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Abstract

In this paper we elucidate the challenges of proactiveness in dialogue systems and how these
influence the effectiveness of turn-taking behaviour in multimodal as well as in unimodal di-
alogue systems. Effective turn-taking is essential for a natural and qualitatively high human-
computer interaction. Especially in spoken dialogue systems, analysing whether the dialogue
system should or could take the floor, seems to be an important process in the overall perceived
quality of the interaction. Additionally, as technical systems get increasingly complex and evolve
in the direction of intelligent assistants rather than simple problem solvers, proactive system be-
haviour may influence the perception of the ongoing dialogue between human and computer.
Autonomously made decisions or triggered system actions may surprise or even disturb the user,
which may result in a reduced transparency of the technical system. Therefore, the decision if,
when and how to take the floor in a proactive system yields additional challenges. We discuss
each layer of decision-making and explain how multimodal cognitive systems can help to control
this decision-making in a valuable fashion.

1 Introduction

For spoken human-machine dialogues, the system decision of when to talk poses an important question.
While this is usually an easy task for humans, a technical system is not yet able to analyse the complexity
and nuances of a conversation. Hence, turn-taking strategies have been developed. State-of-the art
interactive voice response (IVR) systems and spoken dialogue systems (SDS) usually use a predefined
threshold to decide whether the user is willing to yield the floor. This simplistic approach leads to an
unsatisfying and confusing user-experience, for example, because the user is interrupted by the system’s
re-prompting while thinking and trying to understand what the system expects (Ward et al., 2005; Raux
et al., 2006). They also state that sometimes system time-outs are too long, leading to unusual and as
awkward experienced waiting periods. Then both phenomena combine, this may lead to parallel attempts
to take the floor. Hence, most recent research focuses on a more human-like approach to manage turn-
taking behaviour in an SDS, for example by using automatically extractable features to inform efficient
end-of-turn detection, and use this amongst other factors to train a turn-taking decision model based on
decision theory (i.e., using statistical models), leading to significantly better results than fixed-threshold
approaches (e.g., (Raux and Eskenazi, 2012)).

However, technical systems have evolved since the past decade from simple task-solving systems to
technical companion systems (Honold et al., 2014) which solve tasks of increasing complexity cooper-
atively with the user. Hence, as the capabilities of such systems increase, it seems natural that technical
systems will take over some of the responsibilities from the user and become an assistive system and life
companion. To achieve this, these systems must also be able initiate interaction and not only react to
the user. This will also lead to a more complex problem of turn-taking. While for conventional systems,
only the question of when to take the floor is of interest, proactive agents also have to decide how to act
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and whether to act at all. Here, multimodal systems have a significant advantage over unimodal systems
as they are able to exploit more cues about the interaction to make their decisions. This strategy also re-
flects human behaviour. It has notably been shown that human turn-taking not only depends on a various
number of language cues but also on non-verbal cues like gesture or gaze (cf. (Duncan, 1972; Sacks et
al., 1974; Gravano and Hirschberg, 2011)).

Hence, in this contribution, we describe and analyse the challenges of turn-taking for proactive agents
in multimodal interaction and identify those key issues which have to be solved along the way to foster
a healthy and sound human-computer interaction. In the next section we will elucidate the concept of
proactive system behaviour followed by a description of our use-case at hand in Section 3. Section 4
will then discuss the resulting challenges for each layer of decision-making to give guidance for a future
solution processes.

2 Proactive Behaviour

Proactivity in technical systems is an autonomous, anticipatory system-initiated behaviour, with the pur-
pose to act in advance of a future situation, rather than only reacting to it. Therefore, for our research, we
consider proactive behaviour as induced by implicit information and not by any kind of direct or explicit
user interaction or user-made adaptation criteria. This means, for example, that user defined temperature
values for a room, and the automatic adaptation to this preference when entering this room, do not count
as proactive behaviour. Contrary to that the implicit sensing, e.g. by measuring body temperature using
infrared sensors, that the user is feeling cold and the system’s reaction to that by increasing the room
temperature may be considered proactive. Respectively, the change of the user-interface modality to the
user’s characteristics may not be regarded as a proactive but an adaptive system behaviour. Therefore,
only implicit reasons for proactive behaviour recognized by a cognitive system (Figure 1)—sensing a
user’s affective state for example—and the subsequent system actions may fulfil the requirements of
proactive behaviour.

Figure 1: A typical architecture of a cognitive system. Only reasoned information coming from implicit
interaction information (e.g., observations of the sensors) trigger proactive behaviour. Fi stands for
Fission, which controls the modality arbitration. DM for Dialogue Management, which controls the
flow of the dialogue and Fu for Fusion, which merges all input modalities to one consistent semantic
representation.

3 Application

Proactive behaviour may occur in many different settings. In this work, we focus on proactive behaviour
in a mixed-initiative system combining planning with dialogue. The research field of automated planning
(e.g., (Biundo et al., 2011)) and scheduling deals with the development of methods and techniques to

74



automatically and autonomously create solutions, mostly action sequences, which will help a user or an
autonomous system to achieve a predefined goal. The user proposes a goal to achieve and thereafter the
system tries to come up with a solution. Such an autonomous process usually involves the risk of an
unsatisfying or confusing user-experience. The user has no saying during the planning of the solution,
and the proposed solution might not be the best in his mind.

Therefore, the application at hand rendering proactivity in dialogue systems is a cooperative planning
system, which involves the user in the decision-making during the planning process (see Figure 2).
Here, the interactive planning process is manifested in a fitness scenario. The user is guided through the
process of selecting appropriate fitness exercises, to arrange an effective but also individual training plan.
The automated planning will vary between four different variants: a fully-autonomous process, adding
notifications to the user about the system’s decisions, asking the user to confirm decisions, or leaving
the decision completely to the user. For the latter, the users may decide about several options at times
when the process is interrupted because of internal (e.g., planning heuristics) or external (e.g., affective
user state) reasons. Hence, proactive behaviour is both the system-initiated integration of the user into the
planning process due to planning heuristics and the proactive system reaction to implicit information like
user behaviour observed by sensors. Therefore, this includes also proactive behaviour, which is triggered
by the user’s reaction to previous proactive behaviour. For example, proactive behaviour induced during
planning may surprise the user and therefore lead again to proactive system behaviour.

Figure 2: A screenshot of the interface of the prototypical mixed-initiative planning system, whose
scenario is the interactive generation of an individual fitness training. The left image shows an overview
of the current plan. The plan step Squat is still to be decomposed. In this case, the user can make the
decision by selecting an appropriate refinement, the selection of a fitness exercise, shown on the right.

Taking a closer look at the user interaction in such a use-case, we encounter several questions regarding
proactivity and turn-taking: If proactive behaviour is useful or necessary, when proactive behaviour
should be integrated in the ongoing interaction (which is the one most related to classic turn-taking), and
how this proactive behaviour should look like. In the next section, these questions will be discussed more
thoroughly with regard to our application scenario.

4 Challenges for Proactive Systems

The three key questions for a proactive system during HCI are if, how, and when a proactive system
behaviour is needed. Although those key questions will be discussed individually, we will see that they
are nevertheless related to each other.

If

Proactive behaviour is per definition anticipatory, with the idea to react to a future situation. Hence,
proactive behaviour involves system actions apart from the expected task-oriented dialogue between
human and computer. In our scenario this is either the user-integration into the planning process or
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anticipatory system-actions dealing with an affective user state. Whether proactive behaviour is needed
depends on several factors:

• How important is the proactive behaviour for the successful continuation of the dialogue, i.e., is it
critical and required for short-term goals, but risks the cooperativity for interaction in the long run,
or only beneficial in a longer perspective, to induce proactivity?

• Does the current user situation allow for additional system behaviour, e.g., additional system
prompts?

• What is the classification probability for the cause of the proactive behaviour?

These main dimensions of whether proactive behaviour is adequate span the decision space depicted in
Figure 3. If all three dimensions show significant values, proactive behaviour should be induced. It is

Figure 3: Decision Space: The Situation axis depicts if the external (e.g., environment) and internal user
situations (i.e., user model) are adequate for proactive behaviour, the Importance axis whether the proac-
tive behaviour addresses major or minor flaws in the interaction, and the Accuracy axis the recognition
hypothesis classification results.

situation-adequate and triggered with a high probability based on a proactivity area within the decision
space. Notwithstanding having the proactivity area usually originating with all axes at maximum value,
its size and shape is highly dependent on the task at hand: while for non-critical tasks, the area may be
quite big, critical tasks may have higher requirements to trigger proactive behaviour. Hence, a careful
balance of all three dimensions is necessary.

Proactive behaviour itself, however, may have its own pitfalls. Apart from the usual reactive system
behaviour where the reaction is anticipated by the user, autonomous decision-making by a proactive
system involves the risk of creating incomprehensible and unexpected situations for the user. In the
decision space, this maps to the dimension of Situation. Those situations usually occur due to incongruent
models of the system: during interaction, the user builds a mental model of the system and its underlying
processes determining system actions and output. If this perceived mental model and the actual system
model do not match, the situation will be perceived as inconsistent - the user will not understand it.

In the present application scenario autonomous behaviour by the planner may lead to such situations.
For example, the system’s automatic preselection between a set of available options may cause user’s
confusion. The proactive system behaviour—adapting to the user’s history of interaction—was not ex-
pected by the user, and might therefore be incomprehensible. These unexpected or incomprehensible
situations have shown to reduce the user’s trust in the system (Muir, 1992) and may ultimately result
in reduced frequency or complexity of use (Nothdurft and Minker, 2014). The recognition of improper
mental models appears not to be an easy task and requires the recognition of the “symptoms rather than
the disease”. This means that affective user states like confusion have to be recognized and compared to,
e.g., the dialogue history to infer whether the mental models were incongruent.

The recognition of emotions and affective user states is one of the much studied research questions at
the moment. Apart from basic emotion recognition, the most used affective user states to be recognized
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via vision-based, audio-based, and audio-visual recognition are interest, frustration, boredom, and con-
fusion (Zeng et al., 2009). In a meta-analysis on unimodal and multimodal affect detection, D’Mello and
Kory (2012) stated that multimodal recognition accuracies yield performance improvements compared
to unimodal affect recognition accuracies. However, in a naturalistic or semi natural (induced) context
the improvements are minimal compared to classifiers trained on acted data. They found that contem-
porary affect detection mostly concentrates on bimodal or trimodal approaches. The most commonly
used modalities are acoustic-prosodic cues and facial expressions (77% of all classifiers), followed by
gestures, body movement and postures (30% of all classifiers). In general, recognition results based on
non-acted data lead to accuracies ranging from 55% to 89%, with an average of 66%. Although there is
promising work on this topic, spontaneous affective behaviour analysis in real settings, also commonly
called “in the wild”, still got a long way to go.

How
The next step in proactive system behaviour is the decision on how the system behaviour should be
rendered, i.e., what kind of intervention is the most adequate. If we take a look at the prototypical ap-
plication at hand, the interactive planner, several open questions arise. For example, even if the planning
system decides that the user should be integrated in the next decision, still the question remains at which
level the integration should be done (e.g., implicit vs. explicit, pruned vs. original). On the one hand
an implicit confirmation of a system-preselected option may be possible where the user is only notified
about the decision. On the other hand an explicit selection from a list of choices where the user’s choice
is unconstrained. For the former, the user also has the option to discard the system choice. Though these
issues are related to proactive behaviour in our application, it is part of previous research. The most
prominent work dealing with pruning (i.e., removing options) when presenting alternatives as lists was
conducted by Sears and Shneiderman (Sears and Shneiderman, 1994). They stated that lists pruned to
frequent selection options were faster and subjectively preferred to alphabetic lists.

In our work, the focus lies on how the systems’ behaviour should be shaped when recognizing incom-
prehensible situations. As mentioned before, this may occur due to non-matching models. The user’s
mental model is a perceived representation of the reality, in this case of the system and it’s underlying
processes. However, the mental and the actual system model do not necessarily align, which may cause
incomprehensibility. In (Nothdurft et al., 2014), we showed that incomprehensible proactive behaviour
indeed will significantly reduce the user’s perceived understandability and reliability of the system. This
was done by training the user on a specific system and then confronting the participants with proactive,
not yet experienced system behaviour, where the system did change the user’s decision. In order to find
out, how those situations should be handled by a technical system we took a closer look at human-human
interaction. Here, misunderstandings or incomprehension are taken care of by providing explanations.
In general, explanations are given to clarify, to change , or to impart knowledge. In these situations,
the implicit idea consists of aligning the mental models and to establish a common ground between the
participating parties.

Following that, we conclude that a technical system should attempt to clarify its actual model to the
user in incomprehensible HCI situations. This means, that explanations should be given, to align the
perceived mental model to the actual system model. However, there exists a variety of explanations
which pursue different goals (Sørmo and Cassens, 2004):

Conceptualisation usually has the goal to address the user’s declarative knowledge (e.g. describing
things).

Learning addresses procedural knowledge in the sense, that for example tutorials are provided in order
to learn how to do new things.

Justifications are the most obvious goal an explanation can pursue. The main idea of this goal is to
provide support for and increase confidence in given system advices or actions.

Transparency increases the user’s understanding in how the system works and reasons. This can help
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the user to change his perception of the system from a black-box to a system the user can compre-
hend. Thereby, the user may build a better mental model of the system and its underlying reasoning
processes.

Relevance explains why the task at hand is relevant to the user. In contrast to the previous two goals
that focus on the solution, relevance tries to justify the system-pursued strategy.

Though all of these goals are important, justification and transparency explanations are the most promis-
ing ones for incomprehensible situations in HCI. Therefore, we conducted a study testing whether those
two explanation goals differ in their effects between each other and to providing no explanations as well.
Our hypothesis was that though both explanation goals will help remedy negative effects, transparency
explanations will be more helpful. Indeed, we could show that when providing transparency explana-
tions in incomprehensible situations the perceived understandability, which measures the ability to build
a correct system model using questionnaires, diminished on average only by 0.4 when providing trans-
parency explanations (no explanation vs. transparency t(34)=-3.557 p<0.001), and on average by 0.5
with justifications (no explanation vs. justifications t(36)=-2.023 p<0.045), compared to 1.2 on a Likert
scale with a range from 1 to 5 when providing no explanation at all (see (Nothdurft et al., 2014) for more
details).

This showed that providing explanations can help to build a better model, or at least to maintain a
model by reducing the impairment, and by that reducing the negative risks of incomprehensible situ-
ations. The first part of our hypothesis could be confirmed, whereas the second part is still unclear.
Currently we are not yet perfectly sure whether the not-significant difference between transparency and
justification explanations was due to improper explanation design or whether those two indeed do not
differ in their effects. However, in our opinion the former is more likely, because the complexity of
transparency explanations was reduced in our experiment. This means, that in other systems consisting
of more complex system processes, the difference between justification and transparency explanations
will increase in terms of understanding and building a coherent mental model.

Regarding to our application scenario at hand, this means that incomprehensible situations have to be
addressed by providing explanations about the system processes leading to the current system behaviour.
For example, the automatic preselection of an action by the system could be motivated using the dia-
logue history. For example, by providing the explanation that the proactive system behaviour (i.e., the
preselection the options) results from recognized user preferences using previous episodes of interaction.

These experimental results show that it seems to be worthwhile to use explanations to cope with
incomprehensible situations in HCI. For the decision on how proactive behaviour should be shaped, we
can state that explaining system processes or providing justifications help to deal with incomprehensible
situations. Even if we can decide whether and how the proactive intervention should be shaped, we still
need to determine an adequate point of time in the ongoing HCI to provide the proactive behaviour.

When
The problem of when to initiate proactive behaviour for HCI means that appropriate turn-taking points in
the ongoing interaction need to be found. Those must guarantee sound and effective proactive behaviour.
This issue is mostly related to the classic turn-taking problem, which deals with organizing and struc-
turing the conversation by deciding on the system side whether or not to take the floor. Classic ideas in
Spoken Dialogue Systems include using pause durations, discourse structure, semantics, or prosodic in-
formation and timing features to detect appropriate turn-taking points (Raux and Eskenazi, 2012). While
recognizing turn-taking cues in human-human interaction via multimodal signals has been covered in
recent research (see (Mondada, 2007) for an overview), the use of multiple modalities to control turn-
taking in HCI is only recently emerging as a hot topic. For multimodal systems, this includes analysing
the user’s verbal and non-verbal signals (e.g., gaze, gestures, body movement) to generate and display
well-timed and natural multimodal system behaviour, including feedback and turn-taking signals. While
turn-taking itself is already a difficult problem, proactive behaviour includes even more challenges re-
garding appropriate turn-taking points. For instance, behaving proactively in a given situation might
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even be so important that it has to be initiated despite inappropriate discourse structure or semantics.
Therefore, this issue can be related to the Importance axis of the Proactivity Space shown in Figure 3.
When proactive behaviour is of utmost interest, inappropriate turn-taking has to be tolerated.

5 Conclusion

Future dialogue systems will have to solve increasingly complex tasks cooperatively with the user. As the
task complexity as well as the capabilities of such systems increase, it seems natural that these systems
will take over some of the responsibilities and help the user achieve the task by proactive system be-
haviour. Though this might relieve the user by reducing work and cognitive load, it nevertheless involves
the risk of incomprehensible HCI situations. In this paper, we elucidated the challenges of turn-taking in
proactive system behaviour and how multimodal approaches can help with this issue in the three different
decision making layers if, how, and when. The described Decision Space is constructed by the dimen-
sions Importance, Accuracy and Situation, which are the most important ones to decide if proactive
behaviour is necessary. In terms of how to intervene, providing explanations to foster the building of cor-
rect mental models was described in detail. The most promising explanations to foster coherent mental
and actual system models seem to be transparency explanations. When to initiate proactive behaviour
is mostly related to the classic turn-taking problem. Here recent statistical approaches did lead to a more
human-like turn-taking and increased user-experience. However, conclusively we can state that finding
appropriate turn-taking strategies for proactive dialogue systems is still an open quest, involving many
challenging as well as interesting research questions.
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