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Abstract

In many organizations the utilization of available com-
puter power is very low. If it could be harnessed for par-
allel simulation and optimization, valuable time could be
saved. A framework monitoring available computer re-
sources and running distributed simulations is proposed.
Users build their models locally, and then let a job sched-
uler determine how the simulation work should be di-
vided among remote computers providing simulation ser-
vices. Typical applications include sensitivity analysis,
co-simulation and design optimization. The latter is used
to demonstrate the framework. Optimizations can be par-
allelized either across the algorithm or across the model.
An algorithm for finding the optimal distribution of the
different levels of parallelism is proposed. An initial im-
plementation of the framework, using the Hopsan simu-
lation tool, is presented. Three parallel optimization algo-
rithms have been used to verify the method and a thorough
examination of their parallel speed-up is included.
Keywords: Job-scheduling, parallelism, distributed simu-
lation, optimization

1 Introduction

Design optimization is a powerful development tool,
which can greatly increase the benefits of simulation.
However, the usability is often limited by long execu-
tion times. A common solution is to utilize parallel ex-
ecution, for example by using parallel optimization algo-
rithms. Each simulation model in itself may, however, also
be parallelized. Furthermore, multiple optimization jobs
can also be executed simultaneously. To benefit the most
from these methods, an intelligent scheduler for multi-
level parallelism is required.

In many organizations the overall computer perfor-
mance is poorly utilized a large part of the time. Comput-
ers are often used for tasks with low requirements, such as
word processing, and spend a lot of time in idle mode.

This work presents a framework, illustrated in Figure 1,
utilizing available network computers for multi-level par-
allelism during optimization. Job-level, algorithm-level
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Figure 1. The core of the framework is the job scheduler. It
must decide how jobs should be distributed based on available
simulation resources and their performance.

and model-level parallelism is supported. The most ben-
eficial combination of these will depend on properties of
the model as well as the current state, performance and
availability of simulation-service providers on the net-
work. The algorithm used for optimization will also have a
large impact on performance. For this reason, a thorough
investigation of three parallel optimization algorithms is
included. Two of these are custom made for the sake of
the experiments, while one is state-of-the-art and naturally
parallel.

The intention is to create a small-scale software with
few dependencies that can easily be deployed on an office
network. One goal is to support simulation models from
different tools through the use of Functional Mock-up In-
terface (FMI) for co-simulation (Blochwitz et al., 2009).

In (Sadashiv and Kumar, 2011), a thorough comparison
between the cluster and grid computing concepts is given
together with examples on tools and simulation environ-
ments for such systems. Computing clusters are often
built up of a homogeneous collection of computer nodes
located at the same place accessed through a front-end.
From the outside, usually only the front-end is visible. A
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job-queuing system is responsible for managing jobs and
distributing the workload among the nodes.

In a grid network, computers can be located at different
places, but they all dedicate some computational power to
a common governing system, a middle-ware, responsible
for assigning jobs to available resources. One example
of such a system is the volunteer-computing framework
BOINC (Anderson, 2003). Users around the world can
download a client and choose from many projects which to
volunteer resources to. Grids are typically heterogeneous
by nature. The participating computers may have vastly
different performance and availability.

Using dedicated computing clusters would of course be
beneficial, as the computational performance and avail-
ability would be reliable. Work stations on an office net-
work should, however, be considered as a small-scale grid
with a less reliable source of computational power. Com-
puters may come and go sporadically and their perceived
performance may at any time be reduced due to workload
caused by their respective local user.

For parallel optimization, a third party scheduler could
be problematic. Most algorithms require all parallel tasks
to run synchronized. They should also have about the
same execution time, since the overall speed will be lim-
ited by the slowest task.

1.1 Related Work

In (Fourer et al., 2010), a framework for distributed op-
timization as software services is presented. The authors
identify the need for and develops standardized protocols
to enable different types of optimization services (differ-
ent solvers, high-level modelling languages and architec-
tures) to register in a common registry service. The frame-
work is built on the XML format and Web Service stan-
dards. The work focus on problems expressed in com-
mon high-level modeling languages for optimization. In
contrast our work focuses on simulation based optimiza-
tion of non-linear black-box models particular to specific
simulation tools. Such models are difficult to generalize
into high-level optimization languages. Instead of letting
servers provide optimization algorithms, they provide ac-
cess to one or more simulation tools.

In (Gehlsen and Page, 2001), a Java language specific
framework for distributed discrete-event simulation opti-
mization is presented. A Genetic Algorithm (GA), which
is naturally parallel, is used. An optimization manager
constructs and evaluates designs. An experiment manager
constructs simulation tasks that are sent to a distribution
manager using Java Remote Method Invocation (RMI) to
simulate the tasks on available remote machines running
an instance of the simulation tool.

In (Yiicesan et al., 2001), a Java and web-based simula-
tion optimization interface is presented. It allows the user
to choose combinations of optimization algorithms and
simulation models from databases. The key contribution

is the Optimal Computation Budget Allocation (OCBA)
algorithm, which allocates simulation jobs to available
simulators, called the Computation Budget. New promis-
ing designs that based on statistics are likely to improve
the overall simulation quality are prioritized. The total
number of simulations is reduced as evaluation of non-
promising designs is avoided.

The referenced works all provide a registry of simu-
lation servers that clients can fetch available simulation
resources from. A central manager then decides how to
distribute the work. Clients communicate either directly
with the servers in a peer-to-peer manner or by relaying
all communication through the manager. The framework
presented in this paper uses a similar approach.

A different approach is presented in (Eldred et al.,
2000) where the challenges and possibilities of utilizing
multiple levels of parallelism on massively parallel super
computers have been investigated. They define four lev-
els of parallelism, algorithmic coarse-grained, algorith-
mic fine-grained, function eval. coarse-grained and func-
tion eval. fine-grained. The presented implementation
made it possible to recursively divide the workload at each
parallelism level. That is, at the highest level only coarse-
grained parallelization of the optimization algorithm is re-
garded but at the next lower-level each one of the previ-
ously parallelized parts do their own parallelization and
scheduling into the next lower level.

For this paper, the first and last of those parallelism lev-
els are the most relevant. Coarse-grained algorithm par-
allelism represents evaluation of multiple parameter sets
with the same model concurrently, or running multiple op-
timization jobs at the same time (algorithm-level or job-
level). Fine-grained function evaluation represents paral-
lelization within a simulation model (model-level).

1.2 Delimitations

Many simulation tools use variable step-size control.
Their execution time will therefore depend on the model
parametrization. As a consequence, the points in the pa-
rameter space may require different amounts of time to
evaluate. This variation is, however, difficult to predict.
Fine-grained model parallelism through the use of the
transmission line element method in Hopsan can also re-
duce such effects. For this reason, it has not been consid-
ered further.

Coarse-grained model parallelism, i.e. spreading the
model evaluation over multiple servers, has been left for
future work. This becomes beneficial when a model con-
tains individual sub-models with a long evaluation time,
making communication overhead negligible. It would
also be required if models contain sub-models from dif-
ferent disciplines and co-simulation using different tools
is needed.

Experiments have only been performed on homoge-
neous computer networks. In principle, the proposed algo-
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rithm should work similarly on heterogeneous networks.
Verifying this with experiments remains a future project.

The Hopsan tool supports importing co-simulation FMI
sub-models, so called Functional Mock-up Units (FMUs).
While the goal is to support such models directly in the
framework, a Hopsan model must currently be used as a
master.

2 Framework Architecture

The idea is to run one server providing access to one or
more simulation tools on each available computer in the
network. Each server provides a number of simulation
slots that represent the processor cores made available.

When a simulation server is started it contacts an ad-
dress server to register which simulation tools it provides.
The address server will request status periodically to keep
track on availability, speed and the number of available
simulation slots.

When a client requires access to remote simulation, it
first requests a list of available servers matching some re-
quirements on speed and available number of slots. Then
it connects to each desired server individually to request
and reserve the needed slots. If a request is granted, the
server will launch a separate simulation worker process.
All further communication will then be directly between
the client and the worker.

The reason for using an external worker process is to
keep the server alive even if the simulation would lead to
a crash or lock-up. The worker will report back when it is
finished so that the server can reopen the simulation slots.
If the worker stops responding due to some failure, the
server can terminate it by force to free up resources.

The intention is to use tool specific implementations
of optimization algorithms. The optimization is thus as-
sumed to be handled by the client. The job scheduler is
not part of the optimization algorithms. The tool running
the optimization can, however, use it to run the model eval-
uations.

2.1 Decentralized and Centralized Modes

The framework can work in two modes. If no centralized
job distributor is used, each client is responsible for re-
questing fresh server status before trying to reserve a slot.
The information from the address server may be outdated.
Clients send a request and reserve command to temporar-
ily reserve the needed slots. An actual request can then be
sent once the client has determined the work distribution.
This prevents other clients from stealing a seemingly open
slot. In this decentralized case, illustrated by Figure 2,
clients obtain resources on a first-come-first-serve basis.
A client will take as many servers and slots as it needs.
Job-level parallelism is only possible as long as there are
free slots. The decision whether to use algorithm paral-
lelism, model parallelism or both is take by each client.

Address \
Server

" Computer . Computer
Server Server
4 slots 2 slots

1 slot free 0 slot free

Worker
2 threads

Figure 2. In the decentralized network, clients communicate
directly with the servers and the simulation worker processes.
A client might look up servers from a predefined list or request
them from an address server.

Worker
1 thread

Worker
2 threads

If a centralized job distributor is used, all slot requests
go through this master, which keeps track of available re-
sources. In this case, shown in Figure 3, the clients should
let the job distributor choose which servers to use. When
all servers are busy, job-level parallelism could still be al-
lowed by redistributing ongoing work when new jobs ar-
rive. A system for prioritizing jobs is, however, needed in

this case.
Address Job
Server Sheduler o

" Computer

Server Server
4 slots 2 slots
1 slot free 0 slot free

Worker Worker Worker
2 threads 1 thread 2 threads

Figure 3. In the centralized network, the job scheduler is re-
sponsible for allocating jobs to simulation slots. Clients have
no information about available servers and all communication is
relayed through the job scheduler.

2.2 Cluster Nodes and Subnets

Simulation servers connected to a Local Area Network
(LAN) can report their IP address and port directly to the
address server. If a cluster or a subnet behind a firewall
is present on the network, the available cluster nodes or
subnet computers must either be exposed through port for-
warding on the front-end computer or router, or by a relay-
ing address server as illustrated in Figure 4. In this frame-
work it is not possible for the front-end to expose simula-
tion slots from the underlying servers directly. That would
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confuse the scheduler and make it interpret the simula-
tion slots as a possibility for model parallelism. Such par-
allelism is currently only supported within one machine.
Also, any built-in job scheduling system on a cluster front-
end would have to be bypassed.

- Front-end
Server -l Computer

' "1~ {Address / Relay
h B Server_77
! - o~

Subnet or cluster nodes

-7 Computer SN3 1
- '

1 Computer 1 Computer SN2
\

Server Server {
4 slots

2 slot free

Server
4 slots
0 slot free

Worker
2 thread

Server

4 slots
4 slot free

6 slots
6 slot free

@\

Figure 4. If the network contains subnets or cluster nodes that
are not available through port forwarding, an address server in-
stance with access to both networks must be used as a relay.

2.3 Continuous Performance Monitoring

Before a job starts, all participating servers should have
supplied benchmark results indicating their performance.
However, as the intended target is a work-place network
of computers, the performance of the ongoing simulation
work must be continuously monitored. Computers may
at any time unexpectedly disconnect or slow down due to
external use. The work may then need to be rescheduled.
For this reason, the scheduler or clients can request sim-
ulation progress from each worker to determine if one is
significantly lagging behind the others.

A computer with a fast benchmark score may still be
unsuitable due to external use. An extension would there-
fore be to monitor the average CPU utilization. It is, how-
ever, difficult to estimate for how long demanding external
work will continue.

2.4 Implementation

The framework has been implemented in C++ to work to-
gether with the Hopsan (Eriksson et al., 2010) simulation
tool. The framework is centred around the message pass-
ing library ZeroMQ (Hintjens, 2013). This library can be
used for both inter-thread, inter-process and inter-machine
communication. It supports a variety of protocols and lan-
guage bindings are available for may common languages.
The library also has built in support for useful commu-
nications patterns, such as the request-reply pattern. In
this mode incoming requests are automatically queued on
a socket until the previous requests have received their re-
ply. A router type socket also facilitates asynchronous I/0
on the same port. This is useful when setting up a relay
server for passing messages between networks.

All network components communicate over TCP/IP.
ZeroMQ makes it possible to start servers and clients in
any order, making it easy to resume communication when
they come and go. While the network components are all
written in C++, the use of ZeroMQ makes it possible to
include software written in other languages. ZeroMQ can
be built with no external dependencies which simplifies
implementation and deployment. It can also be extended
with support for authentication and encryption.

It is assumed that the optimization algorithms are im-
plemented by the client, in this case the Hopsan simulation
tool. The framework implementation consists of:

e The simulation service provider (server) application
e A worker process for the Hopsan simulation core

e The address server, for tracking the available
providers on the network

e A client library, simplifying communication with the
servers and workers

e The job-scheduler module as a library, currently
tightly coupled to the Hopsan simulation tool

The messages exchanged in the framework are cur-
rently specific to Hopsan, but should be generalizable for
similar tools. Examples are:

e Simulation slot request / reservation, including pre-
ferred number of threads for model parallelism

e Sending simulation models and assets like data input
files, sub-model libraries and FMUs used by a model

e Simulation control; start, stop and step times, abort
or single step instructions for real-time control

e Set and retrieve model parameters

e Status from servers; the number of total/open slots,
what services they provide, benchmark speed

e Status from workers; simulation progress

e Retrieving simulation results, variable names, units
and values

e Real-time streaming of simulation input and output
(if possible)

3 Parallel Optimization Methods

Parallel optimization algorithms are required to evaluate
the scheduling algorithm. Two common families of opti-
mization algorithms have been investigated: direct search
and population based methods. Only non-gradient based
methods have been included. These are more efficient in
solving non-linear problems, and can be applied also on
problems which are not differentiable.
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3.1 Direct Search Methods

Direct search optimization (Hooke and Jeeves, 1961)
refers to methods where the parameter space is searched
by a number of trial points. At each iteration, an algorithm
is used to move one or more points depending on the loca-
tion of the best known point. This is useful for discrete or
non-continuous models, where the gradient cannot easily
be obtained. Advantages typically include few evaluations
and simple parameterization. On the downside, the possi-
bilities for parallelization are often limited.

The most well-known direct search method is the
Nelder-Mead Simplex algorithm for unconstrained prob-
lems (Nelder and Mead, 1965). It searches the
n-dimensional parameter space with k = n + 1 points
called the “simplex”. The worst point is reflected through
the centroid of the remaining points. Depending on the
outcome, the simplex can be expanded, contracted or re-
duced.

A related method for constrained problems is the Com-
plex method (Box, 1965). In contrast to the simplex
method it uses at least k = n+ 2 points and a reflection
factor & > 1. This causes a continuous enlargement of
the complex. If the reflected point is still the worst, it
is retracted iteratively towards the centroid, which com-
pensates for the enlargement. This reduces the risk of the
complex collapsing into a subspace when a constraint is
reached. Retractions can also be weighted towards the
best known point, to prevent the complex from collapsing
into the centroid (Guin, 1968). The method can be fur-
ther improved by adding a random factor and a forgetting
factor, commonly referred to as the Complex-RF method
(Krus and Olvander, 2003).

Even though the algorithm is sequential, it can be par-
allelized with minor modifications. Parallel implemen-
tations of the Simplex algorithm has been conducted by
(Dennis and Torczon, 1991) using multi-directional search
and by (Lee and Wiswall, 2007) by reflecting multiple
points at each iteration. Another possibility is to use mul-
tiple reflection factors, or to use task prediction methods
where possible future evaluations are predicted by assum-
ing a certain outcome of the current step. Multiple re-
traction steps towards the centroid can also be evaluated
in parallel. Here methods using task prediction, multi-
retraction and a combination of the first two methods have
been tested.

With the task prediction method, candidates are gener-
ated iteratively by assuming the outcome of the previous
reflection. Figure 5 illustrates the method. First the worst
point (x3) is reflected through the centroid of the other
points. It is now assumed that the new point x5 is better
than the second worst point x;. Therefore x; can be re-
flected through x», x4 and x5. This process is repeated for
all four original points. Should the number of simulation
slots exceed the number of points, additional candidates
are generated by iteratively moving the first reflected point
towards the centroid. All candidates are then evaluated in

parallel. If results show that one of the reflected candi-
dates is still the worst, the remaining reflected points are
discarded. Moving the reflected points iteratively towards
the centroid can then easily be performed in parallel. If
it is the first reflected point that shall be moved, the ad-
ditional candidates can be used to speed up this process
further. The iteration will continue until a point that is
better than the previously worst point is found.

X3

(@)

/
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X e
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X1 @
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Figure 5. Task-prediction parallel Complex-RF algorithm. By
assuming an outcome of a reflection, the next point can be re-
flected in advance.

Parallelizing retraction steps is trivial, since each step
is independent of the previous ones. The method is illus-
trated by Figure 6. An unlimited number of steps can be
computed in parallel. Once a retraction point that is no
longer the worst point in the complex is found, all remain-
ing points are discarded.

Results showed that the parallel efficiency of both
methods decrease with an increasing number of process-
ing units. Higher speed-up can be achieved by using
both methods together and letting them share the avail-
able CPUs. In these experiments each method use half
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Figure 6. When retracting towards the centroid using the
Complex-RF method, multiple steps can be evaluated in parallel.

of the CPUs. Obviously other methods may provide bet-
ter results, but this has not been considered further in this
paper.

The direct search methods were tested on three opti-
mization problems; the sphere function (Equation 1), the
Rosenbrock function (Equation 2) and a simulation model
of a hydraulic position servo, shown in Figure 7. In the
latter, the objective is to minimize the error between ref-
erence position and actual position while also maximizing
the total energy efficiency of the system. Five parameters
are used; proportional and integral control parameters K,
and K;, piston areas A| and A, and pump displacement D,,.

minimize F(X) = (Xerror(X), Mror (x))T
x = (K, K;,A1,A2,D,)"
0<K,<1x1072
0<K;<1x1073
1x105<A; <1x1072
I1x107° <A, <1x1072
1100 <D, <1x1073

subject to

The three models were optimized with each algorithm
100 times for each number of simulation slots, ranging
from 1 to 8. Optimization parameters as suggested by

(Box, 1965) and (Krus and Olvander, 2003) are used, see
Table 1. Results are shown in Figures 8, 9 and 10.

0.1
0.3

k 2n T fac
a 13 Y

Table 1. Number of points, reflection factor, randomization fac-
tor and forgetting factor used in experiments.
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Figure 7. A model of a hydraulic position servo used to evaluate
the parallel optimization algorithms.
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Figure 8. Algorithm speed-up with the task prediction method.

3.2 Population Based Methods

Population based methods is a family of optimization
methods where a population of independent points are
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Figure 9. Algorithm speed-up with the multi-retraction method.
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Figure 10. Algorithm speed-up with a combination of task pre-
diction and multi-retraction. This is by far the most efficient
method.

used to search the parameter space. At each iteration, all
points are evaluated independently of each other. The out-
come is then used to generate a new population, which is
used in the next iteration. Due to the independent eval-
uations, population based methods are naturally parallel.
Another benefit is that they are intuitive, since they often
resemble physical, social or biological phenomenas. Ex-
amples of population based methods are Differential Evo-
lution (DE) (Storn and Price, 1997), Genetic Algorithms
(GAs) (Goldberg, 1989) and Particle Swarm Optimization
(PSO) (Kennedy and Eberhart, 1995).

In this paper a PSO algorithm has been used as an ex-
ample. Results can, however, be generalized to any natu-
rally parallel optimization method. With PSO, each point
(denoted “particle”) has a position and a velocity vector,
see Figure 11. At each iteration the velocity is changed de-
pending on the particle’s own best known position and the
best known position in the swarm. This resembles grav-
itational pull. Each particle also has an inertial weight,
that prevents rapid change in velocity. Particles are then

moved according to the velocity before next iteration. Par-
allel speed-up can be assumed to be linear, and is only
limited by the number of particles in the swarm. It should
be pointed out that even though population based meth-
ods have higher speed-up than direct search methods, they
also require significantly more iterations. Thus, they are
not necessarily more efficient than direct search methods.

b
Xglobal
.. X2

X2

.'. b
@ X5

Figure 11. Population-based methods, such as particle swarm
optimization, evaluate all points independently and are naturally
parallel.

4 Work Scheduling

Efficient scheduling of the workload will have great im-
pact on execution times. This task is complicated for sev-
eral reasons. The number of available computers and/or
processor cores may be limited. Computers may also have
different performance or different number of cores. Fur-
thermore, several clients may want to run different opti-
mization jobs at the same time. The proposed solution is
to estimate the speed-up factor for various work distribu-
tions on available resources.

Optimizations can be parallelized either on algorithm-
level or model-level. Speed-up from parallelism will thus
depend on both the algorithm and the model. A third alter-
native is to run several optimizations in parallel and pick
the best result (algorithm coarse-grained or job-level par-
allelism). This has not been considered further in this pa-
per.

Speed-up of the algorithm comes from either reducing
the total number of sequential evaluations, or from reduc-
ing the number of needed iterations by searching the pa-
rameter space more efficiently. For this reason the equiv-
alent number of iterations with parallelism ne,q , is de-
fined:

Neyal

Neyal,p = SUa(pa)

At model-level, the speed-up is defined as the ratio be-
tween sequential and parallel execution time. The num-
ber of processor cores will determine the magnitude of the
speed-up. In most cases it can be assumed that models

3
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cannot be parallelized over several computers. Communi-
cation latency over the network induces overhead, which
makes this efficient only for large models.

Thase

N Um (P m)

The total execution time for an optimization can be cal-
culated by combining Equations 3 and 4. At each iteration
the algorithm will have to wait for the slowest simulation
to finish. Thus, the maximum simulation time must be
used according to Equation 5. The communication time
for sending results over the network may also matter, but
is assumed to be negligible for large simulation problems.

“4)

Tsim =

(&)

Lopt = Neyal,p MAX Isim i + Ecomm
P Po<ick ™

For a homogeneous computer network, where all com-
puters have the same computational speed and number of
cores, Equation 5 can be simplified into Equation 6:

(6)

Finding the optimal task distribution is a combinatorial
optimization problem. It can be expressed either as mini-
mizing the execution time or as maximizing the speed-up.
For heterogeneous systems, where computers have differ-
ent performance and number of cores, it can be formulated
as follows:

Topt = Nevyal plsim

maximize SU(py,pm) = SUa(pa)olgi?kSUm’i(pm’i)

1 k np
subject to Pay Y pni <Y (nes)
i=0 i=0
Pm,i <ng fori=0,...,n,

Again, the formulation can be simplified for homoge-
neous systems:

maximize SU (py, pm) = SU4(pa)SUm(pm)
subject to  papm < npne
pm S nL'

For a homogeneous system, it is sufficient to loop
through different values for p,,, and calculate the largest
possible corresponding p,. The total speed-up can then
be computed as the product of SU,(p,) and SU,,(pp)-
Pseudo code for this is shown in Listing 1.

Listing 1. A sheduling algorithm that computes the optimal
combination of algorithm and model parallelism (p} and p},) for
homogeneous computer networks.
SU* =0
for (pm=1; pm<nc; ++pm) {

pa = npfloor (nc/pm)

SU = SUa(pa)SUm (Pm)

if (SU>SU*) {

SU* = SU

(L]
=l
> Z

Much of this code can be re-used for heterogeneous sys-
tems. Instead of using the same p,, for each computer,
different maximum values (p},**) are tested. This limits
the maximum number of cores each model can use. The
number of parallel models that should run on each com-
puter is then calculated. The sum of these gives the total
value for p,. Finally, SU,, is computed as the minimum
speed-up from all computers. Pseudo-code for heteroge-
neous scheduling is shown in Listing 2.

Listing 2. For heterogeneous computer networks an approxi-
mate scheduling can be computed by limiting maximum level of
model parallelism (pjp*).
SU* =0
for (pp™=1; pp™ <ng™; ++pm) {

pa = floor (Zinio ng;/min(pp™,n¢;))

SU = SUa(pa)SUm (Pm)

if (SU>SU*) {

SU* = SU
Pm = Pm
P = Pa
}
}
5 Results

Two experiments were conducted, one theoretical and one
practical. First, the scheduling algorithm was numeri-
cally verified by letting it calculate probable speed-up for
two test models on a fictional computer network. Sub-
sequently, the scheduler was implemented and tested by
running optimizations on real hardware.

5.1 Numerical Verification

The scheduling algorithm was numerically verified by us-
ing two example models; the position servo model men-
tioned previously, and a model of a hydraulic mining rock
drill. The latter is a large model with good opportunities
for model-level parallelism. Speed-up on a quad-core pro-
cessor was measured to be 2.60. The model is provided
by industrial partners, and is used in real product devel-
opment. For the first model, however, model-level par-
allelism is not beneficial due to the low number of sub-
models. Execution time appear to be independent of the
number of cores.

As a theoretical example the scheduler was executed for
four homogeneous computers with four cores each. By
using pre-defined speed-up factors, the optimal work dis-
tribution can be obtained from a look-up table. All three
optimization algorithms mentioned in Section 3 were ex-
amined. The PSO algorithm was assumed to use 16 par-
ticles. Speed-up of the algorithms was assumed to be the
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same for the rock drill as for the position servo. Results are
shown in Table 2. As expected, the rock drill is calculated
to achieve the best performance when using the maximum
number of cores at model-level. The position servo, how-
ever, benefits more from a high degree of algorithm paral-
lelism. When using PSO, parallelism at algorithm level is
always more beneficial.

Position Servo Rock Drill

P 1 2 3 4 1 2 3 4

Pa| sy SUn| 100 1.00 1.04 096] 100 192 223 2.60

1 1.00 | 1.00 1.00 1.04 096] 1.00 192 223 2.52

el 2] 099 | 099 099 1.03 095|099 190 221 249
Z13| L19 119 1.19 124 1.14| 1.19 228 2.65 3.09
54| 131 131 131 136 126| 131 252 292 341
|5 142 |14 142 - - |136 273 - -
Ele| 151 151 151 - - | 145 290 - -
©17 1.67 1.67 1.67 - - | L60 321 - -
8| 174 174 174 - - | 167 334 - -

1 1.00 1.00 1.00 1.04 096] 1.00 192 223 2.60

20 200 200 200 209 192|200 383 446 52

30 200 200 200 209 192|200 383 446 52

4| 400 | 400 400 417 3.84| 400 7.66 891 10.4
Z(5| 400 |400 400 - - [400 766 - -
26| 533 |533 533 - - |533 1023 - -
(7] 533 |533 533 - - 533 1023 - -
<|8| 800 |800 800 - - |800 1533 - -
=|9| 800 ]800 - - - |800 - - -
E|10| 800 |800 - - - |800 - - -
S|t 800 ]800 - - - | 800 - - -
12| 800 |800 - - - |800 - - -
13| 800 |800 - - - [800 - - -
14| 800 |s800 - - - [800 - - -
15| 800 |800 - - - [800 - - -
16| 1600 |1600 - - - [16.00 - - -

Table 2. Speed-up factor as a function of work distribution for
the combined Complex-RFP and PSO algorithms. Optimal dis-
tributions are shown in red.

5.2 Load Balancing Experiments

To verify the load balancing and rescheduling capabilities
of the framework, a network of eight dual-core comput-
ers with equal performance was used. The experiment
model was a slightly modified position servo model with
a dual-core model-level speed up 1.12. Model-level par-
allelism is achieved through the use of the transmission
line element method (Krus et al., 1990) and multi thread-
ing (Braun et al., 2011). The model is optimized with both
the combined Complex-RFP and the PSO methods. Algo-
rithm speed-up for the Complex-RFP algorithm is taken
from Table 2. While the PSO algorithm is assumed to
have linear speed-up in itself, in practice this depends on
the number of particles used and the number of available
computers according to Equation 7. The speed-up is the
ratio between the sequential execution time of all models
and the longest queue required on any of the simulation
servers during parallel execution. The initial algorithm-
level parallelism was set to six in both cases, leaving two
computers unallocated.

Pa

SUpso,actual = @)
ceil Pa
(min(np ﬁoor(%) , pa) )

Figure 12 shows the total iteration time with the
Complex-RFP method including evaluation and transfer
of results over the network. One participating computer
after another becomes overloaded by external work. Be-
fore ¢, the load can be shifted to the free computers and
no slowdown occur. After ¢, since the algorithm speed-
up is low for this method, the algorithm is reinitialized to
use fewer parallel models. At f it finally becomes more
beneficial to increase the number of parallel models again
in comparison to maintaining dual-core model-level par-
allelism. For a model this small and fast the transfer of
result data cannot be neglected. The results show between
c and f that the total time is decreasing slightly with fewer
parallel models as less data needs to be transferred.

T T T T T
9 | Iteration evaluation time [s] a

0 a b ¢ d e¥r g h

40 50
Iteration

60 70 80

Figure 12. Evaluation time for one iteration using the com-
bined Complex-RFP algorithm, beginning with six parallel eval-
uations. The letters a—h each represent one additional network
computer becoming overloaded. Load balancing or paralleliza-
tion reduction is shown in Table 3.

Figure 13 shows the same experiment for the PSO algo-
rithm. Since it is naturally parallel, the number of particles
(parallel models) is kept fixed at six. The speed-up in this
case comes purely from the possibility of executing mod-
els in parallel. When computers become unavailable the
scheduler will try to balance the load so that queues are
avoided. Since it is unlikely that a model-level speed-up
larger then the number of cores used can be achieved, the
method always favors the highest possible algorithm par-
allelism. At c, free computers are no longer available and
the scheduler switches to single-core simulation, which is
slightly slower but allows to maintain parallel execution.
At f, the scheduler is forced to begin queuing models for
execution and the evaluation time is doubled.
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T T T
Iteration evaluation time [s]
20 r

Iteration

Figure 13. Evaluation time for one iteration using the PSO al-
gorithm with six parallel models. The letters a—h each represent
one additional network computer becoming overloaded. Load
balancing results are shown in Table 3.

In both figures, the spikes represent approximately dou-
ble execution time, since when a server is lost the current
iteration is restarted. At A, only one computer remains and
when it becomes heavily loaded no better alternatives ex-
ist. The chosen parallelism for each rescheduling is given
in Table 3.

0 a b c|d|e|f|gl|h

npXne | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 1

Pm | 2 2 2 2 12121111

C-REFP pal 616|615 [4]3|4|2]|2
Pm | 2 2 2 1 11 (1]1]1

PSO Pa | 6 6 6 6 |6|6|3]|2]2

Table 3. The combination of model-level and algorithm-level
parallelism that gives the best speed-up depending on availabil-
ity of computers on the network. Each column represents a point
in Figures 12 and 13.

6 Conclusions

A framework for work scheduling of multi-level parallel
optimizations has been developed. The scheduler takes
the number of available processor cores on each computer
into account. Therefore, parallelism on both model-level
and algorithm-level can be used to maximize performance.
An extension could be to also support solver-level paral-
lelism, for example parallel matrix operations. This could
be solved using GPU cards, which would add an addi-
tional level to the scheduler.

For homogeneous computer networks, an optimal
scheduling can be found by testing all combinations. Het-
erogeneous networks, however, require heuristic schedul-

ing methods. Thus, an optimal solution cannot be guaran-
teed.

The speed-up from parallel optimization algorithms de-
pend to a great extent on the model being optimized. Es-
pecially, the combination of algorithm and model has a
great influence on performance improvement. Thus, dif-
ferent algorithms are efficient for different models. Some
knowledge of the model properties are therefore required.

Experiments show that the framework is able to deal
with computers on the network suddenly becoming over-
loaded. The scheduler is able to re-balance the computa-
tion load over the remaining resources.

While the implementation is specific for the Hopsan
simulation environment, the methodology can be gener-
alized to support other tools. The FMI standard makes it
possible to run optimizations with FMUs from other pro-
grams embedded in a Hopsan model. Extending the im-
plementation to allow simulation of the FMUs directly is
an important continuation of this work. This will, how-
ever, require each FMU to contain information of its per-
formance and parallelizability. Including such informa-
tion in the FMI standard could be one possibility.

Nomenclature
k Number of points
n Number of parameters
a Reflection factor
T fac Randomization factor
Y Forgetting factor
p Degree of parallelization
Neval Number of evaluations

Neval,p  Bquivalent evaluations with parallelism
DPa Degree of parallelization of algorithm

Pm Degree of parallelization of model

SU, Speed-up of algorithm

SU,, Speed-up of model

SUyp:  Speed-up of optimization

tsim Simulation time

thase Sequential simulation time

topt Optimization time

ne Number of processor cores

np Number of processors or computers
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