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ABSTRACT

Direct electrical heating (DEH) is a technology for preventing hydrate formation and wax deposit in
oil and gas pipelines. Nexans Norway AS is currently researching and developing deep-water DEH
solutions. A Nexans research project which was finished in year 2014 concludes that a deep-water
DEH riser cable for 2 300 m water depth is feasible.
This paper presents an iterative algorithm for torsion balancing deep-water cables and umbilicals,
using analytical considerations of the armor wires. The main advantage of this algorithm is that it
does not depend on analytical expressions of the cable’s torsion balance. Hence, the algorithm can
be used also on cables which mechanical properties are established using finite element simulations,
i.e. not only on cables where there exist analytical models of the mechanical properties.
The algorithm was initially developed for the deep-water DEH riser cable. The algorithm works
very well. After two iterations the torsion unbalance was reduced by 98%.
Keywords: Cross Section Analysis; Deep-Water; DEH; Direct Electrical Heating; Offshore Tech-
nology; Subsea Cable; Torsion Balancing; Umbilical.

Notation

Ai Cross section area of each armor wire
in layer i [m2].

Ei E-modulus of armor wires in layer i
[Pa].

EAc The cable’s axial stiffness [N].
k Iteration number [-].
Li Pitch length of armor wires in layer i

[m].
li Length of armor wires over one pitch

length in layer i [m].
Mi(k) Change of total cross section area in

layer i (all armor wires) from iteration
k−1 to iteration k [m2].

MT,c The cable’s torsion moment [Nm].
MT,i Contribution to the cable’s torsion mo-

ment from each armor wire in layer i
[Nm].
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Ni(k) Number of armor wires in layer i at it-
eration k [-].

N̄i(k) Theoretical number of armor wires in
layer i at iteration k [-].

Nmax
i Maximum allowed number of armor

wires in layer i [-].
Ri Pitch radius of armor wires in layer i

[m].
ri(k) Element radius of armor wires in layer

i at iteration k [m].
r̄i(k) Theoretical element radius of armor

wires in layer i at iteration k [m].
Tc Axial cable tension [N].
Ti Axial tension of each armor wire in ar-

mor layer i [N].
αi Pitch angle of armor wires in layer i

[rad].
βc(k) The cable’s torsion moment to axial

tension ratio at iteration k [Nm/N].
βi(k) Contribution to the cable’s torsion mo-

ment to axial tension ratio from all
armor wires in layer i at iteration k
[Nm/N].

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55), 
21-22 October, 2014. Aalborg, Denmark

308



εc Axial strain of the cable [-].
εi Axial strain of armor wires in layer i

[-].
σi Axial stress of armor wires in layer i

[Pa].

Values with iteration number k = 0 refer to the initial
values, i.e. the values before the torsion balancing
process begins. For example N1(0) refers to the ini-
tial number of armor wires in layer 1. During gen-
eral explanations where the armor layer number is
not relevant, the layer number sub-script is omitted.
Similarly, where the iteration number is irrelevant,
the argument k is omitted.
Negative values of L indicate left lay direction, and
positive values of L indicate right lay direction. Sim-
ilarly, negative values of α indicate left lay direction,
and positive values of α indicate right lay direction.
All other length values are always positive.

INTRODUCTION
The world’s increasing energy demand, combined
with the exhaustion of many easily accessible oil
and gas reserves, drives the petroleum industry into
deeper waters. Manufacturers of subsea cables and
umbilicals are among those who face the technolog-
ical challenges of increased water depths.
Another significant challenge of offshore petroleum
production is that the pipeline is cooled by the sur-
rounding water. As the pipeline content drops to a
certain temperature, hydrates may be formed and
wax may start to deposit inside the pipeline wall.
Hydrates and wax may partially, or even fully, block
the pipeline. Hydrate formation may start at temper-
ature as high as 25◦C, while wax deposit may start
at 35-40◦C [1].
There are several ways to prevent hydrate forma-
tion and wax deposition. An intuitive solution is to
apply thermal insulation at the outer surface of the
pipeline. However, at long pipelines, low flow rates,
or production shut downs, this solution may be in-
sufficient.
Depressurizing the pipeline content may be used
to prevent hydrate formation. However, at deep-
water pipelines, high pressure is required to bring
the pipeline content to topside. Plug removal by de-
pressurizing also faces the same problem at deep-
water pipelines [2].
When thermal insulation and depressurizing are in-

sufficient, a commonly used approach is to add
chemicals to the pipeline in order to reduce the criti-
cal temperature for hydrate formation and wax de-
position. Methanol or glycol is commonly used
[1, 3]. However, as explained in reference [1],
adding chemicals has practical as well as environ-
mental disadvantages.
Another approach to prevent hydrate formation and
wax deposition is to use power cables inside the ther-
mal insulation of the pipeline. The power cables
function as heating elements heating the pipeline.
However, embedding the cables inside the thermal
insulation may lead to practical difficulties [1].
A technology that has emerged over the last years is
direct electrical heating (DEH). The first DEH sys-
tem was installed at Statoil’s Åsgard oil and gas field
in the Norwegian Sea in year 2000 [4]. Nexans Nor-
way AS qualified the DEH technology together with
Statoil and SINTEF.
In DEH systems, the electrical resistance of the steel
in the pipeline wall is used as a heating element. A
single phase cable, referred to as piggyback cable
(PBC), is strapped to the pipeline. In the far end (the
end of the pipeline far away from the topside) the
PBC is connected ("short circuited") to the pipeline.
In the near end (the end of the pipeline close to the
topside), a two-phase DEH riser cable is connected
to the PBC and the pipeline; one phase of the riser
cable is connected to the PBC, and the other phase of
the riser cable is connected to the pipeline. When the
riser cable is energized topside, energy is transferred
through the PBC into the steel of the pipeline wall.
Nexans Norway AS is currently developing deep-
water DEH solutions. A piggyback cable that is
reparable, i.e. can carry its own weight, at 1 070 m
water depth is already produced by Nexans in a de-
livery project. When this DEH system is installed
outside the coast of Africa, it will be the world’s
deepest DEH system [4]. A Nexans research project
was finished in year 2014, which concludes that a
DEH riser cable for 2 300 m is feasible. The cross
section of this DEH riser cable is shown in Fig-
ure 1. Actually, already in year 2010-2011, Nexans
Norway AS predicted the feasibility of such a deep-
water DEH riser cable in references [5] and [6].
The deep-water DEH riser cable shown in Figure 1
has four stranded conductors (red color) with elec-
trical insulation systems (dark gray, light gray, and
black colors). Outside the conductors are two lay-
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Figure 1: Cross section of the deep-water DEH riser
cable, which is feasible for 2 300 m water depth.

ers of armor wires (gray color) and then the outer
sheath (the outermost sheath in black color). Empty
spaces are occupied with fillers (light brown color),
which give better distribution of radial forces. The
flexible center profile (light brown color) is patented
by Nexans Norway AS. This profile in combination
with the accurately developed cable geometry is es-
sential for the cable to be installed and operated at
as large water depths as 2 300 m.
For deep-water cables, the submerged weight (i.e.
the net force of gravity minus buoyancy) causes
large cable tension topside. For such cables, it is
desirable that the cable is well torsion balanced. A
poorly balanced cable will twist when being axially
tensioned. If the cable is fixed in both ends, and
thereby prevented from twisting, a poorly balanced
cable will set up a torsion moment when being axi-
ally tensioned.
The mechanical properties of the deep-water DEH
riser cable presented in Figure 1 was analyzed us-
ing a finite element method (FEM) software. Hence,
there is no analytical expression for the cable’s tor-
sion balance that can be used for the torsion balanc-
ing process. The author then developed the iterative
algorithm presented in this paper. The purpose of
this algorithm is to torsion balance a cable through
analytical considerations of the cable’s armor wires.
The main advantage of this algorithm is that it can be
used even if there is only a FEM model of the cable,
i.e. no analytical model. The algorithm proves to be
very successful. After two iterations, the DEH riser

cable’s unbalance (quantified as the torsion moment
to axial tension ratio) was reduced by 98%.
Analytical expressions for a cable’s torsion balance
are well known in the literature, see for example ref-
erence [7]. However, the author is not familiar with
any algorithm which has a similar purpose as the al-
gorithm presented in this paper, and that uses the
same tuning parameters.

OBJECTIVES OF THE ALGORITHM
In subsea cables and umbilicals, steel armor is com-
monly used as load carrying element. There are usu-
ally two, sometimes four, layers of armor wires of
alternating lay directions (left or right). The objec-
tive of the algorithm presented in this paper is to
torsion balance cables and umbilicals with two ar-
mor layers of opposite lay directions. As the ca-
ble’s torsion moment to axial tension ratio, βc, is
used to quantify the torsion unbalance of the cable,
the mathematical formulation of the objective is to
achieve βc = 0 Nm/N.
Armor wires with circular cross sections are as-
sumed. It is also possible to adapt the algorithm to
armor wires of other cross section shapes. However,
this is beyond the scope of this paper.
The tuning parameters to achieve torsion balance are
the number of armor wires in each armor layer and
the armor wires’ radii. In other words, the tuning
parameters are N1, N2, r1, and r2. Hence, the algo-
rithm’s objective is to tune these four parameters to
achieve βc = 0 Nm/N.
In Figure 1, N2 is the number of armor wires in the
outer armor layer (i.e. the armor layer right inside
the black outer sheath). The parameter r2 is the ra-
dius of each armor wire in this armor layer. Please
note the difference between r2 and R2: r2 is the ra-
dius of the armor wire itself, while R2 is the distance
from center of the armor wire to center of the cable.
Similarly, N1 is the number of armor wires in the in-
ner armor layer (i.e. the armor layer right inside the
outer armor layer), and r1 is the radius of the armor
wires in this layer.
In theory, there is an infinite number of combina-
tions of the four tuning parameters that will achieve
βc = 0 Nm/N. For a solution to be feasible, two ad-
ditional constraints must be introduced: (i) The ca-
ble’s axial stiffness, EAc, should not change subject
to the torsion balancing. This ensures unchanged
stress distribution between the armor and the other
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cable elements. For realistic cable designs, this also
ensures that the cable’s capacity (allowed combina-
tions of axial tension and bending curvature) will
be almost unchanged. (ii) The fill factors of the ar-
mor layers (i.e. the complement of the empty space
within each layer) should be unchanged.
In order to limit the complexity of the algorithm,
the following simplifications are introduced: (i) Lin-
ear elastic materials are assumed. (ii) Radial dis-
placements in the cable, including radial deforma-
tions due to the Poisson ratio effect is neglected, be-
cause radial displacements require detailed model-
ing of the non-armor cable elements. (iii) The armor
layers’ pitch radii, R1 and R2, are considered as con-
stants in the algorithm, while they will be subject to
small changes in real-life. As will be shown later
in this paper, the algorithm gives very good results,
despite these simplifications.

THE ITERATION PROCESS
The torsion balancing algorithm is an iteration pro-
cess. Step 0 is performed once before the first itera-
tion. Step 1 and step 2 are performed once for each
iteration.

Step 0: The iteration counter k is set to zero, i.e. k =
0.

Compute or simulate the cable’s axial stiffness,
EAc, and the cable’s initial torsion moment to
axial tension ratio, βc(0).

If βc(0) is sufficiently small (absolute value),
no torsion balancing is needed.

If βc(0) is too large (absolute value), then go to
step 1.

Step 1: Increase the iteration counter k by 1.

Calculate new values of N1(k), N2(k), r1(k),
and r2(k). How to calculate these values will
be explained in the next section. Then go to
step 2.

Step 2: Compute or simulate the torsion moment
to axial tension ratio, βc(k), based on N1(k),
N2(k), r1(k), and r2(k) found in step 1.

If βc(k) is sufficiently small (absolute value),
torsion balance is achieved.

If βc(k) is too large (absolute value), then go to
step 1.

The computations of step 0 and step 2 must be based
on the assumption of no cable twisting, i.e. the cable
is prevented from twisting at both cable ends.
Ideally, the cable should be perfectly torsion bal-
anced after one iteration, i.e. βc(1) should be zero.
However, due to the simplifications introduced in the
previous section, more iterations may be necessary.
For the deep-water DEH riser cable presented in Fig-
ure 1, two iterations were sufficient. However, the
algorithm improved the torsion balance also during
the third and forth iterations.
How to compute or simulate EAc and βc in step 0,
and βc in step 2, is beyond the scope this paper. An-
alytical calculations can be used, see for example
references [7] and [8]. There are also several com-
mercial available software tools that can be used for
this purpose.
The calculations of step 1 can be done using only
pen, paper, and a calculator. However, a spreadsheet
program or implementing a simple script will ease
the work. Nexans Norway AS has implemented step
1 in a spreadsheet.

CALCULATING STEP 1
This section derives the calculations to be performed
in step 1 of each iteration.

Inputs to Step 1

At iteration k, the calculation of step 1 takes the fol-
lowing inputs:

• N1(k− 1), N2(k− 1), r1(k− 1), and r2(k− 1).
These values were computed in step 1 of itera-
tion k−1 (for the first iteration the initial values
are to be used). These values will be updated
for each iteration.

• βc(k− 1). This value was computed in step 2
in iteration k−1 (for the first iteration the value
was computed in step 0). This value will be
updated for each iteration.

• EAc, E1, E2, R1, R2, α1, and α2. These values
are fixed, i.e. they are not updated during the
iteration process.

Outputs from Step 1

At iteration k, the calculations in step 1 provide the
following outputs:
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• N1(k), N2(k), r1(k), and r2(k). These values
will be updated for each iteration. These values
are to be used as inputs to step 2 of iteration k,
and to step 1 of iteration k+1.

An Armor Wire’s Contribution to the Ca-
ble’s Axial Stiffness

All helical cable elements have the same helix cen-
ter, which is the center of the cable’s cross section.
While helices are three dimensional geometries, it is
common to illustrate these geometries in two dimen-
sions as shown in Figure 2.

2 π R

L l

α

Figure 2: The geometric relationship between l, L,
R, and α .

The pitch length, L, is the axial length of the cable
corresponding to one revolution of the helix. Ele-
ments in the same cable layer always have the same
pitch length. The element length, l, is the length of
the cable element over one pitch length. The pitch
radius, R, is the radius from center of the cable to
center of the element. The pitch angle, α , is the an-
gle between the cable’s axis (length direction) and
the tangent of the helix.
This section derives the individual wire’s contribu-
tion to the cable’s axial stiffness, EAc. From Fig-
ure 2, Pythagoras’ theorem gives

l2 = (2πR)2 +L2. (1)

Implicit derivation with respect to L gives

2l
dl
dL

= 2L, (2)

dl =
L
l

dL = cos(α)dL. (3)

Dividing by L, and using L = l cos(α), gives

dl
L

=
dl

l cos(α)
= cos(α)

dL
L
, (4)

dl
l
= cos2(α)

dL
L
, (5)

ε = cos2(α)εc. (6)

In Eq. 6 it is used that the cable’s axial elongation
is εc

def
= dL/L, while the element’s elongation is ε

def
=

dl/l. A cable element’s axial tension is given as T =
EAε . Hence, Eq. 6 can be rewritten as

εc =
ε

cos2(α)
=

EAε

EAcos2(α)
=

T
EAcos2(α)

(7)

=
T cos(α)

EAcos3(α)
.

Reorganizing Eq. 7 gives

T cos(α)

εc
= EAcos3(α). (8)

T cos(α) is the component of T along the cable’s
axial direction, i.e. along edge L of Figure 2. This
is the component that carries part of the cable’s ax-
ial tension. The cable’s axial stiffness is defined as
EAc

def
= Tc/εc. Eq. 8 is then the contribution of an in-

dividual cable element to the cable’s axial stiffness,
EAc. Hence, the contribution to EAc from all armor
wires in armor layer i is

NiEiAi cos3(αi). (9)

An Armor Wire’s Contribution to the Ca-
ble’s Torsion Balance

This section derives the individual armor wire’s con-
tribution to the cable’s torsion moment to axial ten-
sion ratio. The axial tension of a cable element,
T , acts along edge l of Figure 2. The component
T sin(α), i.e. along the edge 2πR in the figure, acts
in the circumferential direction of the cable, i.e nor-
mal to the cable’s length direction and normal to the
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cable’s radius. This force component sets up a tor-
sion moment, which lever arm is the cable element’s
pitch radius, R. Hence, the torsion moment caused
by an individual armor wire, MT , is the lever arm, R,
multiplied by the force component, T sin(α), i.e.

MT = RT sin(α) = EARε sin(α) (10)

= EARεc cos2(α)sin(α).

In Eq. 10 it is used that T = EAε , and Eq. 6 is in-
serted. Inserting the definition of the cable’s axial
stiffness into Eq. 10 gives

MT = EARcos2(α)sin(α)
Tc

EAc
, (11)

β
def
=

MT

Tc
=

EARcos2(α)sin(α)

EAc
. (12)

In Eq. 12, β is the cable element’s contribution to
the cable’s torsion moment to axial tension ratio, βc.
Hence, the contribution to βc from all armor wires
in armor layer i is

βi =
NiEiAiRi cos2(αi)sin(αi)

EAc
. (13)

Calculating the Number of Armor Wires and
the Wire Radii

Eq. 9 expresses an armor layer’s contribution to the
cable’s axial stiffness, EAc. Hence, for EAc to be
constant from iteration k−1 to k, it must be required
that

N1(k)E1A1(k)cos3(α1) (14)

+N2(k)E2A2(k)cos3(α2)

=N1(k−1)E1A1(k−1)cos3(α1)

+N2(k−1)E2A2(k−1)cos3(α2).

Eq. 14 can be rewritten to

M1(k)E1 cos3(α1)+M2(k)E2 cos3(α2) = 0, (15)

where

Mi(k)
def
= Ni(k)Ai(k)−Ni(k−1)Ai(k−1). (16)

From Eq. 13 the change of armor layer i’s contribu-
tion to βc from iteration k−1 to k is

βi(k)−βi(k−1) (17)

= [Ni(k)Ai(k)−Ni(k−1)Ai(k−1)]

× EiRi cos2(αi)sin(αi)

EAc

=
Mi(k)EiRi cos2(αi)sin(αi)

EAc
.

The change of βc from k−1 to k is

βc(k)−βc(k−1) (18)

= [β1(k)−β1(k−1)]+ [β2(k)−β2(k−1)].

The objective of the algorithm is to achieve βc = 0.
Inserting Eq. 17 and βc(k) = 0 into Eq. 18 gives

−βc(k−1) =
M1(k)E1R1 cos2(α1)sin(α1)

EAc
(19)

+
M2(k)E2R2 cos2(α2)sin(α2)

EAc
.

Eq. 15 and Eq. 19 make a set of equations which is
linear in M1(k) and M2(k). Solving with respect to
M1(k) and M2(k) gives

M1(k) (20)

=
−βc(k−1)EAc cos(α2)

E1

[
R1 cos2(α1)sin(α1)cos(α2)−R2 cos3(α1)sin(α2)

] ,

M2(k) (21)

=
−βc(k−1)EAc cos(α1)

E2

[
R2 cos(α1)cos2(α2)sin(α2)−R1 sin(α1)cos3(α2)

] .
Eq. 20 and Eq. 21 express how much the total cross
section area of all armor wires in armor layer 1 and
2, respectively, must be changed for the cable to be
torsion balanced, while preserving its axial stiffness.
However, the equations contain insufficient informa-
tion to decide Ni(k) and ri(k). This will be addressed
next.
In the derivation to follow, the notation N̄i(k) and
r̄i(k) will be used instead of Ni(k) and ri(k), respec-
tively. N̄i(k) and r̄i(k) are temporarily theoretical
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values that are not constrained to N̄i(k) being an in-
teger.
Under the assumption of constant pitch radii for both
armor layers, the requirement of constant fill factors
can be expressed as

N̄i(k)r̄i(k) = Ni(k−1)ri(k−1). (22)

Using Ai = πri
2, Eq. 16 can be rewritten to

πN̄i(k)r̄i(k)
2 = πNi(k−1)ri(k−1)2 +Mi(k). (23)

Inserting Eq. 22 into Eq. 23 and solving for r̄i(k)
gives

r̄i(k) = ri(k−1)+
Mi(k)

πNi(k−1)ri(k−1)
. (24)

Then inserting Eq. 24 into Eq. 22 and solving for
N̄i(k) obtains

N̄i(k) =
πNi(k−1)2ri(k−1)2

πNi(k−1)ri(k−1)2 +Mi(k)
. (25)

Eq. 24 and Eq. 25 give values for N̄i and r̄i that tor-
sion balance the cable, while preserving the cable’s
axial stiffness and the layers’ fill factors. However,
these values are infeasible because N̄i is not con-
strained to being an integer. Now the notation Ni and
ri are re-introduced, where Ni is an integer. The true
number of armor wires in layer i can be computed as

Ni(k) (26)

= min
(
bN̄i(k)c,Nmax

i

)
= min

(⌊
πNi(k−1)2ri(k−1)2

πNi(k−1)ri(k−1)2 +Mi(k)

⌋
, Nmax

i

)
.

In Eq. 26, min(·) is the function that returns the low-
est of its arguments. The floor function, b·c, trun-
cates downward to the nearest integer. Using the
floor function, instead of the ceil function, ensures
that the fill factors do not increase, which could have
resulted in over-filled armor layers. Nmax

i is an up-
per limit of the number of armor wires, which is set
based on practical considerations.
Replacing N̄i(k) and r̄i(k) with Ni(k) and ri(k), re-
spectively, in Eq. 23, and solving for ri(k) gives the
true radii of the armor wires in each layer

ri(k) =

√
πNi(k−1)ri(k−1)2 +Mi(k)

πNi(k)
. (27)

The calculations to be performed in step 1 of the tor-
sion balancing algorithm can then be summarized as

1. Calculate M1(k) and M2(k) from Eq. 20 and
Eq. 21, respectively.

2. Calculate N1(k) and N2(k) from Eq. 26.

3. Calculate r1(k) and r2(k) from Eq. 27.

Mi(k) is a temporary variable that is used for calcu-
lating Ni(k) and ri(k). When Ni(k) and ri(k) have
been calculated, Mi(k) is abandoned.
Eq. 22 ensures constant fill factor only if Ri is con-
stant, which is an approximation. If the true Ri is
decreased for one or both armor layers, it is recom-
mended to verify that the fill factor has not become
too high. If the fill factor is too high, it can be re-
duced by setting Nmax

i in Eq. 26 to a value lower
than Ni(k), and then re-calculate Ni(k) and ri(k).

TORSION BALANCING THE DEEP-WATER
DEH RISER
The torsion balancing algorithm presented in this pa-
per was initially developed for the deep-water DEH
riser cable shown in Figure 1.
Initially, the torsion moment to axial tension ratio,
βc, was 1.2×10−3 Nm/N. After two iterations of tor-
sion balancing, βc is reduced by 98% to 2.2× 10−5

Nm/N. After four iterations, βc is reduced by more
than 99.9% to 8.6×10−7 Nm/N.
Although the torsion balance improves significantly
over the third and forth iteration, it is believed that
this is only of academic interest. In practice, due
to tolerances of the armor wires as well as during
production of the cable, it seems unlikely that the
improvements over the third and forth iterations will
be present in the real-life cable.
Figure 3 illustrates how the cable’s torsion moment
to axial tension ratio, βc, improves over each iter-
ation of the torsion balancing algorithm. Note that
the scale of the figure is logarithmic.
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]
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Figure 3: Improvement of βc for each iteration. Note
that the scale is logarithmic.

CONCLUSIONS
This paper derives an iterative algorithm for torsion
balancing deep-water cables and umbilicals. The
algorithm was developed during a research project
where Nexans Norway AS concluded that a deep-
water DEH riser cable for 2 300 m water depth is
feasible.
The torsion balancing algorithm works very well.
After two iterations, the torsion unbalance of the
deep-water DEH riser cable (quantified as the ca-
ble’s torsion moment to axial tension ratio) is re-
duced by 98%.
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