A preliminary constraint grammar for Russian

Francis M. Tyers
HSL-fakultehta,
UiT Norgga árktaš universitehta,
N-9018 Romsa
francis.tyers@uit.no

Robert Reynolds
HSL-fakultehta,
UiT Norgga árktaš universitehta,
N-9018 Romsa
robert.reynolds@uit.no

Abstract

This paper presents preliminary work on a constraint grammar based disambiguator for Russian. Russian is a Slavic language with a high degree of both in-category and out-category homonymy in the inflectional system. The pipeline consists of a finite-state morphological analyser and constraint grammar. The constraint grammar is tuned to be high recall (over 0.99) at the expense of low precision.

1 Introduction

This paper presents a preliminary constraint grammar for Russian. The main objective of the constraint grammar is to produce a high recall grammar to serve as input into other natural language processing tasks. There are two reasons to maintain high recall. First, one of the primary applications for this constraint grammar is computer-assisted language learning. In the domain, erroneous analyses can lead to significant frustration for learners. Therefore, it is important to limit disambiguation to cases that can be resolved with high confidence. Second, it is frequently the case that competing readings can be distinguished only by considering idiosyncratic collocational information. For such cases, we expect that probabilistic approaches are both more effective and simpler to implement.

The paper is laid out as follows: section 2 presents a review of the literature on Russian language processing; section 3 gives an overview of ambiguity in Russian; section 4 describes our analysis pipeline; section 5 gives an account of our development process; section 6 presents an evaluation of the system, and sections 7 and 8 present future work and conclusions.

2 Review of literature

State-of-the-art morphological analysis in Russian is primarily based on finite-state technology (Nozhov, 2003; Segalovich, 2003). Almost without exception, all large-scale morphological transducers of Russian are based on the forward-looking Grammatical Dictionary of Russian (Zaliznjak, 1977). This dictionary gives fine-grained morphological specifications for more than 100,000 words, including inflectional endings, morphophonemic alternations, stress patterns, exceptions, and idiosyncratic collocations. We developed a morphological transducer based on Zaliznjak’s dictionary. This finite-state transducer (FST) generates all possible morphosyntactic readings of each wordform, regardless of its frequency or probability. Because Russian is a relatively highly inflected language, broad coverage is important, but widespread homonymy leads to the generation of many spurious readings, as discussed in Section 3 below. Because of this, one of the foundational steps in Russian natural language processing is homograph disambiguation.

3 Ambiguity in Russian

We identify three different types of morphosyntactic ambiguity: intraparadigmatic, morphosyntactically incongruent, and morphosyntactically congruent. The following examples make use of word stress ambiguity to illustrate each kind of ambiguity. Intraparadigmatic ambiguity refers to hom-
graphic wordforms belonging to the same lexeme, as shown in (1).

(1) Intraparadigmatic homographs
a. тело́ телá ‘body.SG-GEN’
b. тела́telá ‘body.PL-NOM’

The remaining two types of ambiguity occur between lexemes. Morphosyntactically incongruent ambiguity occurs between homographs that belong to separate lexemes, and whose morphosyntactic values are different, as shown in (2).

(2) Morphosyntactically incongruent homographs
a. наш´ей našéj ‘our.F-SG-GEN/DAT/LOC...’
b. дорог´а doróga ‘road.N-F-SG-NOM’

Morphosyntactically congruent ambiguity occurs between homographs that belong to separate lexemes, and whose morphosyntactic values are identical, as shown in (3).

(3) Morphosyntactically congruent homographs
a. замок зámkók ‘castle.SG-NOM’
b. замкóв zamkóv ‘lock.PL-GEN’

e tc.

Table 1 shows the prevalence of each kind of ambiguity. The first column shows the proportion of all tokens in a corpus that have each kind of ambiguity. The second column shows what proportion of ambiguous tokens exhibit each kind of ambiguity. Note that these proportions do not sum to 100%, since a given token may exhibit more than one kind of ambiguity. For example, the wordform zamkov has the readings given in (4).

(4) a. замок1+N+Msc+Inan+Pl+Gen
b. замок2+N+Msc+Inan+Pl+Gen
c. замковый1+A+Msc+Pred

The ambiguity between (4-a) and (4-b) is morphosyntactically congruent, and the ambiguity between (4-a)/(4-b) and (4-c) is morphosyntactically incongruent, so this wordform would be counted for both categories in Table 1.

Table 1 shows that most morphosyntactic ambiguity in unrestricted Russian text is rooted in intraparadigmatic and morphosyntactically incongruent ambiguity. Detailed part-of-speech tagging with morphosyntactic analysis can help disambiguate these forms. On the other hand, morphosyntactically congruent ambiguity represents only a very small percentage of ambiguous wordforms, and instead of detailed part-of-speech tagging, it can be resolved by means of word sense disambiguation. Because of this difference, we leave morphosyntactically congruent ambiguity to future work.

Table 1: Frequency of different types of morphosyntactic ambiguity in unrestricted text

<table>
<thead>
<tr>
<th>Type</th>
<th>all tokens</th>
<th>ambig. tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraparadigm.</td>
<td>59.0%</td>
<td>90.9%</td>
</tr>
<tr>
<td>Incongruent</td>
<td>27.7%</td>
<td>42.7%</td>
</tr>
<tr>
<td>Congruent</td>
<td>1.2%</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

4 Pipeline

4.1 Morphological analyser

The morphological transducer used in this study is primarily based on Zaliznjak’s Grammatical dictionary of Russian, including the 2001 version’s appendix of proper nouns. It also includes neologisms from Grishina and Lyashevskaya’s Grammatical dictionary of new Russian words, which is intended to be a supplement to Zaliznjak’s dictionary with words found in the Russian National Corpus. Example (5) gives some examples of the FST’s output.

(5) a. новый<adj><m><nn><sg><nom> ‘new’
b. автомат<n><m><nn><sg><nom> ‘automaton, sub-machine gun’

4.2 Disambiguation rules

The constraint grammar is composed of 299 rules which are divided into four categories: Safe, Safe heuristic, Heuristic, and Syntax labeling. The distribution of rules is shown in Table 2.

The philosophy is that Safe rules should represent real constraints in the language. Examples might be that a preposition cannot directly precede a finite verb or that prepositional case requires a preceding preposition.

http://dict.ruslang.ru/gram.php
Safe heuristic rules should deal with highly frequent tendencies in the language. For example remove a genitive at the beginning of a sentence if it is capitalised and there is no verb governing the genitive found to the right and there is also no negated verb to the right. This rule relies on the fact that if the genitive is in first position in the sentence it cannot modify anything before, and no preposition can be governing it. This kind of rule often relies on completeness of sets, in this case the set of verbs that can take a genitive complement.

Heuristic rules are those which we do not consider linguistic constraints, but express preferences, often dealing with overgeneration or over-specialisation in the morphological transducer. For example, remove the verbal adverb reading of такая, which could be the feminine singular nominative of таково ‘such’ or the verbal adverb of такать ‘say well...’.

Given a large hand-annotated corpus we believe that most of the heuristic rules would be better replaced with information learnt from the corpus through stochastic methods.

5 Development process

A common approach taken when writing constraint grammar rules is to apply the existing rule set to a new text, write new rules to deal with the ambiguities, then apply the rules to a hand-annotated corpus to see how often the rule disambiguated correctly (Voutilainen, 2004).

Due to the lack of a hand-annotated corpus compatible with our morphological analyser, we adopted a slightly modified technique. We picked a random text from the Russian Wikipedia, ran it through the morphological analyser, wrote rules, and then ran the rules on the whole Wikipedia corpus. For each rule, we collected around 100 applications and checked them. If a rule selected the appropriate reading in all cases, we included it in the safe rule set, if it removed an appropriate reading in less then three cases, then we included it in the safe heuristic rule set. Otherwise we either discarded the rule or included it in the heuristic rule set.

6 Evaluation

6.1 Corpus

In order to evaluate the grammar we hand-annotated 10,150 words of Russian text from Wikipedia articles, public domain literature and freely-available news sources. The annotated texts are available online under the CC-BY-SA licence.6

Hand-annotation proceeded as follows: The text was first morphologically analysed, and then an annotator read through the output of the morphological analyser, commenting out the readings which were not appropriate in context. This annotated text was then checked by a second annotator.

We chose to annotate our own texts as opposed to using a well-known hand-annotated corpus such as the Russian National Corpus (RNC) for two main reasons: the first was that the RNC is not freely available; the second was that the standards for tokenisation, part-of-speech and morphological description are different from our morphological analyser.

Table 3 gives a quantitative evaluation of the performance of our CG on the test corpus.

6.2 Qualitative evaluation

In this section, we give a qualitative evaluation of errors made by the CG.

Bad linguistics: In some cases a rule did not take into account grammatical possibilities in the language. e.g. Two simple rules such as

- REMOVE Det IF (0 Det OR Pron) (1C Ne) ;
- REMOVE Det IF (0 Det OR Pron) (1Cm LINK 1 CC OR CS) ;

did not take into account the possibility of having a postposed determiner as in

- …а может быть и раньше, и факт этот не раз поражал меня …

Table 3: The 299 rules in the grammar are separated into four sections depending on rule reliability.
Figure 1: Example output from the morphological analyser and constraint grammar for the sentence "В ноябре 1994 года в Танзании начал работу Международный трибунал по Руанде." The work of the International Tribunal for Rwanda started in Tanzania in November 1994." The input ambiguity is 1.76 readings per word and the output ambiguity is 1.38 readings per word. Recall is 1.0 and precision is 0.72. Figure 2 shows the rules that fired for this example sentence.

Safe

SELECT:r462 Gen IF (0 Year) (-1 Num LINK -1 Months LINK -1 Pr/V);
Select genitive reading of 'года' if there is a numeral immediately to the left, before that there is a month and before that there is the preposition 'в'.

REMOVE:r424 Nom IF (-1C Pr) ;
Remove nominative case if there is a word which can only be a preposition immediately to the left.

REMOVE:r433 NGDAIP - Acc - Prp - Loc IF (1C* Pr/V OR Pr/Na BARRIER (*)) = Adv - Comp - DetIndecl - ModAcc - ModPrp);
Remove all cases apart from accusative, preposition and locative if 'в' or 'на' are found to the left and are unambiguous. The barrier is anything that cannot be found inside a noun phrasal.

Safe heuristic

REMOVE:r769 IV IF (0 TV OR IV) (1C Acc) (NOT 1 AccAdv);
Remove an intransitive reading of a verb if the next word can only be accusative and is not in the set of nouns which can be used adverbially in accusative.

Figure 2: Some example rules from the grammar.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Tokens</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
<th>Ambig. solved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikipedia</td>
<td>7,857</td>
<td>0.506</td>
<td>0.996</td>
<td>0.671</td>
<td>44.92%</td>
</tr>
<tr>
<td>Literature</td>
<td>1,652</td>
<td>0.473</td>
<td>0.984</td>
<td>0.638</td>
<td>42.95%</td>
</tr>
<tr>
<td>News</td>
<td>642</td>
<td>0.471</td>
<td>0.990</td>
<td>0.638</td>
<td>41.60%</td>
</tr>
<tr>
<td>Average</td>
<td>10,150</td>
<td>0.498</td>
<td>0.994</td>
<td>0.663</td>
<td>44.39%</td>
</tr>
</tbody>
</table>

Table 3: Results for the test corpora.
... and maybe even earlier, and fact this not once surprised me ...

or a interposed parenthetical as in

- Но какие, однако же, два разные создания, точно обе с двух разных планет!
- But what, exactly, two different creatures, just both from two different planets!

Bad rule: In some cases a rule was simply incorrectly specified. For example, the following rule was designed to solve the ambiguity between short-form neuter adjectives and adverbs

- REMOVE A + Short IF (-1C Fin OR Adv OR A) (0C Short ORAdv);

However there is no reason why we should prefer an adverb over an adjective after an adverb,

- ... потому что совсем неприятно проснуться в гробу под землею.
- ... because [it is] really unpleasant to wake up in a coffin under the ground.

Incomplete barrier: Some rules suffered from incomplete barriers, which is something that would benefit from a more systematic treatment.

- REMOVE NGDAIP - Acc - Prp - Loc IF (-1C* Pr/V OR Pr/Na BARRIER (*)) - Adv - Comp - DetIndecl - ModAcc - ModPrp);

here the rule removes the nominative reading of the adjective to leave the accusative reading because the preposition in ‘in’ is found preceeding.

- В 1960–х электрифицированные высокоскоростные железные дороги появились в Японии и некоторых других странах.
- In the 1960’s electrified high-speed railways appeared in Japan and some other countries.

Incomplete set: In some cases the rule was a good generalisation, but made use of a set which was incomplete. For example:

- REMOVE Dat IF (NOT 0 Prn/Sebe) (NOT 0 Anim OR Cog OR Ant) (NOT 0 Pron) (NOT 1* V/Dat) (NOT -1* V/Dat) (NOT -1* Prep/Dat) (NOT -1C A + Dat);

the set V/Dat does not contain the verb противопоставлять ‘opposed to’ which takes a dative argument.

- В связи с этим ортодоксальности стали противопоставлять ересь.
- In connection with this orthodoxy was opposed to heresy.

Rule interaction: The strong accusative rule below causes incorrect behaviour in the rule to remove transitivity readings

- REMOVE TV - Pass IF (NOT 1* Acc) (NOT -1* Acc);
- REMOVE Acc IF (-1C Fin + IV) (NOT 0 AccAdv);

Consider the following example where может ‘can’ is tagged as intransitive, the second rule fires removing the accusative reading of его ‘him’, and thus given the lack of accusative reading, найти ‘find’ is disambiguated as intransitive instead of transitive.

- Она смотрит везде, но не может его найти.
- She looks around, but she cannot find him.

Difficult linguistics: Dealing with participles with arguments is challenging in the case that the arguments of the participle share the same government as the main verb.

- REMOVE IV IF (0 TV OR IV) (1C Acc) (NOT 1 AccAdv);

Here Ваню и Машу ‘Vanja and Maša’ are the object of видит ‘sees’ and not играющих ‘playing’, although both verbs can take accusative object.

- Их мама внутри дома с кошкой, она смотрит в окно и видит играющих Ваню и Машу.
Their mother is inside the house with the cat, she looks through the window and sees Vanja and Maša playing.

This kind of error would ideally be resolved with semantic knowledge.

6.3 Task-based evaluation

The constraint grammar described in this paper has been applied to the task of automatic word stress placement (Reynolds and Tyers, 2015). This task is especially relevant for Russian language learners, because vowels are pronounced differently depending on their position relative to stress position. For example, the word molokó ‘milk’ is pronounced /m@l2kO/, where each instance of the letter o corresponds to a different vowel sound. Russian has complicated patterns of shifting stress, which are difficult for learners to master. Almost 99% of wordforms with ambiguous stress position can be disambiguated morphosyntactically, so a constraint grammar can potentially resolve most stress ambiguity indirectly. The results of Reynolds and Tyers (2015) show that our constraint grammar overcomes about 42% of the ambiguity relevant to stress ambiguity in unrestricted text.

6.4 Combining with a statistical tagger

Given that just over half of all ambiguity remains after running our preliminary constraint grammar and that for many applications unambiguous output is necessary, we decided to experiment with combining the constraint grammar with a statistical tagger to resolve remaining ambiguity. Similar approaches have been taken by previous researchers with Basque (Ezeiza et al., 1998), Czech (Hajič et al., 2001; Hajič et al., 2007), Norwegian (Johannessen et al., 2011; Johannessen et al., 2012), Spanish (Hulden and Francom, 2012), and Turkish (Oflazer and Tür, 1996).

We follow the voting method described by Hulden and Francom (2012). We used the freely available hunpos part-of-speech tagger (Halácsy et al., 2007). We performed 10-fold cross validation using our evaluation corpus, taking 10% for testing and 90% for training, and experimented with three configurations:

- HMM: the hunpos part-of-speech tagger with its default options
- HMM+Morph: as with HMM but incorporating the output of our morphological analyser (see section 4.1) as a full form lexicon.
- HMM+Morph+CG: we submitted the output from HMM+Morph and the constraint grammar to a voting procedure, whereby if the constraint grammar left one valid reading, we chose that, otherwise if the constraint grammar left a word with more than one reading, we chose the result from the HMM+Morph tagger.

As can be seen from Figure 3, incorporating the constraint grammar improves the performance of the HMM tagger, an improvement of nearly 5% in accuracy, similar to that reported by Hulden and Francom (2012) for the same amount of training data. In Figure 3, it appears that the HMM alone is much more dependent on training corpus size than the voting setup, which improves very little between a training corpus size of 5,000 and 9,000.

Our constraint grammar also has a much lower precision as a result of the ambiguity remaining in the output. Similarly, the final accuracy is below the state of the art for Russian. For instance, Sharoff et al. (2008) report a maximum accuracy of 95.28% using the TnT tagger. Note, however, that this model was trained on a much larger corpus – over five million tokens – which is not freely available.

7 Future work

We have a number of plans for future work, the first of which is increasing the precision of the grammar without decreasing recall. Secondly we would like to add syntactic function labelling and dependency parsing. For the dependency parser we plan to reuse the Giellatekno dependency grammar as in (Antonsen et al., 2010).

The development workflow could also be improved, for example during the testing of each rule we could save the correct decisions of the grammar. This would give us a partially-disambiguated development corpus, which could be gradually used to build up a gold-standard corpus, and which could also be used for regression testing to ensure that new rules added do not invalidate the correct decisions of previously written rules.

Also it is worth noting that although Russian has a great deal of non-free resources, this paper also presents a method which is promising.
for smaller or lesser-resourced Slavic languages such as Sorbian, Rusyn or Belarusian. Instead of hand-annotating a large quantity of text, it may be more efficient to work on grammatical resources — such as a morphological analyser and constraint grammar — and use them alongside a smaller quantity of high-quality annotated text.

8 Conclusions

This paper has presented a preliminary constraint grammar for Russian, where rules have been assigned to sections based on observations of performance on a non-gold corpus. The constraint grammar is high recall (over 0.99) and improves the performance over a trigram HMM-based tagger. It also shows state-of-the-art performance for the stress-placement task.

Acknowledgments

We are grateful to Koen Claessen for insightful discussion, as well as three anonymous reviewers who gave thoughtful feedback on an earlier version of this paper. All remaining errors are our own.

References

Robert Reynolds and Francis Tyers. 2015. Automatic word stress annotation of Russian unrestricted text. In Main conference proceedings from NODALIDA 2015, Vilnius, Lithuania. NEALT.

