller than SONAR. The LASSY Word relations Search Engine (LWRS)\(^1\) (Tjong Kim Sang et al., 2010) enables one to search for such grammatical dependencies in certain treebanks. Actually, LWRS already existed when I described the linguistic problem for the first time. It was originally not developed in the CLARIN-NL project, but clearly inspired by the desire in CLARIN to provide web applications for search in corpora with interfaces that are tuned to linguists as users.

LWRS has a dedicated interface that enables a user to specify a query that searches for utterances containing two words entertaining a grammatical dependency by providing the properties of these two words (lemma, word form, part of speech) and the label of their grammatical dependency (e.g. subject, object, etc.).\(^2\) This makes it easy to search for utterances that e.g. contain a word with lemma *heel* that is a modifier of a word with *verb*, and many similar examples.

Such queries carried out on the 1 million token manually verified written language treebank LASSY-Small Corpus\(^3\) (van Noord et al., 2013) yield the following results:

- LASSY-SMALL contains examples where *heel* appears to modify a verb, but in all cases these are adjectives that happen to be identical in form to the participles of verbs. In such cases, LASSY, by convention, always analyzes these as verbs.
- LASSY-SMALL incorrectly analyzes *heel* in *heel open staan for* lit. very open stand for, ‘be very receptive for’ as modifying the verb *staan*, while in fact it modifies the adjective *open*.
- LASSY-SMALL contains examples where *erg* or *zeer* modifies verbs. In most cases, this also involves adjectives that happen to be identical to participles of verbs, but there are also several cases of modification of a real verb.

In short, these findings confirm our initial assumptions of the facts, which are now backed by a large amount of empirical material.

5.3 GRETEL

GrETEL is web application that enables a user to provide an example sentence of a construction that he/she is interested in and to specify which aspects of this example sentence are crucial for identifying the construction. The system then automatically generates a query and applies it to a treebank (LASSY-SMALL or the Spoken Dutch Corpus treebank, each manually verified and containing 1 million tokens).\(^4\) The query is generated by parsing the example sentence with the same parser that was used in the creation of the treebank (Alpino\(^5\) (van der Beek et al., 2002)), thus increasing the chances of providing a query that finds instances of the construction searched for. The GrETEL application has been described in detail elsewhere (Augustinus et al., 2012; Vandeghinste and Augustinus, 2014).

Applying it to the Spoken Dutch Corpus (Oostdijk et al., 2002) yields the following results:\(^6\)

- The word *heel* occurs as a modifier of a verb in 61 cases. However,
– in 53 of these, the word is actually an adjective that happens to be identical to the participle of a verb (as above in LASSY-Small);
– in 3 cases heel actually modifies a substantivised infinitive (and, as as modifier of a noun, has the meaning 'whole');
– in 2 cases I find the sentence ill-formed. Maybe heel is intended here as 'completely'. Both utterances are of Flemish origin;
– in 3 cases the analysis in the treebank is incorrect;

• The word heel occurs as a modifier of a preposition in 6 cases:
 – in 4 cases these are adverbial PPs that we also encountered with OpenSONAR (see section 5.1, the examples in (5);
 – in one case I find the sentence ill-formed. Maybe heel is intended here as 'completely'. The utterance is again of Flemish origin;
 – in one case heel modifies the expression voor de hand liggen lit. in-front-of the hand lie, 'be obvious'. I find the example marginal, except when the verb in the expression is a present participle. In that case, however, we are arguably dealing with an adjectival expression.¹⁷

• The word heel occurs as a modifier of an MWU (multi-word unit). These MWUs have no other part of speech code, but further analysis shows that they involve
 – adjectives in 3 cases¹⁸;
 – nouns in 4 cases (e.g. heel Den Haag, lit. whole the Hague) and heel means 'whole' in these cases;
 – adverbial prepositional phrases in 2 cases (heel af en toe, lit. very off and to, 'very infrequently')
 – incorrect analyses in 3 cases

In summary, these facts are consistent with our findings on the basis of OpenSONAR and with our initial assumptions on the data, and they suggest that the use of heel as a modifier of predicative PPs might be possible for certain Flemish speakers.

5.4 CORNETTO

(Odijk, 2011) suggested that analysing the modification potential of (near-)synonyms, co-hyponyms, and hyponyms of the words heel, erg and zeer may contribute to an understanding of the problem at hand. At the time, searching for synonyms or near-synonyms, let alone for words with other semantic relations for a given word, was very difficult. Obviously, one would want to use the Cornetto database for this purpose.

The Cornetto database is a lexical resource for the Dutch language which combines two resources with different semantic organisations: the Dutch Wordnet with its synset organisation and the Dutch Reference Lexicon which includes definitions, usage constraints, selectional restrictions, syntactic behaviours, illustrative contexts, etc. The Cornetto database contains over 92K lemmas and almost 120K word meanings.

At the time, an interface to Cornetto existed, but it often did not work, required an old version of the Firefox browser¹⁹, and the interface itself was not well-designed. Searching for semantically related

¹⁷For example, it can be used predicatively and be modified by te 'too'

(1) Dat is te voor de hand liggend
That is too in-front-of the hand lying
That is too obvious

which is not possible for verbal present participles.

¹⁸In heel ver weg, lit. very far away, ver weg is analyzed as a MWU, though clearly here heel modifies the adjective ver, and together they modify the word weg.

¹⁹Arguably, this is a defect of Firefox. Producing upgrades that are not backwards compatible should be banned!
words has become easy with CLARIN, since a web application with a dedicated interface to the Cornetto database has been created.

The Cornetto web application\(^\text{20}\) offers 3 different interfaces: Simple search for lexical entries\(^\text{21}\), Advanced search for lexical entries\(^\text{22}\), and Search for synsets\(^\text{23}\).

Searching for (near-)synonyms of *zeer* in the relevant sense (Cornetto sense identifier *zeer-adv-3*) yields the following set of sense identifiers from Cornetto:\(^\text{24}\)

The word *heel*, in one of its senses (with Cornetto sense identifier *heel-adv-5*) is included here.

Similarly, the near-synonyms of *erg*, in the relevant sense (with Cornetto sense identifier *erg-a-2*) are listed in (7):

\[(7)\] erg-a-2, ernstig-a-2, fel-a-1, hard-a-4, hevig-a-1, krachtig-a-3, sterk-a-4, stevig-a-2, straf-a-2, vet-a-5, vurig-a-1, zwaar-a-3

And the hyponyms of these senses can be retrieved easily as well. Cornetto thus offers, in a very simple way, a list of word senses (and therefore words) that are semantically related to the word sense queried.

Now one would like to use the corpus search interfaces described above to investigate the modification potential of the words associated with these meanings. This is possible, but currently requires making a separate query for each of the words associated with the meanings listed above (some 70 words). One can also write a single query with each of the relevant words as an alternative, but the analysis options of the current corpus search and analysis applications do not enable e.g. a grouping by the modifier lemma and the modificatie part of speech. For example OpenSONAR’s analysis options enable one to group the results by the part of speech of the immediately adjacent word but do not allow sorting the results by the lemmas searched for at the same time. An alternative approach, suggested by (Odijk, 2011), is parameterized search, but this has not yet been implemented in any of the search applications (see section 7).

The analysis of the modification potential of these words is therefore work for the future. It is already clear that many of the synonyms are untypical for children and are probably acquired rather late. It is therefore interesting to investigate whether there is a relation between the timing of acquisition of these words and their modification potential.

5.5 COAVA

Since the problem we are interested in concerns (first) language acquisition, it is obvious that data that directly concern language acquisition must be taken into account. The most important data set for language acquisition is the CHILDES data set.

\[^{20}\]http://portal.clarin.nl/node/1944
\[^{21}\]http://cornetto.clarin.inl.nl/simple_search.xql
\[^{22}\]http://cornetto.clarin.inl.nl/advanced_search.xql
\[^{23}\]http://cornetto.clarin.inl.nl/wordnet.xql
\[^{24}\]It is pretty difficult and often quite arbitrary to add translations to these words, and they are not needed for understanding the current paper, so I left them out.
The Dutch CHILDES corpora25 are accessible via the CLARIN Virtual Language Observatory (VLO)26 or directly via Talkbank27 and contain relevant material to investigate the research questions formulated in section 4. They contain transcriptions of dialogues between children acquiring Dutch on the one hand, and adults (mostly parents) and in some cases other children on the other hand, and a lot of additional information about the context, setting, age of the child, etc.

I investigated the occurrence of the words heel, erg and zeer in the CHILDES data through the COA V A28 web application. The COAVA29 web application provides combined access to two sets of databases: one with historical dialect data (the databases WBD30 and WLD31 with lexical data of the Brabantish and Limburgian dialect between 1880-1980) and one with first language acquisition data.

Though COAVA offers many facilities for research into the relation between language acquisition and lexical variation, my main interest is in the occurrence, and especially the first occurrence of the words heel, erg and zeer in the children’s utterances. Figure 1 shows this.

From this figure, we can conclude that the word zeer occurs first, followed by heel, and erg. However, each of the words heel, erg and zeer is ambiguous. COAVA does not take this into account, so we do not know whether the first occurrences observed concern the relevant sense (‘very’) of these words. In (Odijk, 2014a) I therefore made a manual analysis, which yields different results, as shown in Table 1..32

From this table, one can conclude that the first occurrence of heel in the sense ‘very’ is used very early by children (before their second birthday); the first occurrence of erg appears only about a year later.

25I considered the subcorpora DeHouwer, Gillis, Groningen, Schaelrackens, VanKampen, Wijnen and Zink, but not CLPF.
26http://catalog.clarin.eu/vlo/search?fq=languageCode:code:nld&fq=collection:TalkBank
27http://childes.talkbank.org/data/Germanic/Dutch/
28http://portal.clarin.nl/node/1928
29Acronym for Cognition, Acquisition and Variation Tool
30https://vlo.clarin.eu/search?3&fq=collection:Dictionary+of+the+Brabantic+dialects
31https://vlo.clarin.eu/search?2&fq=collection:Dictionary+of+the+Limburgian+dialects
32The table specifies the age of the child in days, followed by the CHILDES notation for children’s ages in the format (year;month).
Table 1: First Occurrence of *heel*, *erg* and *zeer* in the relevant sense (‘very’) in the Dutch CHILDES Children’s speech

and *zeer* occurs only very late (far in the fourth year). The latter may be related to the fact that *zeer* is considered rather formal by many people, and also occurs rather infrequently in adult child interactions in CHILDES. Note that the very early occurrence of *zeer* in Figure 1 involves a different sense of this word, viz. as *pain* or *painful*.

Clearly, it is desirable to have the manual analysis carried out here supported or even completely replaced by an automatic procedure. The next section describes a first step towards this goal.

5.6 PaQU

As we saw in the preceding section, a serious problem for the investigation is that the words being investigated are, as any decent word in natural language, highly ambiguous. Table 2 describes the ambiguity. For example, the word *heel* is 6-fold ambiguous. This ambiguity is partly solved by taking into account morpho-syntactic and syntactic factors. For *heel* as a finite verb (Vf) the ambiguity reduces to 2, which cannot be further resolved by morpho-syntax or syntax: ‘heal’ and ‘receive’ (of stolen goods). As an adjective (A) *heel* is 4-fold ambiguous. The ambiguity is partially resolved by taking into account its syntactic properties with regard to modification: if it modifies an adjective (mod A), the ambiguity is resolved to the single meaning ‘very’; if it modifies a noun (mod N), the ambiguity is reduced to 3: ‘whole’, ‘in one piece’ or ‘large’. If it is used as a predicative complement, it can only mean ‘in one piece’.

<table>
<thead>
<tr>
<th>Word</th>
<th>Morphosyntax</th>
<th>Syntax</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>heel</td>
<td>A</td>
<td>Mod N</td>
<td>1. ‘whole’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. ‘in one piece’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. ‘large’</td>
</tr>
<tr>
<td></td>
<td>predc</td>
<td></td>
<td>‘in one piece’</td>
</tr>
<tr>
<td></td>
<td>Mod A V P</td>
<td></td>
<td>‘very’</td>
</tr>
<tr>
<td>erg</td>
<td>N</td>
<td>uter</td>
<td>‘erg’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neuter</td>
<td>‘evil’</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Mod N, predc</td>
<td>‘bad’, ‘awful’</td>
</tr>
<tr>
<td>zeer</td>
<td>N</td>
<td>Mod N, predc</td>
<td>‘painful’</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Mod A V P</td>
<td>‘very’</td>
</tr>
</tbody>
</table>

Table 2: Ambiguity of the words *heel*, *erg* and *zeer*

Note: I use the following notation in the table: Mod X means that the word can modify a word of category X; Mod X Y Z means that a word can modify words of any of the categories X, Y, or Z; predc stands for can occur as predicative complement; Dutch distinguishes two values for gender: uter (i.e., common gender) and neuter. Vf stands for finite verb form.
The Dutch CHILDES corpora do not contain any information about the meanings of its word occurrences. Fortunately, as is clear from Table 2, most of the ambiguities can be resolved by taking into account morpho-syntactic and syntactic properties of the word occurrences. However, as observed above, the Dutch CHILDES corpora do NOT have (reliable) morpho-syntactic information (part of speech tags) or syntactic information for the utterances either.

One would want to be able to automatically parse the CHILDES corpora, and to upload the resulting treebank in a search and analysis application. PaQu was developed for this purpose.

The web application PaQu was developed by the University of Groningen. It enables one to upload a Dutch text corpus. This text corpus is either already parsed by Alpino, or if not, PaQu can have it automatically parsed by Alpino. After this, it is available in the word relations search interface of PaQu (an extension of the LASSY Word Relations Search application originally developed by (Tjong Kim Sang et al., 2010) and discussed in section 5.2), as well as via PaQu’s XPATH interface.

For the specific problem dealt with here, we need, for each of the words heel, zeer en erg, a characterization of the part of speech of the head word it is a dependent of and the label of the dependency relation (grammatical relation) holding between them. PaQu offers a dedicated interface precisely for this (see Figure 2). The relevant queries are not easily expressed in XPATH, which makes GrETEL (after it has been extended with corpus upload facilities) less suited for this particular problem (but it might be more suited for other problems).

The output of PaQu is a list of utterances that match the query, and (partially user-definable) statistics on properties of matched words and matched triples of the form (property of dependent word, grammatical relation, property of head word). See Figure 3. Each of the matches and each of the statistical aggregates contains links with automatically generated queries for exploring specific subcases in more detail.

PaQu accepts as input plain text (in multiple varieties) or a text corpus parsed by Alpino in the LASSY XML format. It currently does not allow a CHILDES corpus (in CHAT format (MacWhinney, 2015)) directly as input. This clearly requires an extension of PaQu (see section 7). For the experiments described below I wrote an ad-hoc script to select and clean utterances from CHILDES corpora (see (Odijk, 2015a) for details).

PaQu offers full parses of sentences in a corpus, but these parses have been generated in a fully automatic manner, so they will contain errors. It is therefore required to evaluate the quality of the automatically generated parses. (Odijk, 2015a) describes the results of such an evaluation for the words heel, erg and zeer dealt with here in the CHILDES Van Kampen subcorpus. The results are summarized in Table 3, both for the adult speech (column Adults) and for the children’s speech (column Children).

The results for the adults’ speech and the children’s speech shows a similar distribution, though the results for the children’s speech are lower. For the adult speech, the results for heel and erg are very good with over 90% accuracy compared to the gold standard. The results for zeer appear to be very bad. Further analysis reveals that most errors are made for the construction zeer doen, lit. ‘to hurt’, which Alpino really does not know how to analyze. The word zeer in this expression is correctly analyzed by Alpino as a noun, an adjective, or an adverb, but the grammatical functions assigned vary widely and

34 Analogously, the AutoSearch application was developed to support search in corpora with annotations on tokens. AutoSearch is a web application developed by INL. Here FoLiA or TEI formatted Dutch text corpora containing (extended) PoS codes (e.g. as created by the Frog (van den Bosch et al., 2007) part of speech tagger in TTNWW) can be uploaded and searched via a Corpus of Contemporary Dutch -like search interface. This application will not be discussed in this paper any further.

35 http://portal.clarin.nl/node/4182

36 http://www.let.rug.nl/~alfa/lassy/bin/lassy

37 Such a query has to take into account not only headed structures but also coordinated structures and co-indexed nodes in the syntactic structure. In addition, the dependent word can be contained in a phrase that is a dependent of the head word.

38 Where properties include word form, lemma, and part of speech.

39 http://www.let.rug.nl/vannoord/Lassy/alpino_ds.dtd

40 If one logs in into the PaQu application, one actually finds the parsed corpora with the cleaned Van Kampen adult sentences, since I shared the corpora with everyone. They are called VanKampenHeel, KampenErg, and VanKampenZeer, resp. The children’s utterances in Van Kampen are in the corpus VanKampen-child-heelergzeer.

41 Alpino distinguishes adverbs from adjectives in some cases by means of the syntactic category. The gold standard does not distinguish adverbs from adjectives by syntactic category.
Figure 2: PaQu web interface with a query for occurrences of the lemma *heel* as modifier

<table>
<thead>
<tr>
<th>word</th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>heel</td>
<td>0.95</td>
<td>0.90</td>
</tr>
<tr>
<td>erg</td>
<td>0.91</td>
<td>0.73</td>
</tr>
<tr>
<td>zeer</td>
<td>0.21</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 3: Accuracy of Alpino parses for the words *heel*, *erg* and *zeer* in the CHILDES Van Kampen subcorpus
Figure 3: PaQu analysis: count of occurrences of the lemma *heel* as modifier by part of speech of the modificee.

<table>
<thead>
<tr>
<th>aantal</th>
<th>lemma</th>
<th>rel</th>
<th>hpostag</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>heel</td>
<td>mod</td>
<td>adj</td>
</tr>
<tr>
<td>45</td>
<td>heel</td>
<td>mod</td>
<td>n</td>
</tr>
<tr>
<td>30</td>
<td>heel</td>
<td>mod</td>
<td>vnv</td>
</tr>
<tr>
<td>17</td>
<td>heel</td>
<td>mod</td>
<td>bw</td>
</tr>
<tr>
<td>3</td>
<td>heel</td>
<td>mod</td>
<td>mu</td>
</tr>
<tr>
<td>1</td>
<td>heel</td>
<td>mod</td>
<td>tw</td>
</tr>
<tr>
<td>1</td>
<td>heel</td>
<td>mod</td>
<td>vz</td>
</tr>
<tr>
<td>1</td>
<td>heel</td>
<td>mod</td>
<td>wv</td>
</tr>
</tbody>
</table>
are mostly incorrect: direct object, predicative complement, modifier, and even subject. For a linguist, the analysis is also not obvious, but I have analyzed zeer in this construction in all cases as a predicative complement to the verb doen. Whether zeer is a noun or an adjective is often indeterminable, and this distinction has not been taken into account in making the comparison.

Since the bad results for zeer are mainly caused by one type of construction, which can be easily identified in PaQu42, the results of PaQu are still very useful.

Though (Odijk, 2015a) correctly warns against generalizing these results to other cases, they are nevertheless promising: high accuracy in some cases, and the low accuracy examples are easily identifiable.

The results of an analysis of the words heel, erg and zeer, based on an automatic parse of all adult utterances in the Dutch CHILDES corpora are given in Table 4.43 It specifies, for each of the three words, the counts of their occurrences in specific grammatical roles that concern us here, the counts of their occurrences in other grammatical roles (other), and of cases where the grammatical role could not be determined (unclear).44

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
Results & mod A & mod N & Mod V & mod P & predic & other & unclear & Total \\
\hline
heel & 881 & 51 & 2 & 2 & 14 & 0 & 2 & 952 \\
erg & 347 & 27 & 109 & 0 & 187 & 5 & 0 & 675 \\
zeer & 7 & 1 & 83 & 0 & 19 & 21 & 7 & 138 \\
\hline
\end{tabular}
\caption{Analysis of heel, erg and zeer in adult utterances in Dutch CHILDES}
\end{table}

(Odijk, 2015a) analyzes these findings in some detail, and the results can be summarized as follows:

- **Heel** is most frequent (almost 54%)
- **Heel** as mod A is overwhelming: (> 93%)
- **Heel** as mod V, mod P are analyzed incorrectly
- For erg, the distribution between Mod A and mod V is more balanced than for heel
- Evidence for zeer is mostly lacking. The examples of zeer as Mod V are mostly wrong analyses
- Evidence for Mod P is mostly lacking, though there is some evidence for erg en zeer (4 occurrences)

This example clearly shows the advantages of using PaQu for manual verification of hypotheses, and shows that, if some care is exercised, it can also be used for automatic verification of hypotheses. However, PaQu, in its current state, is not yet able to derive Table 1 or a variant of Figure 1 for the words heel, erg and zeer in the relevant sense. That requires an analysis of the search results in terms of a mix of linguistic annotations and metadata pertaining to the whole utterance or the whole session. See section 7.

6 Conclusions

We can draw two types of conclusions from the work presented in this paper: conclusions with regard to the linguistic problem, and conclusions with regard to CLARIN as a research infrastructure.

Starting with the linguistics, any conclusions here must be very preliminary, given the small scale of the research done here. Nevertheless, the observations made in the preceding section are suggestive of further research. For example, they suggest that the overwhelming amount of occurrences of heel as a modifier of an adjective in comparison to its occurrence as a modifier of a verb (881 v. 2), perhaps in combination with its early occurrence (see section 5.5), might play a role in fixing the modification

42Through the query http://zardoz.service.rug.nl:8067/?db=childesadultsheelerga&word=zeer&rel=&hword=%2Bdoen&postag=&hpostag=; login is required to access the corpus.

43The results reported here deviate slightly from what (Odijk, 2015b) reported. In the current table the wrong mapping of the pronoun wat has been corrected, and changed from mod A to mod N. This concerns 5 examples, all modified by heel. This small correction does not affect the overall results.

44For example, in incomplete or ungrammatical utterances.
potential of this word to adjectives. In contrast, the occurrences of the word *erg* as a modifier of adjectives and verbs are more balanced: 347 v. 109.

The fact that there are hardly any examples for *zeer* make it difficult to draw any conclusions. In any case, the current CHILDES data give no clue how the use of *zeer* as a modifier of A, V, P is acquired, simply because there are hardly any data. This most probably means that the current Dutch CHILDES databases are insufficiently large as a sample of first language acquisition.45

Concerning CLARIN, (Odijk, 2011) defined a linguistic problem and specified what kinds of search actions would be needed to address this problem. At the time, almost none of these search actions were possible, or only with great difficulty, and they required expert knowledge on the relevant databases and programming skills. In 2014, (Odijk, 2014a) showed that many of the desired search actions had become possible, in a simple manner, and through applications with interfaces dedicated to the targeted users, linguists. At the same time, it was observed that not everything was possible yet in an easy way, and new requests arose by using the relevant applications. Since neither (Odijk, 2011) nor (Odijk, 2014a) was published, I report on their findings in this paper, and I showed new functionality created to accommodate the newly arisen need. This paper thus serves as an example of a report on a research pilot: a project to use functionality offered by the infrastructure with the twin goals of furthering the research but also of identifying novel functionality that the infrastructure should offer to be able to further the research.

This paper shows great progress in the number of applications offered in the CLARIN infrastructure, and a significant increase in the functionality that they offer, but I have also identified functionality that was desired from the start as well as novel desired functionality that have not been implemented yet.

7 Future Work

There is a lot of work that can (and should) be done in the near future. Firstly, the same words could be investigated in other corpora that are relevant for language acquisition, in particular the Basilex corpus46. Secondly, similar experiments can be carried out for other tuples of (near-)synonymous words with different syntactic selection or modification properties. One example is *te* v. *overmatig*, which both mean ‘too’ but differ in modification potential (*te* only A, *overmatig* at least A and V). Another example concerns the copular verbs *worden* ‘become’ v. *raken* ‘get’, in which *worden* can only take NP, AP and a very limited number of PP predicates, while *raken* can take only AP and PP predicates, very similar to their English translations *become* and *get*. Of course, as usual in natural language, most of these words are ambiguous.47 Most of these ambiguities can be resolved by the syntactic contexts, so treebanks can (and must) be used to find the relevant examples and their statistics.

It surely also makes sense to manually verify and where needed correct (parts of) parses for CHILDES corpora, improving the reliability of the annotations on these data.

I have identified many instances of desired functionality that is not available yet. (Odijk, 2011) suggested parameterized search, but this has not yet been implemented. The functionality of uploading one’s own corpus should also be added to other treebank search applications, in particular the GReTEL48 application (Augustinus et al., 2012). All search engines that allow uploading one’s own corpus must be extended to support input in all formats commonly used in linguistics. For example, PaQu only allows plain text as input, but it should actually support, e.g. the CHILDES CHAT format, the FoLiA49 format (van Gompel and Reynaert, 2013) and TEI50. In addition, it should take in not only the actual data, but also the metadata of the corpus, its subcorpora or textual units such as utterances, paragraphs etc.

Search applications should offer extensive options for analyzing the search results. Such analysis options are available in PaQU and OpenSONAR, but hardly in GrETEL, and the PaQU and OpenSONAR

45 A rough count shows that the Dutch CHILDES corpora dealt with here contain 534 k utterances and approx. 2.9 million inflected word form occurrences (‘tokens’).

46 http://tst-centrale.org/nl/producten/corpora/basilex-corpus/6-158

47 For example, *te* is an adjective, a preposition, and an infinitive marker; *raken* is not only a copula but also a transitive verb (with two meanings); *worden* is not only a copula but also a passive auxiliary.

48 http://nederbooms.ccl.kuleuven.be/eng/gretel

49 http://proycon.github.io/folia/

50 http://www.tei-c.org/index.xml
analysis options must be extended as well. In particular, the search applications should enable users to carry out analyses not only on the data but on arbitrary combinations of search result data and and their metadata.

It is also essential that the search results can be further annotated by users, or at least categorized. This is important since most search actions in practice do not yield exactly the set the researcher is interested in (there are problems of recall and of precision). With a categorisation option, one can use a broader query and then categorize the results (e.g. to exclude some).\footnote{The Lancaster web access to the British National Corpus offers such categorisation options.} And these newly added categories should participate as first class citizens in the analysis options offered.

Fortunately, most of the possible future work mentioned here is actually planned in the CLARIAH-CORE\footnote{http://www.clariah.nl} project or in the Utrecht University project AnnCor, and part of it is already being carried out.\footnote{For example, in AnnCor manual verification and correction of Alpino parses for CHILDES utterances is worked on, and since a few months, PaQu enables analysis of search results in combination with metadata, at least for the Spoken Dutch Corpus. And it already supports more input formats than just plain text, among them FOLIA and TEI.} With these projects, we hope to be able to run queries such as the ones already suggested in (Odijk, 2011) but currently not possible yet (with heel, erg and zeer only in the relevant sense ‘very’):

- For each child, give list of pairs (session, age) of the child
- For each child, give me #sessions by period, where period is e.g. every month, week, half year, year
- For each child give me the list of new words uttered by period
- For child and each session, give #occurrences of zeer, heel, erg;
- Idem, by period
- Give me utterances containing occurrences of zeer, erg, heel uttered by the child before any adult used any of these words
- Give me #occurrences of heel uttered by the parent before the child utters it (idem for zeer, erg, etc.)

and many others that might be needed to address the research questions of section 4.

Acknowledgements

This work crucially uses data and/or tools made available through the CLARIN infrastructure. The work was financed by CLARIN-NL\footnote{http://www.clarin.nl}, an NWO project in the Netherlands.

References

