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Abstract 

Reuse of health data for epidemiological and health services 

research have enormous benefits for individuals and society. 

However, patients’ and health institutions’ have privacy con-

cerns. Yet, the commonly used de-identification and consent-

based privacy-preserving methods have limitations.  

In this paper we described three generic requirements for pri-

vacy-preserving statistical computing on distributed health 

data. Then, we described building blocks for implementation on 

horizontally partitioned data.  

For each research project, a set of participant health institu-

tions locally store data extracts for the researchers’ criteria. 

The data across the institutions collectively make the project 

data, which we refer to as virtual dataset.  

We decomposed count, mean, standard deviation, variance, co-

variance, and Pearson’s r into summation forms and described 

as an abstract computation graph, where sub-computations are 

nodes. Generic APIs that can be invoked at runtime to execute 

a node against a virtual dataset are defined. Then we described 

a proof of concept implementation called Emnet.  

Emnet demonstrates that horizontally partitioned data reuse 

can be possible while preserving patients’ and institutions’ pri-

vacy. More statistical analyses can easily be included into Em-

net as far as they can be decomposed into summation forms. 
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Introduction 

The increasing use of electronic health record systems led to 
collection of a large amount of electronic health data at health 
institutions. In Norway, electronic health record (EHR) was 
first introduced in the late 1970s and now the usage has ex-
panded to all GPs [1,2]. Reuse of health data collected for pa-
tient treatments have a huge potential for individuals and soci-
ety through epidemiological and health services research in-
cluding comparative effectiveness research, population-based 
surveillance, treatment safety, quality assurance [3,4]  

However, misuse of data released for research could harm indi-
viduals and health institutions. Therefore, the privacy concerns 
remain to be the main challenges that have limited wide reuse 

of health data. Several jurisdictional, national and international 
ethical and legal regulations [5–8] have been passed to protect 
individual’s privacy while enabling data reuse for research. In 
general, most regulations including the Norwegian Health Re-
search Act [9] allow reuse of personal identifying data through 
informed consent and de-identified data without consent. In ad-
dition, a research ethics committee (e.g. REK in Norway) could 
allow reuse of personal identifying data without consent under 
certain conditions.  

Informed consent could result in data bias due to demographic 
differences between consenters and non-consenters [5–8]. In 
addition, the time and cost requirements are often not feasible 
for large studies [10]. Data de-identification is a very important 
method for privacy protection. However, it is often challenged 
between minimizing probability of re-identification and in-
creasing data utility [11]. In addition, these techniques do not 
protect the privacy of the health institutions, which is also con-
sidered a factor that limits data reuse [12,13]. 

The data available in one institution may not give sufficient sta-
tistical power, especially for rare diseases where there are only 
few cases at individual institution. In addition, it may not be 
diverse enough to address population heterogeneity. Popula-
tion-based surveillances require data from multiple institutions 
that cover broad geographical area. Therefore, the data required 
for epidemiological and health services research is often dis-
tributed across multiple institutions.   

Secure multi-party computation (SMC) techniques deals with 
the problem of a set of health institutions H = {H1, H2, … , Hm} who 
wish to jointly compute on their private data, while ensuring 
security properties, such as data privacy and correctness of out-
put. These techniques only reveal computation results at the end 
of a computation [14]. As a result, both individuals’ and health 
institutions’ privacy can be protected. 

Various statistical query tools and distributed research net-
works such as SAFTINET [15], EHR4CR [16], SHRINE [17], 
PopMedNet [18], and SCANNER [19] have implemented sta-
tistical analyses on data distributed across multiple health insti-
tutions. These tools, except SCANNER, only support statistical 
count. In addition, they do not protect the privacy of the health 
institutions, as individual institution level count is disclosed. In 
contrast, SCANNER supports more statistical analyses and has 
implemented computation techniques that release aggregated 
statistics of multiple institutions’ data, which also protects indi-
vidual institutions privacy. 

In this paper we described a framework for privacy-preserving 
computing on distributed health data using SMC techniques, 
and its implementation called Emnet. Emnet enables statistical 
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analyses on data horizontally partitioned across multiple health 
institutions’ EHRs. Currently, commonly used statistical anal-
yses are implemented including count, mean, standard devia-

tion, variance, covariance, and Pearson’s r. However, the 
framework enables to easily add statistical analyses that can be 
decomposed into summation forms. 
 
The remainder of this paper is organized as follows. Materials 
and Methods section describes the privacy requirements, build-
ing blocks of Emnet, and the Result section describes the design 
and implementation of Emnet and an experiment performed. 
The Discussion section discusses the main results of the imple-
mentation, and strength and limitation of the work presented in 
the paper. 

Materials and Methods 

In this section we have described the privacy requirements, and 
building blocks of the framework, which is divided into data 
preparation and statistical analyses.  

Requirements for privacy preserving computing 

We have formulated three requirements for privacy-preserving 
statistical analyses on data distributed across multiple institu-
tions:  
1. Any entity should not learn a combined statistics of < 𝑘 num-

ber of institutions data. To protect the privacy of both individ-
uals and health institutions, a computation should not reveal in-
dividuals’ information and statistics on a single institution’s 
data. Therefore, information revealed during a computation 
contains aggregate of individuals’ data from ≥ 𝑘 number of 
health institutions. The value of k depends on the privacy re-
quirements of the health institutions. 
 
2. Semi-honest trust model. Health institutions can be trusted to 
follow SMC protocols with their true data. However, no insti-
tution should be able to learn private information about individ-
uals and health institutions from the messages exchanged dur-
ing a computation.  
 
3. Must not depend on trusted third party. No third party should 
be trusted to collect personal identifying sensitive data from 
health institutions. However, semi-trusted third party (STTP) 
could be used in a computation to improve computation effi-
ciency and coordination. The STTP is only trusted not to col-
lude with health institutions and follows SMC protocols. The 
STTP role can be given to the Norwegian Institute of Public 
Health or any other public authority. 

Virtual dataset 

As specified in the above requirements, a tool cannot use a 
trusted third party that collects the data required for a given re-
search project. Therefore, each institution executes a project 
data query that contains inclusion and exclusion criteria, and 
the required data extracts. Then, data extracts are locally stored 
in a separate database. The data sets at all institutions collec-
tively make the data required for the research project. A unique 
project_id is assigned to virtual datasets to correctly identify 
during analyses. Since the data are not stored in a central repos-
itory, we refer to these data sets as virtual dataset. 
 
The focus of this paper is on horizontally partitioned data, 
therefore, each institution independently execute data query. 
However, for vertically partitioned data, virtual dataset creation 

1 https://www.dips.no/  
2 http://arketyper.no/ckm/  

requires record linkage techniques [20] to identify eligible pa-
tients and extract required data sets. Even when the data are 
horizontally partitioned, patients at the health institutions might 
not be mutually exclusive, especially when the health institu-
tions are in geographically close area. For example, in Norway, 
residents can change their GP twice a year. As a result, an indi-
vidual’s data could be available at multiple GPs. Thus, virtual 
dataset creation on horizontally partitioned data also might re-
quire record linkage in order to identify and remove duplicate 
records. Duplicate detection is outside the scope of this paper. 
 
OpenEHR is open standard specifications for EHR that enable 
to attain semantic interoperability. DIPS ASA1, an EHR vendor 
that covers 70% of Norwegian hospital EHR market, is imple-
menting openEHR based EHR. Norwegian ICT also deployed 
a Clinical Knowledge Manager (CKM)2 registry for archetypes 
management and governance. Therefore, we assume that there 
is a drive towards wide use of openEHR archetype based EHRs 
in the health institutions.  
 
Archetype Query Language (AQL) is the language developed 
to perform queries on openEHR based EHRs. It is neutral to 
specific implementation of EHRs, as far as the EHRs are based 
on openEHR specifications. Therefore, following our assump-
tion of openEHR based EHRs across the health institutions, we 
have used AQL as a language to specify research projects’ data 
query in the virtual dataset creation. 
 
In this paper, we have implemented Emnet using an openEHR 
repository called Think!EHR3. Think!EHR is Java implemen-
tation of the latest openEHR specification. We persist 
openEHR compatible EHR extracts into the platform and exe-
cute queries specified using AQL. 

Secure summation protocol 

Yao introduced SMC in 1982 and since then it has been widely 
studied [21]. However, until the last decade practical imple-
mentation has been missing due to lack of efficient protocols. 
Specialized protocols (i.e. secure summation [22–24], and se-
cure scalar product [25]) are designed to achieve better effi-
ciency by utilizing specific properties of a computation. Proto-
cols using generic techniques (i.e. garbled circuit [26], Homo-
morphic encryption [27,28], and secret sharing [29]) are also 
improving. Therefore, practical implementation of SMC tools 
are starting to appear [30]. 
 
SMC protocols are designed to provide security guarantee 
against a specific adversarial model (i.e. semi-honest, covert, or 
malicious adversary). Complex techniques are used to ensure 
stronger security guarantee (covert and malicious adversary), 
often at the cost of computation efficiency [31]. Therefore, pro-
tocols secure against semi-honest adversary are more efficient 
and scalable, and sufficient for joint computation between 
health institutions, as we assume health institutions can be 
trusted to follow an SMC protocol.  
 
Secure summation is one of the most commonly studied proto-
col and a building block for several secure computations [32]. 
Secure summation protocols are designed using different tech-
niques, such as secrete sharing [33,34], Homomorphic encryp-
tion [35], and adding random number on a private value. Two 
random number based protocols that are secure against semi-
honest adversary are presented below. 

3 http://www.marand-think.com/  
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Simple Secure sum 

Simple secure sum protocols are implemented based on adding 
random number on a private value before sending to another 
institution [24,36].  A coordinator sends a random number 𝑅 to 
the first node. The first node adds its private value 𝑆1 on 𝑅 and 
passes the result 𝑅 + 𝑆1 to the second node. The second node 
does the same and passes the result 𝑅 + 𝑆1 + 𝑆2 to the third node. 
Finally, the coordinator subtracts 𝑅 from the value received 
from the last node 𝑅 + 𝑆1 + 𝑆2 + … + 𝑆𝑛 to find the true sum of the 
private values 𝑆1 + 𝑆2 + … + 𝑆𝑛.  

The protocol is efficient because it: (1) uses a simple technique; 
(2) only require equal number of communication as the number 
of nodes; and (3) has linear increase in number of communica-
tions with increase in number of nodes. However, the protocol 
does not ensure privacy, if node 𝑖 and 𝑖 + 2 collude to find a pri-
vate value of node 𝑖 + 1. Ensuring privacy against colluding 
nodes is a common challenge [33]. 

SINE (Secured Intermediate iNformation Exchange) 

Shuwang et al. [37] implemented a random number based pro-
tocol with a better collusion resistance. A coordinator sends a 
random number 𝑅𝑐 to the first node. The first node adds its own 
random number 𝑅1 on 𝑅𝑐 and passes the result (𝑅𝑐 + 𝑅1) to the 
second node. The second node does the same and sends the re-
sult (𝑅𝑐 + 𝑅1 + 𝑅2) to the third node. Finally, the coordinator sub-
tracts 𝑅𝑐 from the value received from the last node (𝑅𝑐 + 𝑅1 +

𝑅2 + ⋯ + 𝑅𝑛) to find the sum of the random numbers (𝑅1 +  𝑅2 +

⋯ + 𝑅𝑛). Subsequently, all nodes send the sum of their private 
value and their random number (𝑅1 + 𝑆1,  𝑅2 + 𝑆2, … ,  and 𝑅𝑛 + 𝑆𝑛) 
to the coordinator. To find the sum of private values, the coor-
dinator sums together these values and subtracts the sum of ran-
dom numbers ((𝑅1 +  𝑅2 + ⋯ + 𝑅𝑛) + (𝑆1 + 𝑆2 + 𝑆𝑛))  − (𝑅1 +  𝑅2 +

⋯ + 𝑅𝑛).  

The SINE protocol only reveals the sum of all institutions’ pri-
vate value. The protocol provides security guarantee even when 
𝑛 − 1 nodes, other than the coordinator, collude with each other. 
However, if a coordinator collude with node 𝑖 + 1, it is possible 
to learn private information of institution 𝑖. For example, if the 
coordinator receives 𝑅𝑐 + 𝑅1 from node 2, it is possible to calcu-
late 𝑅1 and consequently calculate 𝑆1 from 𝑅1 + 𝑆1 received from 
node 1. Therefore, unless the coordinator colludes with other 
nodes, the protocol remains secure. The protocol only trusts that 
the coordinator follows the protocol and don’t collude with 
other nodes.  

In the simple secure sum protocol, collusion of any two (𝑖 and 
𝑖 + 2) nodes enables to learn private information of node 𝑖 + 1. 
However, in the SINE protocol, the collusion should be be-
tween the coordinator and another node. We argue that it is eas-
ier to keep one node (the coordinator) secure from outside ad-
versary, therefore, the protocol have stronger security guaran-
tee. This is achieved at the cost of increased number of commu-
nications (2𝑛 − 1) and arithmetic additions. In general, choice of 
a secure protocol requires a balance between the required secu-
rity guarantee and computation efficiency.  

As a result, in this paper, we chose the SINE protocol for our 
implementation of privacy preserving distributed computing 
tool as it satisfies our requirements described above. And the 
coordinator in the protocol is designated as STTP in the require-
ments.  

Computation graph 

A large number of linear and non-linear statistical analyses can 
be decomposed into sub-computations of summation form [38]. 
Therefore, each sub-computation can be computed with subset 
of the available data and the results can be sum together to find 
the overall result. This makes sub-computations suitable to be 
parallelized [39–41].  

In this subsection, we have described decomposition of count,

mean, variance, standard deviation, covariance, and Pearson’s

r, and how the decomposed statistical analyses can be computed 
in a privacy-preserving manner.  

Let us assume three health institutions {𝐻1, 𝐻2, 𝐻3} have horizon-
tally partitioned data where each health institution has data of a 
unique set of patients that satisfied an inclusion and exclusion 
criteria. Let us further assume that the patients’ ids at each in-
stitution are in the range of [1, 𝑖], [𝑖 + 1, 𝑛], and [𝑛 + 1, 𝑚] (where 
𝑖 > 0, 𝑛 > 𝑖 and 𝑚 > 𝑛) respectively. The values of variables 
𝑥 and 𝑦 are required for analyses. 

Abstract computation graph 

The statistical analyses chosen in this paper depend on one an-
other: (1) mean 𝑥 (𝑦) depends on sum of 𝑥 (𝑦) and count; (2) 
variance of 𝑥 (𝑦) depends on mean of 𝑥 (𝑦); (3) covariance of 
𝑥 and 𝑦 depends on mean of 𝑥 and 𝑦; and (4) Pearson’s r of 
𝑥 and 𝑦 depends on covariance and variance of 𝑥 and 𝑦. These 
dependencies are described as abstract computation graph 
shown in Figure 1. In the computation graph, the nodes repre-
sent statistical computations and the edges point to the direction 
of dependency between nodes. The dependency indicates that a 
node can be computed after computation of all the lower nodes 
that it depends on. For example, variance can be computed after 
summation and count. 

As shown in Figure 1, there are two types of computations, such 
as secure and public computations. Computations that are in a 
box should be securely computed on individuals’ data; and 
computations outside a box can be computed anywhere since 
they are based on only lower level nodes’ results. Note that 
computation results of the nodes are considered as non-sensi-
tive information. 

The arrows point to the direction of dependency. 
Figure 1 – Computation graph of summation, count, variance, 

covar-iance, and Pearson’s r 

The abstract computation graph does not have concrete infor-
mation, such as where the input data are, and how the compu-
tation on each node is executed. How each analysis can be se-
curely computed is described in the following subsection. 
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Concrete computation graph 

Summation is the smallest statistical analysis; and other statis-
tical analyses will be developed based on it. Summation of pa-
tients’ values of 𝑥 is shown in equation 1a. It can be expressed 
as equation 1b, where each institution locally sums their pa-
tients’ values of 𝑥𝑗 and then the local summation results of all 
institutions will be added together to find the total sum. The 
summation result from individual institution contains aggregate 
of its patients’ data. Therefore, releasing it will not risk individ-
uals’ privacy. However, it can be considered private infor-
mation of the health institution. Institutions privacy concerns 
can be avoided by using secure summation techniques that en-
able joint summation between institutions on their local sum-
mation results and only reveal the total summation result.  

𝒔𝒖𝒎(𝑥) = ∑ 𝑥𝑗                                                (1a) 

𝒔𝒖𝒎(𝑥) = ∑ 𝑥𝑗
𝑖
𝑗=1 + ∑ 𝑥𝑗

𝑛
𝑗=𝑖+1 + ∑ 𝑥𝑗

𝑚
𝑗=𝑛+1  (1b)

Therefore, the summation is divided into local computation and 
secure joint computation. Summation of individual level value 
is moved to where the data are located and can be computed 
much more efficiently. In contrast, since secure computations 
are more resource demanding, they are only used to aggregate 
local summation results. 

A total count of eligible patients is a secure computation that is 
calculated from the sum of eligible patients in each institution. 
As shown in equation 2, each institution counts their local pa-
tients and then the local counts from all institutions are summed 
together using secure summation protocol.  

𝒄𝒐𝒖𝒏𝒕 = 𝒄𝒐𝒖𝒏𝒕(𝐻1) + 𝒄𝒐𝒖𝒏𝒕(𝐻2) + 𝒄𝒐𝒖𝒏𝒕(𝐻3)  (2)

As shown in equation 3, mean of 𝑥 is a public computation that 
is calculated from 𝑠𝑢𝑚(𝑥) and 𝑐𝑜𝑢𝑛𝑡 results.  

𝒎𝒆𝒂𝒏 (𝑥) =
𝒔𝒖𝒎(𝑥)

𝒄𝒐𝒖𝒏𝒕
 (3)

Variance of 𝑥 is a secure computation that is calculated from 
individuals’ value of 𝑥𝑗  and mean of 𝑥, as shown in equation 
4a. Variance of an individual patient’s value 𝑥𝑘  is expressed in 
equation 4b. Variance can be expressed in equation 4c by sub-
stituting equation 4b into 4a, which becomes a summation prob-
lem and can be calculated in the same manner as the summation 
in equation 1a. 

𝒗𝒂𝒓(𝑥) =
1

𝑐𝑜𝑢𝑛𝑡
∑(𝑥𝑗 − 𝒎𝒆𝒂𝒏 (𝑥))2 (4a)

𝒗𝒂𝒓(𝑥𝑘) =
1

𝑐𝑜𝑢𝑛𝑡
(𝑥𝑘 − 𝒎𝒆𝒂𝒏 (𝑥))2 (4b)

𝒗𝒂𝒓(𝑥) = ∑ 𝒗𝒂𝒓(𝑥𝑗)                                           (4c) 

A shown in equation 4d, standard deviation of 𝑥 is a public 
computation that is calculated from variance of 𝑥 result. 

𝒔𝒅𝒗(𝑥) = √𝑣𝑎𝑟(𝑥)                                        (4d)

Covariance of 𝑥 and 𝑦 is a secure computation that is calculated 
from individuals’ value of 𝑥𝑗  and 𝑦𝑗, and mean of 𝑥 and 𝑦,  

as shown in equation 5a. Covariance of an individual patient’s 
values of 𝑥𝑘  and 𝑦𝑘  is expressed in equation 5b. Covariance 
can be expressed in equation 5c by substituting equation 5b into 
5a, which becomes a summation problem and can be calculated 
the same as the summation in equation 1a. 

𝒄𝒐𝒗𝒂𝒓(𝑥, 𝑦) =
1

𝑐𝑜𝑢𝑛𝑡
∑(𝑥𝑗 − 𝒎𝒆𝒂𝒏 (𝑥))(𝑦𝑗 − 𝒎𝒆𝒂𝒏 (𝑦))      (5a) 

𝒄𝒐𝒗𝒂𝒓(𝑥𝑘 , 𝑦𝑘) =
1

𝑐𝑜𝑢𝑛𝑡
(𝑥𝑘 − 𝒎𝒆𝒂𝒏 (𝑥))(𝑦𝑘 − 𝒎𝒆𝒂𝒏 (𝑦))    (5b) 

𝒄𝒐𝒗𝒂𝒓(𝑥, 𝑦) = ∑ 𝒄𝒐𝒗𝒂𝒓(𝑥𝑗 , 𝑦𝑗)    (5c) 

Pearson´s r of 𝑥 and 𝑦 is a public computation that is calculated 
using covariance and variance values, as shown in equation 6a. 
Substituting covariance and variance equations (4a and 5a) into 
equation 6a, Pearson’s r will be simplified to equation 6b. 

𝒓(𝑥, 𝑦) =
∑(𝑥𝑗−𝒎𝒆𝒂𝒏(𝑥))(𝑦𝑗−𝒎𝒆𝒂𝒏(𝑦))

√∑(𝑥𝑗−𝒎𝒆𝒂𝒏(𝑥))2 ∑(𝑦𝑗−𝒎𝒆𝒂𝒏(𝑦))2
(6a)

𝒓(𝑥, 𝑦) =
𝒄𝒐𝒗𝒂𝒓(𝑥,𝑦)

√𝒗𝒂𝒓(𝑥)𝒗𝒂𝒓(𝑦)
(6b)

The abstract computation graph shown in Figure 1 has a high 
level of abstraction and does not contain concrete computation 
details. It should be mapped to concrete computation graph for 
privacy preserving computing on a distributed data. Based on 
the discussions above, we have defined generic Application 
Programming Interfaces (APIs) for mapping from abstract to 
concrete computation graph at runtime. The APIs support the 
operations shown in Table 1. 

As we have discussed above, execution of the secure computa-
tions on the abstract computation graph contain local and joint 
secure computations. Therefore, we have defined an API, called 
SecureComp API. Secure API includes two operations, such as 
𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑒() and 𝑆𝑒𝑐𝑢𝑟𝑒𝑆𝑢𝑚(). Each secure computation node 
on the graph is mapped to consecutive execution of these oper-
ations. Since the secure computations are on private data, the 
API will be implemented at the health institutions. 

1. 𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑖𝑑, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, input_𝑣𝑎𝑙𝑢𝑒𝑠, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,

  𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑑):  

project_id is the id for a project that identify the virtual da-
taset on which the computation run; equation is name of the 
equation to be computed; variables are names of the variables 
to be computed on; 𝑖𝑛𝑝𝑢𝑡_𝑣𝑎𝑙𝑢𝑒𝑠 are results of lower level sta-
tistical analyses on the graph that the equation depends; and 
result_id is a unique id that will be assigned to the execution 
result. For example, to calculate variance of 𝑥, the equation is 
𝑣𝑎𝑟(𝑥), 𝑖𝑛𝑝𝑢𝑡_𝑣𝑎𝑙𝑢𝑒𝑠 is value of mean of 𝑥, variables is 𝑥, 
and the result_id is a unique id. 

2. 𝑆𝑒𝑐𝑢𝑟𝑒𝑆𝑢𝑚(𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑖𝑑, p𝑟𝑜𝑡𝑜𝑐𝑜𝑙, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑑):

project_id is the id for a project that identify the virtual da-
taset on which the computation run; protocol is name of a 
secure computation protocol to be used; addresses are ad-
dresses of peer health institutions that jointly compute the pro-
tocol; and result_id is a unique id for 𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑒() results 
that are jointly sum together. For example, to calculate variance 
of 𝑥, addresses are lists of addresses of {𝐻1, 𝐻2, 𝐻3}, protocol

Table 1 – The operations provided by APIs that are implemented by different components of Emnet 
Operations and parameters Description 
𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑖𝑑, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, input_𝑣𝑎𝑙𝑢𝑒𝑠, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑑) Locally executes an equation on individual patients’ data 
𝑆𝑒𝑐𝑢𝑟𝑒𝑆𝑢𝑚(𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑖𝑑, p𝑟𝑜𝑡𝑜𝑐𝑜𝑙, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑑) Jointly run secure summation protocol on the results of 𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑒()  
𝑃𝑢𝑏𝑙𝑖𝑐𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑖𝑑, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, input_𝑣𝑎𝑙𝑢𝑒𝑠, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)    Locally executes an equation on results of lower branch nodes on the graph 
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is SINE secure summation protocol, and result_id is the same 
id assigned during execution of 𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑒(). 

As we have discussed above, execution of the public computa-
tions on the abstract computation graph are computed using 
only lower level nodes’ computation results as input, that are 
not sensitive. Therefore, these computation can be computed 
either at the health institutions, STTP or client application, 
where the inputs are available. Therefore, we have defined an 
API called PublicComp API that includes 𝑃𝑢𝑏𝑙𝑖𝑐𝐶𝑜𝑚𝑝𝑢𝑡𝑒() op-
eration. 
3. 𝑃𝑢𝑏𝑙𝑖𝑐𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑖𝑑, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, input_𝑣𝑎𝑙𝑢𝑒𝑠, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠):
equation is name of the statistical analysis to be computed; 
input_values are results of lower level statistical analyses on 
the graph that the equation depends; project_id is an id that 
enable to identify the input_values of a project; variables
are names of the variables to be computed on. For example, to 
calculate mean of 𝑥, equation is mean, variables contain 
𝑥 and input_values are 𝑠𝑢𝑚(𝑥) and 𝑐𝑜𝑢𝑛𝑡 values.  

Results 

Design and Implementation 

This section describes the design and proof of concept imple-
mentation of Emnet using the framework described above. Fig-
ure 2 shows main components of the tool.  

Client – The Client is a web client application interface into 
Emnet and enables to specify a research project’s data query, 
and statistical function and variables. It implemented the ab-
stract computation graph and the Public API.  

STTP – The STTP is a Java application gateway between the 
Client application and the health institutions, and it coordinates 
the overall executions. It implemented abstract computation 
graph, secure summation protocol and the Public API. 

Worker agent – The Worker agent is a Java application that will 
be deployed at each health institution. It implemented secure 
summation protocols and the Secure API. 

Emnet supports data preparation (Virtual dataset creation) and 
statistical analyses phases that are often required by research 
projects.   

Client = Web application 
STTP = Semi-Trusted Third Party 

Figure 2 – Overall architecture of Emnet 

4 http://www.r-project.org/ 

Virtual dataset creation – a researcher specifies a data query on 
the Client application using the interface shown in Figure 3. 
The Client transforms into AQL and submits the query to the 
STTP who broadcasts it to each Worker agent. The Worker 
agents execute the AQL query against local openEHR and store 
the results locally in a MySQL database. Then, Worker agents 
reply the status of the query to STTP. The STTP executes de-
scriptive statistics (currently only count of eligible patients)on 
the virtual dataset and returns results to the Client application.  

Figure 3 – Client interface to specify and execute virtual dataset 
cre-ation 

Statistical analyses – similar to traditional statistical analyses 
tools, such as R4 and SPSS5, the user can specify the statistical 
function and variables on the Client application using the inter-
face shown in Figure 4. If the requested statistical function is a 
public computation, for example mean of 𝑥, and if the lower 
branch of the abstract computation graph, such as count and 
𝑠𝑢𝑚(𝑥) are already calculated, the Client calls the public com-
putation API. Otherwise the Client application submits the re-
quest to the STTP. STTP maps the required nodes on the ab-
stract computation graph into concrete computation, by calling 
either the local Public API or Secure API at the Worker agents. 
The Worker agents execute the API calls on the local database. 
Finally, STTP returns the results to the Client. 

Figure 4 – Client interface to specify and execute statistical function 
on a virtual dataset 

5 http://www.spss.co.in/ 
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Communication technology 

In this section the technology used for communication between 
the different components of the architecture is described. Emnet 
is part of the Snow project6, which is a distributed health data 
processing infrastructure deployed at multiple health institu-
tions and labs in Norway [42].  The system implemented mes-
sage-oriented communication using the Extensible Messaging 
and Presence Protocol (XMPP) [43]. The choice of the XMPP 
is due to the following reasons. 

All healthcare service providers (i.e. GPs and hospitals) in Nor-
way are connected via Norwegian Health Network, which is 
aimed to enable secure electronic communication between 
health institutions7 The local networks of health institutions are 
considered more secure. Therefore, an institution should initiate 
all communications requests. The Snow system (40) has several 
software agents running at the health institution. Thus, each 
agents need to have its own address to receive requests sent to 
it.  

XMPP technology is based on client/server architecture, similar 
to the SMTP protocol, where clients are interconnected through 
relaying servers. Therefore, each component contains an XMPP 
client identified by Jabber Id (JID) for communication. Each 
client authenticates using signed certificate and connects to the 
server, and the connection lasts long. Therefore, a client has ad-
dress and connections are initiated from the health providers. 
In addition, XMPP enables point-to-point (i.e. between STTP 
and Worker agents, between Worker agents, and between Cli-
ent and STTP), and multi-user (i.e. STTP broadcasts to Worker 
agents) messaging. In this paper, XMPP clients of the Worker 
agent and STTP are implemented using Smack library and on 
the Client web application Strophe library is used. Openfire 
server is used as XMPP server. 

XMPP is a simple protocol that communicates over TCP sock-
ets using XML messages. In addition, we have designed an 
XML message protocol that defines virtual dataset and statisti-
cal analysis requests and responses. The XML messages are 
sent inside XMPP XML message stanza. 

Experiment 

An experiment has been done based on a use case scenario de-
signed to compute the correlation between human body temper-
ature and body mass index. First, the two necessary archetypes, 
Body Mass Index and Body Temperature, were selected from 
Norwegian CKM and a template containing these archetypes 
was designed. Then, we prepared test openEHR data sets using 
the template and a virtual environment that simulates the real 
working environment with three distributed EHRs. On this vir-
tual environment, we computed Mean, Variance, Standard De-

viation, Covariance and finally Pearson’s r (correlation) of 
Body Mass Index and Body Temperature. 

Discussion 

We have described a generic framework and implementation of 
Emnet for computing on horizontally partitioned distributed 
health data. The developed framework satisfies the three pri-
vacy requirements we defined to preserve the privacy of both 
individuals and health institutions. In addition, it enables insti-

6 The Snow system client application is available at http://snow.tele-
med.no/  

tutions to maintain strong control over who compute, what anal-
yses, and on what data. However, access control is outside the 
scope of this paper. 

Currently, Emnet implements count, mean, standard deviation,

variance, covariance, and Pearson’s r. It can easily be extended 
to include more statistical analyses as far as they can be decom-
posed into summation form. 

The building blocks for the framework can be divided into data 
preparation and statistical analyses phases. For each research 
project, health institutions locally store data extracts for criteria 
specified by the researchers’. These data extracts across the in-
stitutions collectively make the project data, which we refer as 
virtual dataset. Since a common data model is required across 
the health institutions, we make an assumption that the health 
institutions have openEHR-based health record systems. 

We decomposed the statistical equations into sub-computations 
of summation form and created dependencies between them. 
We expressed these dependencies as an abstract computation 
graph, where each node represents a sub-computation. In order 
to execute a statistical analysis against a virtual dataset, all the 
lower level nodes should be executed first. We have described 
how the nodes can be executed using simple arithmetic and/or 
secure summation protocol. Then, we created an abstraction us-
ing APIs that can be invoked at runtime to execute a node on 
the abstract computation graph.  

Comparison of Emnet’s computation efficiency with traditional 
statistical analyses tools such as R and SPSS, where the data are 
centrally stored, is invaluable. Evaluation of the computation 
efficiency will be a future work. However, we hypothesis that 
Emnet is efficient, because (1) computations that require indi-
vidual patients data are computed locally and all health institu-
tions compute in parallel; and (2) only aggregations of local re-
sults are computed using simple secure summation protocol.  

In general, as the number of participating health institutions in-
creases, efficiency of statistical analyses might decrease. How-
ever, in [44] we have described a technique to maintain constant 
efficiency independent of the number of participants. As a re-
sult, Emnet can be scalable. Implementation of the technique 
into the tool will be a future work. 

Despite the benefits of health data reuse, quality of data and 
their suitability for research is a concern [45]. The main benefit 
of the virtual dataset is that it enables to do either clerical review 
or run computer programs to improve the data quality without 
modifying the original data. In addition, it supports to store pre-
processing and intermediate results of statistical analyses.  

In contrast to de-identification [11], the technique presented in 
the paper preserves privacy without modifying or removing 
data variables. As a result, the quality of research data is not 
affected due to the privacy-preserving computation. 

Both the public [46] and healthcare professionals [47,48] 
demonstrated positive view towards reuse of health data for re-
search as long as the privacy and other concerns are addressed. 
Emnet could increases health institutions’ and patients’ willing-
ness for reuse of their data for research. As a result, enormous 
benefits of health data reuse can be unlocked. 

7 https://www.nhn.no/english/Pages/about.aspx 
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In general, Emnet will increase researchers’ access to health 
data with the following added benefits, (1) better privacy; (2) 
quality of data; and (3) minimized time and cost to collect data. 
More health research enables to improve effectiveness, effi-
ciency and quality of care. Consequently, the public will bene-
fit. 

The framework described in this paper can be applied for any 
domain outside health, where there is a need for joint computa-
tion on private data while maintaining privacy. In addition, it is 
light weighted for implementation on small devices, such as 
smart phones to jointly compute on apps’ data of a set of indi-
viduals. 

Acknowledgments 
The second author was supported by the Center for Research-
Based Innovation, Tromsø Telemedicine Laboratory, through 
Research Council of Norway Grant No. 174934. We would like 
to acknowledge the invaluable contribution of Luis Marco Ruiz 
on the use of openEHR. We are obliged to acknowledge Ma-
rand, Slovenia for letting us use their Think!EHR platform. We 
also would like to acknowledge the support from Norwegian 
Centre for Integrated Care and Telemedicine, University Hos-
pital of North Norway, and UiT The Arctic University of Nor-
way.  

References 

[1] Dobrev A, Haesner M, Husing T, Korte BW, Meyer I. 
Benchmarking IT Use Among General Practitioners in 
Europe. Bonn,Germany: European Commission; 2008. 

[2] Christensen T, Faxvaag A, L\a erum Hallvard, Grimsmo 
A. Norwegians GPs’ use of electronic patient record sys-
tems. International Journal of Medical Informatics 
2009;78:808–14. 

[3] Selby JV, Krumholz HM, Kuntz RE, Collins FS. Net-
work News: Powering Clinical Research. Sci Transl Med 
2013;5:182fs13–182fs13. doi:10.1126/scitrans-
lmed.3006298. 

[4] Friedman CP, Wong AK, Blumenthal D. Achieving a 
Nationwide Learning Health System. Sci Transl Med 
2010;2:57cm29–57cm29. doi:10.1126/scitrans-
lmed.3001456. 

[5] Tu JV, Willison DJ, Silver FL, Fang J, Richards JA, 
Laupacis A, et al. Impracticability of informed consent in 
the Registry of the Canadian Stroke Network. N Engl J 
Med 2004;350:1414–21. doi:10.1056/NEJMsa031697. 

[6] Young AF, Dobson AJ, Byles JE. Health services re-
search using linked records: who consents and what is 
the gain? Australian and New Zealand Journal of Public 
Health 2001;25:417–20. doi:10.1111/j.1467-
842X.2001.tb00284.x. 

[7] Bohensky MA, Jolley D, Sundararajan V, Evans S, 
Pilcher DV, Scott I, et al. Data Linkage: A powerful re-
search tool with potential problems. BMC Health Ser-
vices Research 2010;10:346. doi:10.1186/1472-6963-10-
346. 

[8] Carter K, Shaw C, Hayward M, Blakely T. Understand-
ing the determinants of consent for linkage of adminis-
trative health data with a longitudinal survey. Kōtuitui: 
New Zealand Journal of Social Sciences Online 
2010;5:53–60. 

[9] Norwegian Ministry of Health. ACT 2008 - 06 - 20 no. 
44: Act on medical and health research (the Health Re-
search Act). vol. no. 44. 2009. 

[10]  Kho ME, Duffett M, Willison DJ, Cook DJ, Brouwers 
MC. Written informed consent and selection bias in ob-
servational studies using medical records: systematic re-
view. BMJ 2009;338:b866–b866. doi:10.1136/bmj.b866. 

[11] Wu FT. Defining Privacy and Utility in Data Sets. Roch-
ester, NY: Social Science Research Network; 2012. 

[12] El Emam K, Mercer J, Moreau K, Grava-Gubins I, Buck-
eridge D, Jonker E. Physician privacy concerns when 
disclosing patient data for public health purposes during 
a pandemic influenza outbreak. BMC Public Health 
2011;11:454. 

[13] El Emam K, HU J, Mercer J, Peyton L, Kantarcioglu M, 
Malin B, et al. A secure protocol for protecting the iden-
tity of providers when disclosing data for disease surveil-
lance. Journal of the American Medical Informatics As-
sociation 2011;18:212–7. doi:10.1136/amiajnl-2011-
000100. 

[14] Lindell Y, Pinkas B. Secure multiparty computation for 
privacy-preserving data mining. Journal of Privacy and 
Confidentiality 2009;1:5. 

[15] Lisa M. Schilling BMK. Scalable Architecture for Feder-
ated Translational Inquiries Network (SAFTINet) Tech-
nology Infrastructure for a Distributed Data Network. 
eGEMS 2013;1:Article 11. doi:10.13063/2327-
9214.1027. 

[16] Voets D. EHR4CR. Initial EHR4CR architecture and in-
teroperability framework specifications.  EHR4CR, 
2012. 

[17] McMurry AJ, Murphy SN, MacFadden D, Weber G, Si-
mons WW, Orechia J, et al. SHRINE: Enabling Nation-
ally Scalable Multi-Site Disease Studies. PLoS ONE 
2013;8:e55811. doi:10.1371/journal.pone.0055811. 

[18] Vogel J, Brown JS, Land T, Platt R, Klompas M. 
MDPHnet: Secure, Distributed Sharing of Electronic 
Health Record Data for Public Health Surveillance, Eval-
uation, and Planning. Am J Public Health 
2014;104:2265–70. doi:10.2105/AJPH.2014.302103. 

[19] Kim KK, Browe DK, Logan HC, Holm R, Hack L, 
Ohno-Machado L. Data governance requirements for dis-
tributed clinical research networks: triangulating per-
spectives of diverse stakeholders. J Am Med Inform As-
soc 2014;21:714–9. doi:10.1136/amiajnl-2013-002308. 

[20] Christen P. Data Matching - Concepts and Techniques 
for Record Linkage, Entity Resolution, and Duplicate 
Detection. Springer-Verlag Berlin Heidelberg; 2012. 

[21] Yao AC. Protocols for secure computations. Proceedings 
of the 23rd Annual Symposium on Foundations of Com-
puter Science, Washington, DC, USA: IEEE Computer 
Society; 1982, p. 160–4. doi:10.1109/SFCS.1982.88. 

[22] Benaloh JC. Secret Sharing Homomorphisms: Keeping 
Shares of a Secret Secret (Extended Abstract). In: 
Odlyzko AM, editor. Advances in Cryptology — 
CRYPTO’ 86, Springer Berlin Heidelberg; 1987, p. 251–
60. 

[23] Karr AF, Lin X, Sanil AP, Reiter JP. Secure Statistical 
Analysis of Distributed Databases. In: Wilson AG, Wil-
son GD, Olwell DH, editors. Statistical Methods in 
Counterterrorism, Springer New York; 2006, p. 237–61. 

[24] Andersen A, Yigzaw KY, Karlsen R. Privacy preserving 
health data processing. 2014 IEEE 16th International 
Conference on e-Health Networking, Applications and 
Services (Healthcom), 2014, p. 225–30. 
doi:10.1109/HealthCom.2014.7001845. 

[25] Xu F, Zeng S, Luo S, Wang C, Xin Y, Guo Y. Research 
on Secure Scalar Product Protocol and Its’ Application. 
2010 6th International Conference on Wireless Commu-
nications Networking and Mobile Computing (WiCOM), 
2010, p. 1–4. doi:10.1109/WICOM.2010.5601452. 

Proceedings of the 13th Scandinavian Conference on Health Informatics, June 15-17, 2015, Tromsø, Norway

39



[26] Yao AC. Protocols for Secure Computations. Proceed-
ings of the 23rd Annual Symposium on Foundations of 
Computer Science, Washington, DC, USA: IEEE Com-
puter Society; 1982, p. 160–4. 
doi:10.1109/SFCS.1982.88. 

[27] Gentry C. Fully Homomorphic Encryption Using Ideal 
Lattices. Proceedings of the Forty-first Annual ACM 
Symposium on Theory of Computing, New York, NY, 
USA: ACM; 2009, p. 169–78. 
doi:10.1145/1536414.1536440. 

[28] Paillier P. Public-Key Cryptosystems Based on Compo-
site Degree Residuosity Classes. In: Stern J, editor. Ad-
vances in Cryptology — EUROCRYPT ’99, Springer 
Berlin Heidelberg; 1999, p. 223–38. 

[29] Chaum D, Crépeau C, Damgard I. Multiparty Uncondi-
tionally Secure Protocols. Proceedings of the Twentieth 
Annual ACM Symposium on Theory of Computing, 
New York, NY, USA: ACM; 1988, p. 11–9. 
doi:10.1145/62212.62214. 

[30] Bogdanov D. Sharemind: programmable secure compu-
tations with practical applications. Thesis. Tartu Univer-
sity, 2013. 

[31] Yigzaw KY, Bellika JG. Evaluation of secure multi-party 
computation for reuse of distributed electronic health 
data. 2014 IEEE-EMBS International Conference on Bi-
omedical and Health Informatics (BHI), 2014, p. 219–22. 
doi:10.1109/BHI.2014.6864343. 

[32] Youwen Z, Liusheng H, Wei Y, Xing Y. Efficient Collu-
sion-Resisting Secure Sum Protocol. Chinese  Journal of 
Electronics 2011;20. 

[33] Urabe S, Wong J, Kodama E, Takata T. A High Collu-
sion-resistant Approach to Distributed Privacy-preserv-
ing Data Mining. Proceedings of the 25th Conference on 
Proceedings of the 25th IASTED International Multi-
Conference: Parallel and Distributed Computing and 
Networks, Anaheim, CA, USA: ACTA Press; 2007, p. 
326–31. 

[34] Shepard S, Kresman R, Dunning L. Data Mining and 
Collusion Resistance. Proceedings of World Congress on 
Engineering 2009 2009;1. 

[35] Drosatos G, Efraimidis PS. Privacy-Preserving Statistical 
Analysis on Ubiquitous Health Data. In: Furnell S, Lam-
brinoudakis C, Pernul G, editors. Trust, Privacy and Se-
curity in Digital Business, Springer Berlin Heidelberg; 
2011, p. 24–36. 

[36] Karr AF, Karr AF, Lin X, Lin X, Sanil AP, Sanil AP, et 
al. Secure Regression on Distributed Databases. J Com-
putational and Graphical Statist 2004;14:263–79. 

[37] Shuang Wang XJ. EXpectation Propagation LOgistic 
REgRession (EXPLORER): Distributed Privacy-Preserv-
ing Online Model Learning. Journal of Biomedical Infor-
matics 2013. doi:10.1016/j.jbi.2013.03.008. 

[38] Kearns M. Efficient Noise-Tolerant Learning From Sta-
tistical Queries. Journal of the ACM, ACM Press; 1993, 
p. 392–401.

[39] Chu C, Kim SK, Lin Y-A, Yu Y, Bradski G, Ng AY, et 
al. Map-reduce for machine learning on multicore. Ad-
vances in Neural Information Processing Systems 
2007;19:281. 

[40] Das S, Sismanis Y, Beyer KS, Gemulla R, Haas PJ, 
McPherson J. Ricardo: integrating R and Hadoop. Pro-
ceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, New York, NY, USA: 
ACM; 2010, p. 987–98. doi:10.1145/1807167.1807275. 

[41] Duan Y. P4P: A Practical Framework for Privacy-Pre-
serving Distributed Computation. PhD thesis. University 
of California, 2007. 

[42] Bellika JG, Henriksen TS, Yigzaw KY. The Snow sys-
tem - a decentralized medical data processing system. In: 
Llatas CF, García-Gómez JM, editors. Data Mining in 
Clinical Medicine, Springer; 2014. 

[43] Saint-Andre P, Smith K, Tronçon R. XMPP: The Defini-
tive Guide. O’Reilly Media, Inc.; 2009. 

[44] Yigzaw KY, Bellika JG, Andersen A, Hartvigsen G, Fer-
nandez-Llatas C. Towards Privacy-preserving Compu-
ting on Distributed Electronic Health Record Data. Pro-
ceedings of the 2013 Middleware Doctoral Symposium, 
New York, NY, USA: ACM; 2013, p. 4:1–4:6. 
doi:10.1145/2541534.2541593. 

[45] Weiskopf NG, Weng C. Methods and dimensions of 
electronic health record data quality assessment: ena-
bling reuse for clinical research. J Am Med Inform As-
soc 2012. doi:10.1136/amiajnl-2011-000681. 

[46] Institute of Medicine (US) Committee on Health Re-
search and the Privacy of Health Information: The 
HIPAA Privacy Rule. Beyond the HIPAA Privacy Rule: 
Enhancing Privacy, Improving Health Through Re-
search. Washington (DC): National Academies Press 
(US); 2009. 

[47] Hopf YM, Bond C, Francis J, Haughney J, Helms PJ. 
Views of healthcare professionals to linkage of routinely 
collected healthcare data: a systematic literature review. 
J Am Med Inform Assoc 2014;21:e6–10. 
doi:10.1136/amiajnl-2012-001575. 

[48] Hopf YM, Bond C, Francis J, Haughney J, Helms PJ. 
“The more you link, the more you risk …” – a focus 
group study exploring views about data linkage for phar-
macovigilance. Br J Clin Pharmacol 2014;78:1143–50. 
doi:10.1111/bcp.12445. 

Address for correspondence 
Kassaye Yitbarek Yigzaw

e-mail: kassaye.y.yigzaw@uit.no

Proceedings of the 13th Scandinavian Conference on Health Informatics, June 15-17, 2015, Tromsø, Norway

40

mailto:kassaye.y.yigzaw@uit.no

	SHI_proceedings_title_page
	Proceedings
	SHI_2015_submission_2
	SHI_2015_submission_3
	SHI_2015_submission_4
	SHI_2015_submission_6
	SHI_2015_submission_8
	SHI_2015_submission_9
	SHI_2015_submission_11
	SHI_2015_submission_14
	Abstract
	Keywords:

	Introduction
	Materials and Methods
	Carbohydrates Module
	Insulin Module
	Activity Module
	Blood Glucose module
	Main Module

	Results
	Conclusion
	Acknowledgments
	References
	Address for correspondence

	SHI_2015_submission_15
	SHI_2015_submission_16
	SHI_2015_submission_18
	SHI_2015_submission_19
	SHI_2015_submission_20
	SHI_2015_submission_21
	SHI_2015_submission_22
	SHI_2015_submission_23
	SHI_2015_submission_25
	SHI_2015_submission_5
	SHI_2015_submission_7
	SHI_2015_submission_12

	Uten navn



