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Abstract 

This application paper describes the concept and needs 
on model based specifications in order to specify the 
basic behavior of aircraft systems and methods to 
check the requirements. It is demonstrated how it can 
be implemented by recent Modelica based libraries, 
especially with the new Modelica_Requirements 
library. Two new FFT-based requirement blocks are 
proposed to allow full coverage of the specification. 

Keywords: executable specification, requirements, 

aircraft system design, FFT-based requirements. 

1 Introduction 

Executable specifications are computer algorithms 
written in an appropriate specification language with 
the purpose of demonstrating and verifying the 
compliance of the input-output behaviour of the model 
subject to the model specifications. In aircraft design, 
executable specifications demonstrating and verifying 
the behaviour of models can be seen as an important 
tool to make the co-work between airframers and 
suppliers quicker and more efficient, as they allow 
frequent testing and early validation of subsystems and 
systems interaction.  

Similarly, requirement modelling allows the 
specification and testing of demands on signals which 
are generated by a system or the model of a system. 
Together, executable specifications and requirement 
models enable a well-defined specification of a system. 
Both methods allow testing against the hardware or 
software implementation. They strongly benefit from 
methods for monitoring and cross-checking. 

While the traditional aircraft design process is based 
on document based specifications only, a model 
supported design process based on executable 
specifications and requirement models is thought to 
improve the process in terms of quality and time 
(Becker and Giese, 2011). In contrast to the traditional, 
more software oriented usage of executable 
specifications, here they were used in a more general 
way also for specification of physical models and 
behavior. In the publication the concept was evaluated 
with MathWorks based tools, but specification models 
may include physical models built with Modelica. In 
order to have a one-tool solution which allows better 

coupling of the physical models to requirement blocks, 
alternatives to this approach with Modelica based 
methods were investigated in the “CleanSky, Systems 
for green operation” project (Cleansky, 2015). 
Associated tools were developed in parallel in the 
CleanSky subproject ModelSSA by Dassault Systèmes, 
supervised by DLR-SR and in the ITEA2 “MODRIO” 
project with several partners1. This paper reviews the 
concept of executable specifications for aircraft 
systems2 where the executable specifications are seen 
as a bigger package of specifications, test cases, 
demonstrators and monitoring functions. The 
implementation is solely based on Modelica.3 

2 Review of model based design process 

For aircraft systems design, the current design process 
is a document-based development. The behaviour of 
the system to be developed is defined by textual 
requirements, pseudo code, tables, block diagrams, 
logic diagrams and mathematical expressions. General 
demands applicable to several (sub-)systems are 
generalized in industrial standards, for example MIL-
STD-704F (MIL704F, 2004) or airframer specific 
standards, for example the AirBus Directives (ABD). 
Document-based development has severe disad-
vantages: There is the danger of misunderstandings and 
misinterpretations of functional requirements since 
they are written in natural language which could result 
in incorrect system behaviour. Furthermore, the 
specified system behaviour cannot be simulated. 
Therefore, contradicting requirements can hardly be 
recognized before realization of the system. Also for 
multi-system functions and interfaces the validation is 
missing and therefore the mutual influences between 
systems may not be treated correctly in the early design 
cycles. This results in late detection of design errors 
when integrating the systems together. In addition, in 
case of requirements on signals and requirements on 
systems interacting with plants, the signal processing 
and plant test models may be implemented differently 

1 MODRIO: https://itea3.org/project/modrio.html 
2 In this paper aircraft systems (e.g. a drive) and components of a system 
(e.g. controller) are both called “system” to simplify notation. 
3 Section 2-4 is based on the internal reports (Kuhn et. al., 2014; Becker 
et.al., 2013; Becker, 2014). 
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between the airframer and different suppliers. In any 
case there might be redundant work since the same 
monitoring functions need to be implemented by 
several suppliers or at the airframer for testing.  
In contrast, by a Model Based Design Process (MBDP) 
the system to be developed is specified by models 
representing the functional and/or physical behavior. 
The models can be delivered with test environments 
and monitoring functions which are modeled by the 
airframer. To prevent confusions and double work, it is 
essential to tightly link the documentation and the 
model based specification. This can be achieved by 
automatic generation of the documentation from the 
model and its embedded requirements and optionally 
with linkage of models to requirements in databases. 
By this approach, misunderstandings and lack of 
information is avoided since the models provide a 
mathematically precise definition and allow interactive 
simulation and investigation. While the model should 
cover all aspects of the systems’ functionality, there is 
no necessity to express all of it in a single model. A 
combination of methods as  

• flow diagram notation,  

• state transition notation,  

• physical modelling, plus the afore-mentioned  

• written requirements  
can be used. This methodology was evaluated in 
(Becker and Giese, 2011). The efficiency of the model 
based approach was analyzed in (Becker et al., 2013). 
In (Becker, 2014) the model-based design process was 
tested qualitatively against the former development 
programs. It could be shown that the model based 
specification process results in reduced cost for 
development of control systems. Those are significant 
advantages from a project management perspective.  

3 Elements of an executable specification 

model 

In the following we will introduce representative 
requirements in the style of (Tunnat, 2011) and 
(MIL704F, 2004) for the Environmental Control 
System (ECS) and for the electrical system. 

For a model-based design process, the requirements 
can be grouped into two different layers:  

• The high level requirements. 
• The functional requirements. 

The high level requirements treat specifications on the 
exterior behavior of the system. The formulation is 
based on engineering knowledge and top level 
demands. The high level requirements include  

(1) Demands on the implementation and realization. 
Those requirements generally are not stated by use 
of models. A requirement can be stated as in R1. 

R1: The engine’s total probability of failure must be 

smaller as 1e-9.  

(2) Demands on the signal and state behavior. Such 
requirements are stated by requirement blocks that 
assess the specific requirements using observation 
variables from a physical model as part of the 
executable specification. Requirements may be 
specified based on industrial standards. A 
requirement can be stated as in R2 and R3. 

R2: In normal operation mode, the envelope of the 

RMS value of the 400 Hz AC voltage after a voltage 

transient is given by the following figure and has to 

remain in the final limits.  

 
R3: In normal operation mode, the distortion 

spectrum of the variable frequency AC voltage has to 

remain below the limits given by the following figure. 

 

In contrast to the high level requirements, the 
functional requirements define the realization and 
logic of the system to be realized in an abstract but 
executable language. For example, R4 and R5:  

R4: In case Ditching is not active, the OVBDV shall be 

in its PO position and the BUV shall be in its FO 

position, five seconds after Override has been 

activated 

R5: For a two-position valve defining a valve flap the 

following functional behaviour shall apply: 

If the system is in state “open” indicated by 

“full_open”=true, a commanding signal “closing” 

without indication “fault” shall result in state “close”. 

In case of “fault” the system shall go into condition 

“open_fault” with indicator “stuck_open”=true. 

Reciprocal rule for state “close” with indicator 

“full_close”, command opening and fault condition 

“close_fault” indicated by “stuck_close” 

In these examples, the logic is functional as no details 
on the physical realization is given.  
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A fully model based design process relies on 
extensive modelling to express demands by functional 
modelling, supplied test environments, model of the 
physical system with its components, test it against the 
specification and check the result. The center in charge 
of the aircraft or system specification may cover all or 
a selection of the following tasks to express the model 
based specification for a component (or system) which 
shall be developed:  

Table 1: Elements of model based specification process 

1 Specification of the components functional and 
procedural behavior by models. 

2 Simple physical model to demonstrate the desired 
behavior of the component and allow simulation 
with physical test environments. 

3 Physical modelling of the testing environment. 
4 Expression of requirements and modes of 

operation by requirement monitors. 
5 Definition of interfaces to physical states, 

environmental states, logical states. 
6 Mapping of requirements to the interfaces of the 

functional models. 
7 Providing property monitors with built in signal 

operations for requirements which demand 
advanced processing of interface signals- 

8 Providing indicators and automatic 
documentation of warnings and faults. 

9 Make tools available for managing requirements 
and documentation 

In the systems realization phase of the supplier and 
afterwards in the systems integration phase of the 
airframer there are additional demands for 
• Systematic testing of system models. 
• Clearance of requirements. 
It is the task of the supplier to realize the system and 
harmonize the behavior of the executable specification 
and the developed system. For this, the model of the 
developed system can be embedded into the test model, 
being optimized and checked by the monitors. 

4 Realization with tools of MathWorks 

The aforementioned approach was evaluated by Airbus 
Germany at hand of a controller design of the ECS. 
The model of the controller could be best modelled by 
hierarchical state charts and stateless flow charts.  

The modeling platform used several packages and 
tools of the MathWorks product family. The physical 

system of the ECS system architecture was modelled 
with Simulink. Alternatively, Modelica models can be 
imported in Simulink. For the hybrid state space 
modeling of component models, Stateflow was used 
(MathWorks, 2015b).  

The functional specifications of the controller 
make use of Stateflow as well. The state diagrams give 
a detailed description on the systems behavior, 

including start sequence, transitional conditions and 
entry conditions when changing to adjacent states. 

For managing of requirements, no ready to use 
product was found which met the demands. Thus a 
special requirement manager was commissioned by 
Airbus (toolbox developed by Silver Atena4).  

The requirement manager summarizes and 
documents the requirements, tracks the requirements 
changes and allows some coverage analysis on 
requirements with predefined test scenarios. It relies on 
additional special properties block which are inserted 
to the local functional model. For this part the 
“Verification and Validation” toolbox (MathWorks, 
2015a), the Airbus requirement manager, and 
Simulink’s “Report Generator is used.  

An example of a model based specification for an 
ECS controller is shown in Figure 1 formally defining 
Requirement 5. The pneumatic network is the physical 
plant which has to be stabilized by a controller to be 
developed. The pneumatic system acts as environment 
model and is realized by Simulink blocks. The 
preliminary model of the controller can be 
implemented in a very simple manner at this stage. The 
only aim is that the physical system can be simulated, 
even if the simulation results violate requirements. For 
example, in case a physical demonstrational model is 
needed, the controller could be implemented as a P 
controller while the supplier’s realization may rely on a 
sophisticated model-based controller.  

In addition to the preliminary controller - and more 
important - the functionality of the controller (R5) is 
defined by additional Stateflow diagrams. They are the 
result of a pre-design at the airframer. In the right part 
of Figure 1, requirements for the behavior in case of 
errors are defined. The system can be simulated and 
checked interactively by variation of the input states of 
the Stateflow system. 

No special monitors for high level requirements 
were implemented. 

After implementation of the functional executable 
specification, the formal verification of requirements 
can be realized with the “Design Verifier” block set 
from MathWorks. An example is shown in Figure 2 
formally specifying requirement R4. 

The blocks in the left calculate the requirement 
while the „statement“ block is linked to a requirement 
checker and monitoring system. The system supports 
documentation and formal verification of the 
requirements. Other special monitors for high level 
requirements can be implemented with Simulink 
blocks or Simulink S-functions. 

 
 
 

4 http://www.silver-atena.de 
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Figure 2: Formal specification of requirement R4 using 
the Design Verifier from MathWorks.  
Figure and text from (Tunnat, 2011). 

5 Realization with Modelica 

This section shows how to use Modelica for modelling 
and checking of requirements to provide the necessary 
functionality of Table 1. In general, the transition from 
the paper based design process to model based 
specification, executable specifications and automated 
testing is mostly a matter of the development 
philosophy rather than of the technical realization. 

Functional requirements can be most conveniently 
specified in Modelica by synchronous state machines 
(Elmqvist et al., 2012). In Figure 3 the example of 
Figure 1Fehler! Verweisquelle konnte nicht 

gefunden werden. is shown, implemented with a 
Modelica synchronous state machine.  

 

Figure 3: Modelica synchronous state machine of the 
example in Figure 1. 

The realization and user friendliness is mostly 
equivalent to a Stateflow implementation in this case. 
However, the Modelica synchronous state machines 
have a more rigorous definition to avoid modelling 
errors. For example, there may be assignments to the 

same variable in different state machine “states” (such 
as in state “close_fault” in Figure 3. These state 
machine states are “mutually exclusive” and at one 
sample instant the code of only one of these states is 
executed. Furthermore, in parallel state machines, 
exactly one assignment to the same variable at the 
same sample instant is allowed. In essence, Modelica 
and a Modelica tool only allow one single assignment 
to the same variable at one sample instant, in order to 
always have deterministic, well-defined behaviour. On 
the other hand, in Stateflow several assignments to the 
same variable are possible. 

Alternatively, one may express the system in 
Modelica by behavior trees which follow a slightly 
different concept. Behaviour trees can be used for 
modelling of logical behavior and especially mission 
planing. Complex missions are built up using atomic 
tasks. Tasks can query conditions from system states or 
trigger actions, e.g. by sending commands to the 
communication bus. For a detailed description of the 
Modelica library used here, see (Klöckner, 2014).5 The 
main advantage of behavior trees for executable 
specifications is their standardized and intuitive 
structure to express alternative paths. Plans are very 
scalable and human-readable on all levels of the 
hierarchy. It is their benefit and drawback at the same 
time to be inherently memory- and loop-free. They 
thus execute the correct task immediately after a restart 
or online modification. 

This is demonstrated in Figure 6 which is the 
Modelica behavior tree implementation of the ECS 
example of Figure 1. Depending on the Boolean input 
variables fault and opening, one of the four conditions 
open, close_fault, open_fault or close occurs. The logic 
is like this: Starting always from the top, a selector 
tries to execute one of the paths linked below, where 
the preference is from left to right. The “sequence” 
starts a sequence from left to right, in case the breaking 
condition (II-Symbol) is true. For example in case of 
“not opening”, the “selector” cannot take the left path 
“sequence” which is blocked by “condition”. Instead 
the right path to selector2 is tried. “sequence2” ends in 
the action “open_fault” in case “faultyO” is un-blocked 
by fault = true, and otherwise in “close”. 

5 Different types of “behavior trees” in a Modelica context have 
also been used in (Myers, 2010). 

close 

outer Boolean fully_close; 

fully_close = true; 

clause_fault 

outer Boolean stuck_close; 

stuck_close = true; 

open_fault 

outer Boolean stuck_open; 

stuck_open = true; 

open 

outer Boolean fully_open; 

fully_open = true; 

2: fault 

2: fault 

3: opening and not fault 

3: closing and not fault 

“In case Ditching is not active, the OVBDV shall be in its 

PO position and the BUV shall be in its FO position, five 

seconds after Override has been activated.“ 

 

 
Figure 1: Model based specification at hand of an ECS example 
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Figure 4: Modelica behavior tree of ECS example in 
Figure 1. 

Another important demand of model based 
specification are physical demonstrator models of the 
system and modelling of test and environment models 
(Table 1, demand 2 and 3). Obviously, Modelica is 
very well suited for this part, due to the many available 
physical modeling libraries, that are much more 
intuitive to use than with only graphical input/output 
block diagrams.  

The expression of high level requirements can be 
formulated in principle by any type of mathematical 
operation which results in an expression for 
requirement fulfilled/not fulfilled (or not yet 
evaluated). For example in (Kuhn, 2011) Modelica 
requirement models have been designed for band 
constraint signals or frequency domain constraints. The 

textual output of the requirement checking was based 
on Dymola proprietary scripting and was missing 
systematic output and documentation concepts. 

In parallel to JTI activities, the European ITEA 
projects EUROSYSLIB, OPENPROD, and their 
successor MODRIO also identified a strong need for 
requirements modelling. Their approach resulted in the 
new Modelica_Requirements library (Otter et al., 
2015). One essential advantage of this library is that it 
uses two- and three-valued logic to specify 
requirements. It is then possible to distinguish whether 
a requirement is satisfied, violated, or not tested during 
a simulation. It could be demonstrated in the JTI 
project, that the requirements library fulfills many 
needs for formulation of executable specifications of 
the electrical and the ECS system. In particular, for the 
examples in this paper, the LogicalBlocks, the 
TimeLocators and the ChecksInSlidingWindow have 
been used.  

Requirement R2 could be implemented with the 
Modelica_Requirements library with several 
BandDuration blocks. A more convenient approach is 
sketched in section 5.2 by using a newly designed and 
implemented “Funnel” block. 

Frequency domain requirements, such as needed for 
Requirement R3, cannot be defined with the current 
Modelica_Requirements library. Therefore, new 
requirement blocks have been developed based on the 
Fast Fourier Transformation (FFT), see section 5.3.  

An implementation of requirement R4 with the 
Modelica_Requirements library is shown in Figure 5. 
The requirement block “requirement_AVS_override” 
displays the textual version of the requirement in its 
icon and collects the status of all requirement blocks 
during one simulation run. By this example it is also o 

root root root 

sequence sequence sequence 

selector selector selector 

? 

condition condition 

opening 

input1 

close_fault close_fault 

sequence1 sequence1 sequence1 

faultyC faultyC 

fault 

input2 

selector1 selector1 selector1 

? 

open open open_fault open_fault 

sequence2 sequence2 sequence2 

faultyO faultyO 

close close 

selector2 selector2 selector2 

? 

during1 

check 

observation.OVBDV_FO 

during2 

check 

observation.OVBDV_PO 

and1 

and 

and2 

and 
not1 

not 

delayedRising1 

AVS_override_and_not_ditching 

delay rising 

by 

5 s 

o_AVS 

observation.AVS_override 

o_ditching 

observation.ditching 

observation 

In case Ditching is not active,  

the OVBDV shall be in its PO position  

and the BUV shall be in its FO position,  

five seconds after Override has  

been activated 

requirement_AVS_override 

AVS_override_and_not_ditching 

Figure 5: Formal specification of requirement R4 with the Modelica_Requirements 
library. 
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demonstrated how to bind requirements to the physical 
model: The general idea is to define observation 
variables in Modelica records, as needed from a 
physical system model (“observation” in Figure 5). Via 
newly developed Modelica language elements the 
actual values of the observation variables can be 
inquired conveniently from the physicale system model 
(Elmqvist et al., 2015). Figure 6 shows the final status 
with the requirement model (lower left) and the system 
model (upper part). The system model may be the 
executable specification or the supplier’s model in the 
verification phase.  

 
Figure 6: Binding and assessment of ECS requirements. 

The requirement model is linked to the system model 
by the following instantiation of the requirement: 

   Requirements.AVSRequirements Req1( 
      observationName="controller", 
      observation= Bindings.AVSRequirementFromController( 
                                                                                controller)) 

Bindings.AVSRequirementFromController is a function to 
map the variables from the controller to the 
requirement record. observationName defines the name 
of the target of the requirement. This is needed for 
automatic documentation. 

At the end of the simulation, the following log is 
displayed: 

--- 100 % of the requirements are satisfied --- 
Requirements satisfied (1 of 1): 
Controller(Req1.requirement_AVS_override): 
In case Ditching is not active, the OVBDV shall 

be in its PO position and the BUV shall be in 

its FO position, five seconds after Override has 

been activated 

The current development stage allows to check in 
every simulation run whether the defined requirements 
are satisfied or violated (or are not tested).  

The binding concept is flexible enough to bind 
requirements to all instances of a class using the 
experimental component iterators. For example in case 
of multiple controllers, an iteration would map a 
requirement to each controller.  

For organization of functional expressions, there 
exists no requirement manager similar to the Simulink 

solution for Modelica yet. The Simulink tool 
summarizes and documents the requirements, tracks 
the requirements changes and allows coverage analysis 
on requirements with predefined test scenarios. In the 
MODRIO project, further developments are planned in 
this direction. 

5.1 Demonstration: Specification of hardware 

As last example, the concept of a model based design 
process relying on a model based specification shall be 
demonstrated at hand of a realistic example of the 
design of a generator. Alternatively to written 
specifications, the airframer may deliver a model based 
specification. The test model is shown in Figure 7 on 
the right side (supply of linear resistive three phase 
load and nonlinear rectified load to investigate the 
harmonics in the AC line).  

 

Figure 7: Demonstration of testing environment with 
requirement models and signal monitors. 

The availability of test models allows easy and uniform 
implementation for all suppliers. Special operations on 
signals needed for the requirements checking might be 
also given as models. Here, the green block embeds an 
FFT based requirements blocks, an alternative 
realization (Kuhn, 2011) to the FFT block of section 
5.3.  
The requirements are stated by Modelica blocks. In this 
case two requirement blocks are associated to the 
model in the lower right corner which check the 
requirements for the operating area of the DC voltage 
and frequency content of the AC line voltage.  

A primitive generator model might be supplied by 
the airframer. This is replaced by the supplier by a 
much more detailed model (dashed box in the left). By 
this test environment, the generator model can be 
tested and also optimized in relation to the 
requirements. 

printViolations 

satisfaction:     % 
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The model in the left lower corner triggers the 
summary log of the requirement blocks. The output 
together with the documentation of the test model and 
the system model (generator) are valuable parts of a 
proper industrial model delivery. 

5.2 Transient Limits monitor 

The “Funnel” block, displayed in the 
figure to the right, allows checking of 
transient time limits in funnel style. 
The upper and lower limits are 
defined via a table versus time. The 
initial start of the time varying limits is triggered by an 
initial overshoot of the limits. The initial limits are 
defined by the final band. This funnel type limit may 
be retriggered if one full period of the funnel style 
limitation has gone by. The output y indicates the 
satisfaction of the criterion. Further outputs are a 
scaled distance to the limits and the time varying upper 
and lower limits. 

5.3 FFT-based frequency property monitor 

Frequency based criteria are typical for industrial 
standards of electrical systems but are not yet 
supported in the Modelica_Requirements library. For 
example, MIL-STD-704F (MIL704F, 2004) defines a 
maximum distortion in the spectrum of the 270Volts 
DC system.  

Based on the implementation and practical 
experience with the FFT monitoring block of (Kuhn, 
2011), two FFT blocks were newly designed and 
implemented. An example of the user’s view of the 
new FFT block WithinAbsoluteFFTdomain is shown in 
Figure 8. An alternative block with limits for total 
harmonic distortion (THD) is shown in Figure 9.  

 
Figure 8: Example of WithinAbsoluteFFTdomain block 
for the inputs: � = � +  � ∙ ��� �����+�.� ∙ ��� �����  
(�� = � ��,�� = � ��) and condition = true. 

The user interfaces were designed to allow 
parameterization with a minimum of information and 
display the amplitudes over the frequencies in the icon. 

 
Figure 9: Example of WithinAbsoluteFFTdomain_THD 
block with: � = � +  � ∙ ������� +�.� ∙ �����(����) 
(�� = � ��,�� = � ��,  “pulse” is the rectangular pulse 
function at frequency ��) and condition = true. 

In the icon of WithinAbsoluteFFTdomain, the two 
scalar parameters of this block are displayed, f_max – 
the maximum frequency of interest for the user, and 
f_res – the resolution of the frequency axis (so the 
increment of the frequency axis). Typically, the user is 
interested in a maximum frequency f_max that is an 
integer multiple of some base frequency (e.g. 50 Hz 
base for power distribution networks). The frequency 
resolution should be selected in such a way, that the 
spectral lines of particular interest are an integer 
multiple of the resolution (in order to get the most 
accurate result). In the example f_max = 4 Hz and 
f_res = 1 Hz, so 5 frequency values are shown in 
the icon (0, 1, 2, 3, 4 Hz). For numerical reasons, in 
practice the resolution should be chosen high enough 
to distinguish well between adjacent peaks in the 
spectrum.  

The constraints for the frequency amplitudes are 
defined via a polygon based on a tabular parameter 
input. Typically, there are two kinds of parameteri-
zations: Definition via absolute values for the 
constraints and definition in relation to the magnitude 
at a certain frequency. For relative definition, the user 
is requested for the respective base frequency. In case 
this frequency is not an integer multiple of the 
frequency resolution, the frequency closest to it is 
taken. With parameter searchInterval a search interval 
around this base frequency is defined, where the 
maximum peak in this region is taken as real base 
frequency. For example for the 50 Hz net frequency of 
the European power grid, the frequency may vary by 
±0.2Hz in regular operation mode. After initialization, 
the limits are displayed as red polygons in the icon 

Whenever the Boolean input condition has a 
rising edge, the Real input signal u is periodically 
sampled with a sample rate automatically computed 
from f_max and f_res and stored in a buffer. Once 
“sufficient” values are stored in the buffer (for details, 
see below), an FFT is computed, displayed in the icon 
as bar plot and stored on file. Additionally, the distance 
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to the amplitude boundary is computed. If at least one 
amplitude is above the boundary, output y = Violated. 
If all amplitudes are below the boundary, y = Satisfied, 
and if the FFT has not yet been computed, y = 
Undecided. In the example of Figure 8, y = Satisfied.  

In case a falling edge of u occurs before sufficient 
sample values are monitored or the simulation run is 
terminated, then the FFT spectrum is approximated via 
the partly-filled buffer with zeros for other values 
(called “zero-padding” technique). 

Standard tools/functions for FFT provide a different, 
user-unfriendly parameterization. The mapping of the 
parameterization of the WithinAbsoluteFFTdomain 
block to the underlying standard FFT parameterization 
is non-trivial and is shortly sketched: 

In order that the amplitudes are computed by the 
FFT with sufficient precision, the FFT computation 
needs to be performed for a much larger frequency as 
of interest for the user. In the block a fixed factor of 10 
is used. So, if ���� = 4 Hz, then the FFT computation 
uses internally a maximum frequency ����,��� ≥
40 Hz. The basic formulae for an FFT computation of 
real numbers with even number of sample points are 
summarized in equation (1): 

               �� =
�� − 1�� ,

                � = �0,
���� ,

2���� ,⋯ ,
��
2
� ,∆�� = �(��)− ��� ,�� =

��
2

+ 1

����,�(��) =
1�� � ∆����−1

�=0 �−�2�� ���
 (1) 

where 

• �� is the sample period. 
• �� is the number of sample points 

• �� is the sample frequency �����,��� =
��2�  

• ���� is the frequency resolution (f_res). 

• �� is the number of frequency points 
• ���  is the arithmetic mean of the signal 
• ∆�� is the difference of the input signal with 

respect to the arithmetic mean ��� . 
• ���� is a complex number as function of a (real) 

frequency �� , � ∈ [1. .��] and represents the FFT. 

In order to be efficient, the original FFT algorithm by 
Cooley and Tukey (Cooley, 1965) requires that the 
number of sample points is an integer multiple of 2: �� = 2� , � = 1,2, … Newer algorithms allow more 
prime numbers. The implemented blocks use the public 
domain C-code KISS FFT (Borgerding, 2003). This 
mixed-radix FFT code requires that the number of 
sample points must be an integer multiple of 2, 3 and 5: 

�� = 2�3�5� . For real signals, �� must be additionally 
an even number. 

The maximum frequency 10 ∙ ���� is now enlarged 
so that the number of sample points �� fulfills the 
above restrictions. The sample period �� is determined, 
so that the frequency resolution �� ��⁄  has the required 
value. These computations are performed with the 
following Modelica code: 

 // Compute best ns according to 10*f_max and f_resolution 

 ns :=2*integer(ceil(10*f_max/f_res)); 
 
 // Make ns even  
ns :=if mod(ns, 2) == 0 then ns else ns + 1; 
 
// Find smallest ns that is even + expressed as 2^i*3^j*5^k 

while true loop 

    ns1 :=ns; 
    while mod(ns1,2) == 0 loop ns1 :=div(ns1, 2);end while; 
    while mod(ns1,3) == 0 loop ns1 :=div(ns1, 3);end while; 
    while mod(ns1,5) == 0 loop ns1 :=div(ns1, 5);end while; 
    if ns1 <= 1 then   break; end if; 
    ns :=ns + 2;  // enlarge ns, but keep it even 

end while; 
 
// Compute other FFT variables 
f_max_FFT = f_resolution*div(ns, 2); 
Ts                 = 1/(2*f_max_FFT) "Sample period"; 
T                   =  (ns - 1)*Ts            "Simulation time"; 

To understand the numbers above beforehand, utility 
function showNumberOfFFTpoints(..) is provided that 
computes them. For example calling the function as 

showNumberOfFFTpoints(f_max=2000, f_resolution=27); 

results in the following output: 

Desired: 
  f_max         = 2000 Hz 
  f_resolution  = 27 Hz 
 
Calculated: 
  Maximum frequency used  = 20250 Hz 
  Number of sample points = 1500 (=2^2*3^1*5^3) 
  Sample period           = 2.46914e-005 s 
  Simulation time         = 0.0370123 s 

Note, that ����,��� = ��� − 1� ∙ ����������� 

=
��
2
∙ ����������� 

=
1500

2
∙ 27 Hz 

= 20250 Hz 

In the “advanced” tab access is given to parameters 
less often used: 
• SearchInterval (search interval around base 

frequency) 
• TerminateAfterFFT (When true, the simulation is 

terminated after evaluation of the FFT) 
• Parameterization of the “Window” type 

In case the sampled interval does not match a multiple 
length of the occurring waves, the spectrum would 

Model Based Specifications in Aircraft Systems Design

498 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118491



suffer from this “discontinuity” of non-matching levels 
at start and end point since the FFT assumes periodic 
signals. This can be circumvented by multiplication of 
the time series by a filter of the same length, called 
“window function”. If this window function exhibits a 
shape with zero at start and end and some maximum in 
the middle, this discontinuity can be attenuated. By 
choice of a proper window function, erroneous high 
frequency signals will be diminished and the signal 
power at frequencies not precisely matched in the FFT 
output spectrum is smeared to the adjacent spectral 
points (called bins). For details see (Heinzel, 2002). 
The influence of windowing is demonstrated in Figure 
10 and Figure 11. A sinusoidal signal of amplitude 1.5 
and frequency 3.4 Hz is not matched by the FFT’s 
output resolution of 1 Hz. Figure 10 shows a peak at 3 
Hz with an amplitude of 1.2, some amplitudes in the 
adjacent bins and content for all higher frequencies.  

 

Figure 10: � = �.� ∙ ���(�� ∙ �.� ∙ �) and 1 Hz 
resolution. 
 

 

Figure 11: � = �.� ∙ ���(�� ∙ �.� ∙ �), 1 Hz resolution 
and flat top window. 

In contrast, Figure 11 is the FFT output of the signal 
which was windowed by the “Minimum sidelobe 3-
term-at top window SFT3M” (Heinzel 2002) of length �� with the window  �� = 0.28235 −  0.52105 ∙ ��� �1 ∙ 2 ∙ � ∙ ��� − 1

� 

                             +0.19659 ∙ ��� �2 ∙ 2 ∙ � ∙ ��� − 1
�,  � = 0. .�� − 1 

(2) 

One can see from the plot, both frequencies 3 Hz and 4 
Hz show the amplitude of the original signal of 3.4 Hz. 
Also the next bins show a higher (erroneous) content 
while there are only low amplitudes at higher 
frequencies. As a consequence it is recommended to 
use windowing only in case where discrete peaks in the 
spectrum are expected, which may not be matched well 

by the resolution, the output resolution is low and the 
information about the correct amplitude is essential. 

In addition to the WithinAbsoluteFFTdomain block, the 
WithinAbsoluteFFTdomain_THD, calculates the Total 
Harmonic Distortion (THD) from the FFT output. 
THD is a measure for the amplitudes of harmonics in 
relation to the amplitude of the base frequency, where 
M is defined by ����� ∙ � ≤ ����,���: 

��� = ���[� ∙ �����]2�
�=2 /�[�����] (3) 

The THD criteria should only be evaluated for periodic 
steady state conditions. Periodic steady state is 
typically only occurring after an initial transient phase 
of the simulation. Instead of using an arbitrary settling 
time, the block offers the following feature: The THD 
can be evaluated cyclically at quite low numeric cost 
and is assumed to converge to a steady state value at 
periodic steady state condition. The 

WithinAbsoluteFFTdomain_THD block offers the 
option to evaluate the THD cycle every update % of 
the base harmonic until the difference between two 
successive THD evaluations is below changerate. At 
this point the criterion is calculated.  

In Figure 12 some benchmarks for different kinds of 
data storage of the �� FFT points is given: 

• SamplingAndModelicaBuffer (= blue line) buffers 
the data at every sampling interval 1/�� in a 
Modelica array. Due to Modelica’s single 
assignment rule, all values of this array need to get 
a value at every sample instant. If a value is not 
changed at the current sample instant, the value 
from the previous sample instant is copied (so at 
every sample instant �� − 1 values are copied). 

• SamplingAndBuffer (= red line) invokes a C 
function at every sample instant that stores the 
actual value of the input signal into an internal C 
array.  

• NoEventConly (= green line) does not use 
sampling but a C function stores the input value at 
every model evaluation into an internal C array. 
The values in this array are interpolated and 
internally sampled before the FFT is computed. 
For older Dymola versions this was beneficial 
since the simulation restart after a sample instant 
was “expensive” for a stiff solver. For newer 
Dymola versions this is not the case if the sampled 
system does not influence the integrator (which is 
the case here). 

As can be seen from the figure SamplingAndModelica-

Buffer is the slowest. NoEventConly is a bit faster as 
SamplingAndBuffer. In other benchmarks, 
SamplingAndBuffer is the fastest approach. Due to 
these benchmarks, in the two blocks the 
SamplingAndBuffer approach is used for data storage.  
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Figure 12: Comparison of CPU time [s] for three types of 
data storage for the FFT points. 

6 Summary 

In this paper the concept of model based specification 
and associated tools for aircraft systems was discussed. 
While previous work on this subject is based on 
MathWorks toolboxes it could be shown that Modelica 
could be used instead. Especially the new 
Modelica_Requirements library adds important 
extensions to express high level requirements and bind 
requirements to the system model under study. In 
combination with the FFT based requirement blocks of 
this paper, the full range of typical aircraft 
requirements for electrical systems can be formally 
defined. For automated documentation additional tools 
and scripts tailored to the need of the airframer or 
supplier is needed. 
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