
Model Based Specifications in Aircraft Systems Design

Martin R. Kuhn1 Martin Otter1 Tim Giese2
1Institute of System Dynamics and Control, German Aerospace Center (DLR e.V.), Germany,

{martin.kuhn,martin.otter}@dlr.de
2Airbus operations GmbH, Germany, tim.giese@airbus.com

Abstract

This application paper describes the concept and needs
on model based specifications in order to specify the
basic behavior of aircraft systems and methods to
check the requirements. It is demonstrated how it can
be implemented by recent Modelica based libraries,
especially with the new Modelica_Requirements
library. Two new FFT-based requirement blocks are
proposed to allow full coverage of the specification.

Keywords: executable specification, requirements,

aircraft system design, FFT-based requirements.

1 Introduction

Executable specifications are computer algorithms
written in an appropriate specification language with
the purpose of demonstrating and verifying the
compliance of the input-output behaviour of the model
subject to the model specifications. In aircraft design,
executable specifications demonstrating and verifying
the behaviour of models can be seen as an important
tool to make the co-work between airframers and
suppliers quicker and more efficient, as they allow
frequent testing and early validation of subsystems and
systems interaction.

Similarly, requirement modelling allows the
specification and testing of demands on signals which
are generated by a system or the model of a system.
Together, executable specifications and requirement
models enable a well-defined specification of a system.
Both methods allow testing against the hardware or
software implementation. They strongly benefit from
methods for monitoring and cross-checking.

While the traditional aircraft design process is based
on document based specifications only, a model
supported design process based on executable
specifications and requirement models is thought to
improve the process in terms of quality and time
(Becker and Giese, 2011). In contrast to the traditional,
more software oriented usage of executable
specifications, here they were used in a more general
way also for specification of physical models and
behavior. In the publication the concept was evaluated
with MathWorks based tools, but specification models
may include physical models built with Modelica. In
order to have a one-tool solution which allows better

coupling of the physical models to requirement blocks,
alternatives to this approach with Modelica based
methods were investigated in the “CleanSky, Systems
for green operation” project (Cleansky, 2015).
Associated tools were developed in parallel in the
CleanSky subproject ModelSSA by Dassault Systèmes,
supervised by DLR-SR and in the ITEA2 “MODRIO”
project with several partners1. This paper reviews the
concept of executable specifications for aircraft
systems2 where the executable specifications are seen
as a bigger package of specifications, test cases,
demonstrators and monitoring functions. The
implementation is solely based on Modelica.3

2 Review of model based design process

For aircraft systems design, the current design process
is a document-based development. The behaviour of
the system to be developed is defined by textual
requirements, pseudo code, tables, block diagrams,
logic diagrams and mathematical expressions. General
demands applicable to several (sub-)systems are
generalized in industrial standards, for example MIL-
STD-704F (MIL704F, 2004) or airframer specific
standards, for example the AirBus Directives (ABD).
Document-based development has severe disad-
vantages: There is the danger of misunderstandings and
misinterpretations of functional requirements since
they are written in natural language which could result
in incorrect system behaviour. Furthermore, the
specified system behaviour cannot be simulated.
Therefore, contradicting requirements can hardly be
recognized before realization of the system. Also for
multi-system functions and interfaces the validation is
missing and therefore the mutual influences between
systems may not be treated correctly in the early design
cycles. This results in late detection of design errors
when integrating the systems together. In addition, in
case of requirements on signals and requirements on
systems interacting with plants, the signal processing
and plant test models may be implemented differently

1 MODRIO: https://itea3.org/project/modrio.html
2 In this paper aircraft systems (e.g. a drive) and components of a system
(e.g. controller) are both called “system” to simplify notation.
3 Section 2-4 is based on the internal reports (Kuhn et. al., 2014; Becker
et.al., 2013; Becker, 2014).

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

491

between the airframer and different suppliers. In any
case there might be redundant work since the same
monitoring functions need to be implemented by
several suppliers or at the airframer for testing.
In contrast, by a Model Based Design Process (MBDP)
the system to be developed is specified by models
representing the functional and/or physical behavior.
The models can be delivered with test environments
and monitoring functions which are modeled by the
airframer. To prevent confusions and double work, it is
essential to tightly link the documentation and the
model based specification. This can be achieved by
automatic generation of the documentation from the
model and its embedded requirements and optionally
with linkage of models to requirements in databases.
By this approach, misunderstandings and lack of
information is avoided since the models provide a
mathematically precise definition and allow interactive
simulation and investigation. While the model should
cover all aspects of the systems’ functionality, there is
no necessity to express all of it in a single model. A
combination of methods as

• flow diagram notation,

• state transition notation,

• physical modelling, plus the afore-mentioned

• written requirements
can be used. This methodology was evaluated in
(Becker and Giese, 2011). The efficiency of the model
based approach was analyzed in (Becker et al., 2013).
In (Becker, 2014) the model-based design process was
tested qualitatively against the former development
programs. It could be shown that the model based
specification process results in reduced cost for
development of control systems. Those are significant
advantages from a project management perspective.

3 Elements of an executable specification

model

In the following we will introduce representative
requirements in the style of (Tunnat, 2011) and
(MIL704F, 2004) for the Environmental Control
System (ECS) and for the electrical system.

For a model-based design process, the requirements
can be grouped into two different layers:

• The high level requirements.
• The functional requirements.

The high level requirements treat specifications on the
exterior behavior of the system. The formulation is
based on engineering knowledge and top level
demands. The high level requirements include

(1) Demands on the implementation and realization.
Those requirements generally are not stated by use
of models. A requirement can be stated as in R1.

R1: The engine’s total probability of failure must be

smaller as 1e-9.

(2) Demands on the signal and state behavior. Such
requirements are stated by requirement blocks that
assess the specific requirements using observation
variables from a physical model as part of the
executable specification. Requirements may be
specified based on industrial standards. A
requirement can be stated as in R2 and R3.

R2: In normal operation mode, the envelope of the

RMS value of the 400 Hz AC voltage after a voltage

transient is given by the following figure and has to

remain in the final limits.

R3: In normal operation mode, the distortion

spectrum of the variable frequency AC voltage has to

remain below the limits given by the following figure.

In contrast to the high level requirements, the
functional requirements define the realization and
logic of the system to be realized in an abstract but
executable language. For example, R4 and R5:

R4: In case Ditching is not active, the OVBDV shall be

in its PO position and the BUV shall be in its FO

position, five seconds after Override has been

activated

R5: For a two-position valve defining a valve flap the

following functional behaviour shall apply:

If the system is in state “open” indicated by

“full_open”=true, a commanding signal “closing”

without indication “fault” shall result in state “close”.

In case of “fault” the system shall go into condition

“open_fault” with indicator “stuck_open”=true.

Reciprocal rule for state “close” with indicator

“full_close”, command opening and fault condition

“close_fault” indicated by “stuck_close”

In these examples, the logic is functional as no details
on the physical realization is given.

0 0.05 0.1 0.15 0.2
100

200

300

400

Time from onset of Transient [s]
V

o
lt
s
 [

R
M

S
]

10
1

10
2

10
3

10
4

10
5

10
6

-40

-30

-20

-10

0

10

Frequency [Hertz]

d
is

to
rt

io
n
 A

m
p
lit

u
d
e
 [

d
B

V
]

Model Based Specifications in Aircraft Systems Design

492 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

A fully model based design process relies on
extensive modelling to express demands by functional
modelling, supplied test environments, model of the
physical system with its components, test it against the
specification and check the result. The center in charge
of the aircraft or system specification may cover all or
a selection of the following tasks to express the model
based specification for a component (or system) which
shall be developed:

Table 1: Elements of model based specification process

1 Specification of the components functional and
procedural behavior by models.

2 Simple physical model to demonstrate the desired
behavior of the component and allow simulation
with physical test environments.

3 Physical modelling of the testing environment.
4 Expression of requirements and modes of

operation by requirement monitors.
5 Definition of interfaces to physical states,

environmental states, logical states.
6 Mapping of requirements to the interfaces of the

functional models.
7 Providing property monitors with built in signal

operations for requirements which demand
advanced processing of interface signals-

8 Providing indicators and automatic
documentation of warnings and faults.

9 Make tools available for managing requirements
and documentation

In the systems realization phase of the supplier and
afterwards in the systems integration phase of the
airframer there are additional demands for
• Systematic testing of system models.
• Clearance of requirements.
It is the task of the supplier to realize the system and
harmonize the behavior of the executable specification
and the developed system. For this, the model of the
developed system can be embedded into the test model,
being optimized and checked by the monitors.

4 Realization with tools of MathWorks

The aforementioned approach was evaluated by Airbus
Germany at hand of a controller design of the ECS.
The model of the controller could be best modelled by
hierarchical state charts and stateless flow charts.

The modeling platform used several packages and
tools of the MathWorks product family. The physical

system of the ECS system architecture was modelled
with Simulink. Alternatively, Modelica models can be
imported in Simulink. For the hybrid state space
modeling of component models, Stateflow was used
(MathWorks, 2015b).

The functional specifications of the controller
make use of Stateflow as well. The state diagrams give
a detailed description on the systems behavior,

including start sequence, transitional conditions and
entry conditions when changing to adjacent states.

For managing of requirements, no ready to use
product was found which met the demands. Thus a
special requirement manager was commissioned by
Airbus (toolbox developed by Silver Atena4).

The requirement manager summarizes and
documents the requirements, tracks the requirements
changes and allows some coverage analysis on
requirements with predefined test scenarios. It relies on
additional special properties block which are inserted
to the local functional model. For this part the
“Verification and Validation” toolbox (MathWorks,
2015a), the Airbus requirement manager, and
Simulink’s “Report Generator is used.

An example of a model based specification for an
ECS controller is shown in Figure 1 formally defining
Requirement 5. The pneumatic network is the physical
plant which has to be stabilized by a controller to be
developed. The pneumatic system acts as environment
model and is realized by Simulink blocks. The
preliminary model of the controller can be
implemented in a very simple manner at this stage. The
only aim is that the physical system can be simulated,
even if the simulation results violate requirements. For
example, in case a physical demonstrational model is
needed, the controller could be implemented as a P
controller while the supplier’s realization may rely on a
sophisticated model-based controller.

In addition to the preliminary controller - and more
important - the functionality of the controller (R5) is
defined by additional Stateflow diagrams. They are the
result of a pre-design at the airframer. In the right part
of Figure 1, requirements for the behavior in case of
errors are defined. The system can be simulated and
checked interactively by variation of the input states of
the Stateflow system.

No special monitors for high level requirements
were implemented.

After implementation of the functional executable
specification, the formal verification of requirements
can be realized with the “Design Verifier” block set
from MathWorks. An example is shown in Figure 2
formally specifying requirement R4.

The blocks in the left calculate the requirement
while the „statement“ block is linked to a requirement
checker and monitoring system. The system supports
documentation and formal verification of the
requirements. Other special monitors for high level
requirements can be implemented with Simulink
blocks or Simulink S-functions.

4 http://www.silver-atena.de

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

493

Figure 2: Formal specification of requirement R4 using
the Design Verifier from MathWorks.
Figure and text from (Tunnat, 2011).

5 Realization with Modelica

This section shows how to use Modelica for modelling
and checking of requirements to provide the necessary
functionality of Table 1. In general, the transition from
the paper based design process to model based
specification, executable specifications and automated
testing is mostly a matter of the development
philosophy rather than of the technical realization.

Functional requirements can be most conveniently
specified in Modelica by synchronous state machines
(Elmqvist et al., 2012). In Figure 3 the example of
Figure 1Fehler! Verweisquelle konnte nicht

gefunden werden. is shown, implemented with a
Modelica synchronous state machine.

Figure 3: Modelica synchronous state machine of the
example in Figure 1.

The realization and user friendliness is mostly
equivalent to a Stateflow implementation in this case.
However, the Modelica synchronous state machines
have a more rigorous definition to avoid modelling
errors. For example, there may be assignments to the

same variable in different state machine “states” (such
as in state “close_fault” in Figure 3. These state
machine states are “mutually exclusive” and at one
sample instant the code of only one of these states is
executed. Furthermore, in parallel state machines,
exactly one assignment to the same variable at the
same sample instant is allowed. In essence, Modelica
and a Modelica tool only allow one single assignment
to the same variable at one sample instant, in order to
always have deterministic, well-defined behaviour. On
the other hand, in Stateflow several assignments to the
same variable are possible.

Alternatively, one may express the system in
Modelica by behavior trees which follow a slightly
different concept. Behaviour trees can be used for
modelling of logical behavior and especially mission
planing. Complex missions are built up using atomic
tasks. Tasks can query conditions from system states or
trigger actions, e.g. by sending commands to the
communication bus. For a detailed description of the
Modelica library used here, see (Klöckner, 2014).5 The
main advantage of behavior trees for executable
specifications is their standardized and intuitive
structure to express alternative paths. Plans are very
scalable and human-readable on all levels of the
hierarchy. It is their benefit and drawback at the same
time to be inherently memory- and loop-free. They
thus execute the correct task immediately after a restart
or online modification.

This is demonstrated in Figure 6 which is the
Modelica behavior tree implementation of the ECS
example of Figure 1. Depending on the Boolean input
variables fault and opening, one of the four conditions
open, close_fault, open_fault or close occurs. The logic
is like this: Starting always from the top, a selector
tries to execute one of the paths linked below, where
the preference is from left to right. The “sequence”
starts a sequence from left to right, in case the breaking
condition (II-Symbol) is true. For example in case of
“not opening”, the “selector” cannot take the left path
“sequence” which is blocked by “condition”. Instead
the right path to selector2 is tried. “sequence2” ends in
the action “open_fault” in case “faultyO” is un-blocked
by fault = true, and otherwise in “close”.

5 Different types of “behavior trees” in a Modelica context have
also been used in (Myers, 2010).

close

outer Boolean fully_close;

fully_close = true;

clause_fault

outer Boolean stuck_close;

stuck_close = true;

open_fault

outer Boolean stuck_open;

stuck_open = true;

open

outer Boolean fully_open;

fully_open = true;

2: fault

2: fault

3: opening and not fault

3: closing and not fault

“In case Ditching is not active, the OVBDV shall be in its

PO position and the BUV shall be in its FO position, five

seconds after Override has been activated.“

Figure 1: Model based specification at hand of an ECS example

Model Based Specifications in Aircraft Systems Design

494 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

Figure 4: Modelica behavior tree of ECS example in
Figure 1.

Another important demand of model based
specification are physical demonstrator models of the
system and modelling of test and environment models
(Table 1, demand 2 and 3). Obviously, Modelica is
very well suited for this part, due to the many available
physical modeling libraries, that are much more
intuitive to use than with only graphical input/output
block diagrams.

The expression of high level requirements can be
formulated in principle by any type of mathematical
operation which results in an expression for
requirement fulfilled/not fulfilled (or not yet
evaluated). For example in (Kuhn, 2011) Modelica
requirement models have been designed for band
constraint signals or frequency domain constraints. The

textual output of the requirement checking was based
on Dymola proprietary scripting and was missing
systematic output and documentation concepts.

In parallel to JTI activities, the European ITEA
projects EUROSYSLIB, OPENPROD, and their
successor MODRIO also identified a strong need for
requirements modelling. Their approach resulted in the
new Modelica_Requirements library (Otter et al.,
2015). One essential advantage of this library is that it
uses two- and three-valued logic to specify
requirements. It is then possible to distinguish whether
a requirement is satisfied, violated, or not tested during
a simulation. It could be demonstrated in the JTI
project, that the requirements library fulfills many
needs for formulation of executable specifications of
the electrical and the ECS system. In particular, for the
examples in this paper, the LogicalBlocks, the
TimeLocators and the ChecksInSlidingWindow have
been used.

Requirement R2 could be implemented with the
Modelica_Requirements library with several
BandDuration blocks. A more convenient approach is
sketched in section 5.2 by using a newly designed and
implemented “Funnel” block.

Frequency domain requirements, such as needed for
Requirement R3, cannot be defined with the current
Modelica_Requirements library. Therefore, new
requirement blocks have been developed based on the
Fast Fourier Transformation (FFT), see section 5.3.

An implementation of requirement R4 with the
Modelica_Requirements library is shown in Figure 5.
The requirement block “requirement_AVS_override”
displays the textual version of the requirement in its
icon and collects the status of all requirement blocks
during one simulation run. By this example it is also o

root root root

sequence sequence sequence

selector selector selector

?

condition condition

opening

input1

close_fault close_fault

sequence1 sequence1 sequence1

faultyC faultyC

fault

input2

selector1 selector1 selector1

?

open open open_fault open_fault

sequence2 sequence2 sequence2

faultyO faultyO

close close

selector2 selector2 selector2

?

during1

check

observation.OVBDV_FO

during2

check

observation.OVBDV_PO

and1

and

and2

and
not1

not

delayedRising1

AVS_override_and_not_ditching

delay rising

by

5 s

o_AVS

observation.AVS_override

o_ditching

observation.ditching

observation

In case Ditching is not active,

the OVBDV shall be in its PO position

and the BUV shall be in its FO position,

five seconds after Override has

been activated

requirement_AVS_override

AVS_override_and_not_ditching

Figure 5: Formal specification of requirement R4 with the Modelica_Requirements
library.

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

495

demonstrated how to bind requirements to the physical
model: The general idea is to define observation
variables in Modelica records, as needed from a
physical system model (“observation” in Figure 5). Via
newly developed Modelica language elements the
actual values of the observation variables can be
inquired conveniently from the physicale system model
(Elmqvist et al., 2015). Figure 6 shows the final status
with the requirement model (lower left) and the system
model (upper part). The system model may be the
executable specification or the supplier’s model in the
verification phase.

Figure 6: Binding and assessment of ECS requirements.

The requirement model is linked to the system model
by the following instantiation of the requirement:

 Requirements.AVSRequirements Req1(
 observationName="controller",
 observation= Bindings.AVSRequirementFromController(
 controller))

Bindings.AVSRequirementFromController is a function to
map the variables from the controller to the
requirement record. observationName defines the name
of the target of the requirement. This is needed for
automatic documentation.

At the end of the simulation, the following log is
displayed:

--- 100 % of the requirements are satisfied ---
Requirements satisfied (1 of 1):
Controller(Req1.requirement_AVS_override):
In case Ditching is not active, the OVBDV shall

be in its PO position and the BUV shall be in

its FO position, five seconds after Override has

been activated

The current development stage allows to check in
every simulation run whether the defined requirements
are satisfied or violated (or are not tested).

The binding concept is flexible enough to bind
requirements to all instances of a class using the
experimental component iterators. For example in case
of multiple controllers, an iteration would map a
requirement to each controller.

For organization of functional expressions, there
exists no requirement manager similar to the Simulink

solution for Modelica yet. The Simulink tool
summarizes and documents the requirements, tracks
the requirements changes and allows coverage analysis
on requirements with predefined test scenarios. In the
MODRIO project, further developments are planned in
this direction.

5.1 Demonstration: Specification of hardware

As last example, the concept of a model based design
process relying on a model based specification shall be
demonstrated at hand of a realistic example of the
design of a generator. Alternatively to written
specifications, the airframer may deliver a model based
specification. The test model is shown in Figure 7 on
the right side (supply of linear resistive three phase
load and nonlinear rectified load to investigate the
harmonics in the AC line).

Figure 7: Demonstration of testing environment with
requirement models and signal monitors.

The availability of test models allows easy and uniform
implementation for all suppliers. Special operations on
signals needed for the requirements checking might be
also given as models. Here, the green block embeds an
FFT based requirements blocks, an alternative
realization (Kuhn, 2011) to the FFT block of section
5.3.
The requirements are stated by Modelica blocks. In this
case two requirement blocks are associated to the
model in the lower right corner which check the
requirements for the operating area of the DC voltage
and frequency content of the AC line voltage.

A primitive generator model might be supplied by
the airframer. This is replaced by the supplier by a
much more detailed model (dashed box in the left). By
this test environment, the generator model can be
tested and also optimized in relation to the
requirements.

printViolations

satisfaction: %

Model Based Specifications in Aircraft Systems Design

496 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

The model in the left lower corner triggers the
summary log of the requirement blocks. The output
together with the documentation of the test model and
the system model (generator) are valuable parts of a
proper industrial model delivery.

5.2 Transient Limits monitor

The “Funnel” block, displayed in the
figure to the right, allows checking of
transient time limits in funnel style.
The upper and lower limits are
defined via a table versus time. The
initial start of the time varying limits is triggered by an
initial overshoot of the limits. The initial limits are
defined by the final band. This funnel type limit may
be retriggered if one full period of the funnel style
limitation has gone by. The output y indicates the
satisfaction of the criterion. Further outputs are a
scaled distance to the limits and the time varying upper
and lower limits.

5.3 FFT-based frequency property monitor

Frequency based criteria are typical for industrial
standards of electrical systems but are not yet
supported in the Modelica_Requirements library. For
example, MIL-STD-704F (MIL704F, 2004) defines a
maximum distortion in the spectrum of the 270Volts
DC system.

Based on the implementation and practical
experience with the FFT monitoring block of (Kuhn,
2011), two FFT blocks were newly designed and
implemented. An example of the user’s view of the
new FFT block WithinAbsoluteFFTdomain is shown in
Figure 8. An alternative block with limits for total
harmonic distortion (THD) is shown in Figure 9.

Figure 8: Example of WithinAbsoluteFFTdomain block
for the inputs: � = � + � ∙ ��� �����+�.� ∙ ��� �����
(�� = � ��,�� = � ��) and condition = true.

The user interfaces were designed to allow
parameterization with a minimum of information and
display the amplitudes over the frequencies in the icon.

Figure 9: Example of WithinAbsoluteFFTdomain_THD
block with: � = � + � ∙ ������� +�.� ∙ �����(����)
(�� = � ��,�� = � ��, “pulse” is the rectangular pulse
function at frequency ��) and condition = true.

In the icon of WithinAbsoluteFFTdomain, the two
scalar parameters of this block are displayed, f_max –
the maximum frequency of interest for the user, and
f_res – the resolution of the frequency axis (so the
increment of the frequency axis). Typically, the user is
interested in a maximum frequency f_max that is an
integer multiple of some base frequency (e.g. 50 Hz
base for power distribution networks). The frequency
resolution should be selected in such a way, that the
spectral lines of particular interest are an integer
multiple of the resolution (in order to get the most
accurate result). In the example f_max = 4 Hz and
f_res = 1 Hz, so 5 frequency values are shown in
the icon (0, 1, 2, 3, 4 Hz). For numerical reasons, in
practice the resolution should be chosen high enough
to distinguish well between adjacent peaks in the
spectrum.

The constraints for the frequency amplitudes are
defined via a polygon based on a tabular parameter
input. Typically, there are two kinds of parameteri-
zations: Definition via absolute values for the
constraints and definition in relation to the magnitude
at a certain frequency. For relative definition, the user
is requested for the respective base frequency. In case
this frequency is not an integer multiple of the
frequency resolution, the frequency closest to it is
taken. With parameter searchInterval a search interval
around this base frequency is defined, where the
maximum peak in this region is taken as real base
frequency. For example for the 50 Hz net frequency of
the European power grid, the frequency may vary by
±0.2Hz in regular operation mode. After initialization,
the limits are displayed as red polygons in the icon

Whenever the Boolean input condition has a
rising edge, the Real input signal u is periodically
sampled with a sample rate automatically computed
from f_max and f_res and stored in a buffer. Once
“sufficient” values are stored in the buffer (for details,
see below), an FFT is computed, displayed in the icon
as bar plot and stored on file. Additionally, the distance

FFTdomain_C_THD

25

f_max f_res.

0.2 Hz

THD [pc]

48.3813

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

497

to the amplitude boundary is computed. If at least one
amplitude is above the boundary, output y = Violated.
If all amplitudes are below the boundary, y = Satisfied,
and if the FFT has not yet been computed, y =
Undecided. In the example of Figure 8, y = Satisfied.

In case a falling edge of u occurs before sufficient
sample values are monitored or the simulation run is
terminated, then the FFT spectrum is approximated via
the partly-filled buffer with zeros for other values
(called “zero-padding” technique).

Standard tools/functions for FFT provide a different,
user-unfriendly parameterization. The mapping of the
parameterization of the WithinAbsoluteFFTdomain
block to the underlying standard FFT parameterization
is non-trivial and is shortly sketched:

In order that the amplitudes are computed by the
FFT with sufficient precision, the FFT computation
needs to be performed for a much larger frequency as
of interest for the user. In the block a fixed factor of 10
is used. So, if ���� = 4 Hz, then the FFT computation
uses internally a maximum frequency ����,��� ≥
40 Hz. The basic formulae for an FFT computation of
real numbers with even number of sample points are
summarized in equation (1):

 �� =
�� − 1�� ,

 � = �0,
���� ,

2���� ,⋯ ,
��
2
� ,∆�� = �(��)− ��� ,�� =

��
2

+ 1

����,�(��) =
1�� � ∆����−1

�=0 �−�2�� ���
 (1)

where

• �� is the sample period.
• �� is the number of sample points

• �� is the sample frequency �����,��� =
��2�

• ���� is the frequency resolution (f_res).

• �� is the number of frequency points
• ��� is the arithmetic mean of the signal
• ∆�� is the difference of the input signal with

respect to the arithmetic mean ��� .
• ���� is a complex number as function of a (real)

frequency �� , � ∈ [1. .��] and represents the FFT.

In order to be efficient, the original FFT algorithm by
Cooley and Tukey (Cooley, 1965) requires that the
number of sample points is an integer multiple of 2: �� = 2� , � = 1,2, … Newer algorithms allow more
prime numbers. The implemented blocks use the public
domain C-code KISS FFT (Borgerding, 2003). This
mixed-radix FFT code requires that the number of
sample points must be an integer multiple of 2, 3 and 5:

�� = 2�3�5� . For real signals, �� must be additionally
an even number.

The maximum frequency 10 ∙ ���� is now enlarged
so that the number of sample points �� fulfills the
above restrictions. The sample period �� is determined,
so that the frequency resolution �� ��⁄ has the required
value. These computations are performed with the
following Modelica code:

 // Compute best ns according to 10*f_max and f_resolution

 ns :=2*integer(ceil(10*f_max/f_res));

 // Make ns even
ns :=if mod(ns, 2) == 0 then ns else ns + 1;

// Find smallest ns that is even + expressed as 2^i*3^j*5^k

while true loop

 ns1 :=ns;
 while mod(ns1,2) == 0 loop ns1 :=div(ns1, 2);end while;
 while mod(ns1,3) == 0 loop ns1 :=div(ns1, 3);end while;
 while mod(ns1,5) == 0 loop ns1 :=div(ns1, 5);end while;
 if ns1 <= 1 then break; end if;
 ns :=ns + 2; // enlarge ns, but keep it even

end while;

// Compute other FFT variables
f_max_FFT = f_resolution*div(ns, 2);
Ts = 1/(2*f_max_FFT) "Sample period";
T = (ns - 1)*Ts "Simulation time";

To understand the numbers above beforehand, utility
function showNumberOfFFTpoints(..) is provided that
computes them. For example calling the function as

showNumberOfFFTpoints(f_max=2000, f_resolution=27);

results in the following output:

Desired:
 f_max = 2000 Hz
 f_resolution = 27 Hz

Calculated:
 Maximum frequency used = 20250 Hz
 Number of sample points = 1500 (=2^2*3^1*5^3)
 Sample period = 2.46914e-005 s
 Simulation time = 0.0370123 s

Note, that ����,��� = ��� − 1� ∙ �����������

=
��
2
∙ �����������

=
1500

2
∙ 27 Hz

= 20250 Hz

In the “advanced” tab access is given to parameters
less often used:
• SearchInterval (search interval around base

frequency)
• TerminateAfterFFT (When true, the simulation is

terminated after evaluation of the FFT)
• Parameterization of the “Window” type

In case the sampled interval does not match a multiple
length of the occurring waves, the spectrum would

Model Based Specifications in Aircraft Systems Design

498 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

suffer from this “discontinuity” of non-matching levels
at start and end point since the FFT assumes periodic
signals. This can be circumvented by multiplication of
the time series by a filter of the same length, called
“window function”. If this window function exhibits a
shape with zero at start and end and some maximum in
the middle, this discontinuity can be attenuated. By
choice of a proper window function, erroneous high
frequency signals will be diminished and the signal
power at frequencies not precisely matched in the FFT
output spectrum is smeared to the adjacent spectral
points (called bins). For details see (Heinzel, 2002).
The influence of windowing is demonstrated in Figure
10 and Figure 11. A sinusoidal signal of amplitude 1.5
and frequency 3.4 Hz is not matched by the FFT’s
output resolution of 1 Hz. Figure 10 shows a peak at 3
Hz with an amplitude of 1.2, some amplitudes in the
adjacent bins and content for all higher frequencies.

Figure 10: � = �.� ∙ ���(�� ∙ �.� ∙ �) and 1 Hz
resolution.

Figure 11: � = �.� ∙ ���(�� ∙ �.� ∙ �), 1 Hz resolution
and flat top window.

In contrast, Figure 11 is the FFT output of the signal
which was windowed by the “Minimum sidelobe 3-
term-at top window SFT3M” (Heinzel 2002) of length �� with the window �� = 0.28235 − 0.52105 ∙ ��� �1 ∙ 2 ∙ � ∙ ��� − 1

�

 +0.19659 ∙ ��� �2 ∙ 2 ∙ � ∙ ��� − 1
�, � = 0. .�� − 1

(2)

One can see from the plot, both frequencies 3 Hz and 4
Hz show the amplitude of the original signal of 3.4 Hz.
Also the next bins show a higher (erroneous) content
while there are only low amplitudes at higher
frequencies. As a consequence it is recommended to
use windowing only in case where discrete peaks in the
spectrum are expected, which may not be matched well

by the resolution, the output resolution is low and the
information about the correct amplitude is essential.

In addition to the WithinAbsoluteFFTdomain block, the
WithinAbsoluteFFTdomain_THD, calculates the Total
Harmonic Distortion (THD) from the FFT output.
THD is a measure for the amplitudes of harmonics in
relation to the amplitude of the base frequency, where
M is defined by ����� ∙ � ≤ ����,���:

��� = ���[� ∙ �����]2�
�=2 /�[�����] (3)

The THD criteria should only be evaluated for periodic
steady state conditions. Periodic steady state is
typically only occurring after an initial transient phase
of the simulation. Instead of using an arbitrary settling
time, the block offers the following feature: The THD
can be evaluated cyclically at quite low numeric cost
and is assumed to converge to a steady state value at
periodic steady state condition. The

WithinAbsoluteFFTdomain_THD block offers the
option to evaluate the THD cycle every update % of
the base harmonic until the difference between two
successive THD evaluations is below changerate. At
this point the criterion is calculated.

In Figure 12 some benchmarks for different kinds of
data storage of the �� FFT points is given:

• SamplingAndModelicaBuffer (= blue line) buffers
the data at every sampling interval 1/�� in a
Modelica array. Due to Modelica’s single
assignment rule, all values of this array need to get
a value at every sample instant. If a value is not
changed at the current sample instant, the value
from the previous sample instant is copied (so at
every sample instant �� − 1 values are copied).

• SamplingAndBuffer (= red line) invokes a C
function at every sample instant that stores the
actual value of the input signal into an internal C
array.

• NoEventConly (= green line) does not use
sampling but a C function stores the input value at
every model evaluation into an internal C array.
The values in this array are interpolated and
internally sampled before the FFT is computed.
For older Dymola versions this was beneficial
since the simulation restart after a sample instant
was “expensive” for a stiff solver. For newer
Dymola versions this is not the case if the sampled
system does not influence the integrator (which is
the case here).

As can be seen from the figure SamplingAndModelica-

Buffer is the slowest. NoEventConly is a bit faster as
SamplingAndBuffer. In other benchmarks,
SamplingAndBuffer is the fastest approach. Due to
these benchmarks, in the two blocks the
SamplingAndBuffer approach is used for data storage.

0 4 8 12 16 20

-0.5

0.0

0.5

1.0

1.5

A
m

p
lit

u
d
e

Frequency in [Hz]

0 4 8 12 16 20

-0.5

0.0

0.5

1.0

1.5

2.0

A
m

p
lit

u
d
e

Frequency in [Hz]

Session 7A: Aerospace Applications 1

DOI
10.3384/ecp15118491

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

499

Figure 12: Comparison of CPU time [s] for three types of
data storage for the FFT points.

6 Summary

In this paper the concept of model based specification
and associated tools for aircraft systems was discussed.
While previous work on this subject is based on
MathWorks toolboxes it could be shown that Modelica
could be used instead. Especially the new
Modelica_Requirements library adds important
extensions to express high level requirements and bind
requirements to the system model under study. In
combination with the FFT based requirement blocks of
this paper, the full range of typical aircraft
requirements for electrical systems can be formally
defined. For automated documentation additional tools
and scripts tailored to the need of the airframer or
supplier is needed.

7 Acknowledgements

The research leading to these results has received
funding from the European Union’s Seventh
Framework Programme (FP7/2007-2016) for the Clean
Sky Joint Technology Initiative under grant agreement
no. CSJU-GAM-SGO-2008-001.

References

Becker C., and Giese T. (2011). Application of model based
functional specification methods to environmental control
systems engineering. SAE Paper : Aerotech Congress &

Exhibition.

Becker C. et.al. (2013). Efficiency of model based
methodologies in air systems engineering. AST Workshop

on Aircraft System Technologies.

Becker C. (2014). Modellbasierter Entwurf von
Flugzeugklimasystemen: Herausforderungen und Nutzen
funktionaler Systemspezifikationen. Technical report,

Airbus Germany, EYVVC.

Borgerding M. (2003). Kiss fft.
URL: http://sourceforge.net/projects/kissfft/.

CleanSky (2014). Deliverable D2.1.4: Simulation and
Design Platform Report. Revision b. Technical report,

Cleansky SGO.

CleanSky project (2015). Systems for green operation (sgo).
URL: http://www.cleansky.eu.

Cooley, James W.; Tukey, John W. (1965). "An algorithm
for the machine calculation of complex Fourier series".
Math. Comput. 19: 297–301. doi:10.2307/2003354

Elmqvist H., Gaucher F., Mattsson S.E., and Dupont F
(2012). State Machines in Modelica. Proceedings of the 9

th

International Modelica Conference, Munich, Germany,
Sept. 3-5. Download:
http://www.ep.liu.se/ecp/076/003/ecp12076003.pdf

Elmqvist H., Olsson H., and Otter M. (2015). Constructs for
Meta Properties Modeling in Modelica. Accepted for

Modelica’2015 conference.

G. Heinzel, A. Rüdiger and R. Schilling (2002). Spectrum
and spectral density estimation by the Discrete Fourier
transform (DFT), including a comprehensive list of
window functions and some new at-top windows. URL:
http://www.rssd.esa.int/SP/LISAPATHFINDER/docs/Data
_Analysis/GH_FFT.pdf

Klöckner A. (2014). The Modelica BehaviorTrees Library:
Mission Planning in Continuous-Time for Unmanned
Aircraft. Proceedings of the 10

th
 International Modelica

Conference, pp. 727 –736, Lund , Sweden, March 10 -12.
DOI: 10.3384/ ECP 14096727. Download:
http://www.ep.liu.se/ecp/096/076/ecp14096076.pdf

Kuhn M.R. (2011). Advanced generator design using pareto-
optimization. Power Electronics and Drive Systems

(PEDS), 2011 IEEE Ninth International Conference on,
pp. 1061 –1067, Dec. DOI: 10.1109/PEDS.2011.6147391.

Kuhn M.R., and Ji Y. (2014). Modelica for large scale
aircraft electrical network V&V. Proceedings of the 10

th

International Modelica Conference, pp. 747-756. DOI
10.3384/ECP14096747. Download:
http://www.ep.liu.se/ecp/096/078/ecp14096078.pdf

MathWorks (2015a). Simulink Toolbox: Verification and
Validation. URL:
http://www.mathworks.com/products/simverification/.

MathWorks (2015b). Stateflow. URL
http://www.mathworks.com/products/stateflow/.

MIL704F (2004). MIL-STD-704F: Aircraft electric power
characteristic. Download: http://everyspec.com/MIL-
STD/MIL-STD-0700-0799/MIL-STD-704F_1083/

Myers T., Geoff Dromey R. and Fritzson P. (2010).
Comodeling: From Requirements to an Integrated
Software/Hardware Model. IEEE Computer, vol.44, no. 4,
pp. 62-70, April 2011

Otter M., Thuy N., Bouskela D., Buffoni L., Elmqvist H.,
Fritzson P., Garro A., Jardin A., Olsson H., Payelleville
M., Schamai W., Thomas E., Tundis A. (2015). Formal
Modeling and Automatic Verification of Requirements.
Accepted for Modelica’2015 conference.

Thuy N. (2014). D2.1.1 – Modelica extensions for properties
modelling, Part III: FOrmal Requirements Modelling
LAnguage (FORM-L). Internal report, ITEA2 MODRIO

project, Sept. 2014.

Tunnat M. (2011). Integration modellbasierter Methoden in
den Entwicklungsprozess hybrider Flugzeugregel-
ungssysteme am Beispiel des Ventilation-Control-System.
Master thesis, Technical University Hamburg-Harburg,

Institut für Flugzeug-Kabinensysteme, supervised by C.

Becker and T. Giese (Airbus).

0 1 2 3 4 5

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

C
P

U
 t
im

e
 [
s
]

simulated time [s]

SamplingAndModelicaBuffer SamplingAndCBuffer NoEventConly

Model Based Specifications in Aircraft Systems Design

500 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491

