Towards a Massively Parallel Solver for Position Based Dynamics

Marco Fratarcangeli and Fabio Pellacini
Sapienza University of Rome

Abstract
Position-based dynamics (PBD) is an efficient and robust method for animating soft bodies, rigid bodies and fluids. Recently, this method gained popularity in the computer animation community because it is relatively easy to implement while still being able to synthesize believable results at interactive rate. The animated bodies are modeled by using a large set of linearized geometrical constraints which are iteratively solved using a sequential Gauss-Seidel method on a single core CPU. However, when the animated scene involves a large number of objects, solving the constraints sequentially one after the other makes the computation of the motion too slow and not suitable for interactive applications. In this paper, we present a massively parallel implementation of position based dynamics which runs on the local GPU. In the initialization phase, the linearized geometrical constraints are divided in independent clusters using a fast, greedy coloring graph algorithm. Then, during the animation, the constraints belonging to each cluster are solved in parallel on the GPU. We employ an efficient simulation pipeline using a memory layout which favor both the memory access time for computation and batching for visualization. Our experiments show that the performance speed-up of our parallel implementation is several orders of magnitude faster than its serial counterpart.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation and Virtual Reality

1. Introduction
The interactive animation of soft and rigid bodies is still a challenging problem for the Computer Graphics community. The final users expect outstanding quality and for this reason, the mathematical models defining the animated objects have become more and more sophisticated through the years.

Position-Based Dynamics (PBD) [MHHR06] is a widely spread method for interactively animating rigid bodies, soft bodies and fluids. Its popularity is due to its robustness, speed and easiness of implementation. In PBD, each object is modeled as a particle system, and the relationship between particles is expressed using geometrical constraints. There exists several kinds of constraints. For example, the stretch constraint imposes the distance between two particles to an input distance. Another example is the tetrahe-
dral constraint, which imposes the volume of the tetrahedron formed by four particles to an input value. The set of constraints associated to an object forms a system which must be solved for each animation frame.

The Gauss-Seidel method is particularly suitable for solving such systems of linear equations. However, the underlying algorithm is sequential and thus unsuitable for parallel implementations. Previous works exploited the sparsity of the system to extract parallelism [KW03], or proposed parallel approaches requiring synchronization primitives [CA09], or aimed at the general case of sparse vector-matrix products [WBS’13]. In this paper, we propose a parallel scheme for the systems of linear, geometrical constraints employed in Position Based Dynamics for modeling animated objects, taking advantage of commodity parallel local architectures such as multi-core CPUs and GPUs.

The main feature of the graphics processing units (GPUs) is their high computational throughput. They offer a great speed-up allowing the execution of thousands of lightweight threads in parallel according to the SIMD (single instruction multiple data) paradigm: the threads execute the same instruction on different data. The introduction of the NVIDIA’s Compute Unified Device Architecture (CUDA) [KH13] allowed to abstract from the underlying graphics hardware and use GPUs for general purpose programming (GPGPU).

In the initialization phase of our method, the geometrical constraints are divided in independent clusters using a fast, greedy coloring graph algorithm. Then, during the animation, the constraints belonging to a cluster are solved in parallel on the GPU. We employ an efficient simulation pipeline using a memory layout which favors both the memory access time for computation and batching for visualization.

The presented method allows for real-time animations of complex deformable bodies. To demonstrate the performance gain in practice, we present animation of deformable bodies, like cloth and volumetric objects. We compare between implementations on the single core CPU, multi-core CPU and GPU. We observe that in some cases the performance speed up of the GPU solver is 10x w.r.t. the other platforms.

Our contributions:

- A novel algorithm which divide the set of constraints in independent clusters using a greedy coloring algorithm; all the constraints are then solved using a GPU-based parallel Gauss-Seidel method.
- A novel GPU data structure storing all the objects in a single particle system. The data structure is used for both the animation and visualization minimizing the frame update time.

This parallel implementation allows the animation of soft bodies composed by tens of thousands of constraints in real-time.

2. Related Work

Position Based Dynamics has been employed in a broad range of applications from knot simulation [KPF07] to face animation [Fra12] and automatic body skinning [DB13, RF14]. Its original formulation considered just soft bodies, like cloths and inflatable balloons. Recently several works have been proposed to include both rigid bodies [DCB14] and fluids [MM13]. An extensive description of this method and its derivatives can be found in [BMOT13]. Popular available implementations are included, among others, in the open-source Bullet physics engine [Cou10] and in the proprietary PhysX SDK [NV113].

One of the main issues of PBD is the intrinsic slow convergence of the employed serial Gauss-Seidel solver. The geometrical constraints are solved one by one several times in an iterative way (see Sec. 3). Each time an iteration is completed, the difference between the current solution and the optimal one decreases. In order to reach a satisfying solution, usually just a small number of iterations is needed (2 – 4), which is suitable for interactive applications. However, for complex scenes where a substantial number of constraints is involved (e.g., several hundred of thousands), the convergence is too slow, the number of iterations increases and the performance is not suitable anymore for real-time animations.

In [M08], a hierarchical ad-hoc position-based approach for clothes is devised in order to accelerate the convergence of the solver. In [BB08], a red-black parallel Gauss-Seidel schema is used for animating inextensible clothes using a force-based system. While providing excellent performance, this method is restricted to meshes with a regular grid topology. The mesh is subdivided into strips of constraints. The strips that have no common particle are independent from each other and can be solved in parallel. Both the solvers presented in [M08] and [BB08] lack the generality needed to simulate generic, volumetric objects with arbitrary topology.

3. Position Based Dynamics

In the Position Based Dynamics approach, a soft body is represented by a set of N particles and a set of M constraints. Each particle i is defined by its position $p_i \in \mathbb{R}^3$. A geometric constraint j is a mathematical relationship between particles $C_j(p) = 0$. When an external force is applied to the particles, like the gravity, or some particles are displaced for some reason, e.g., by user manual interaction, the geometrical constraints may be not satisfied anymore. For each animation frame, the system of constraints must be always satisfied, or at least, the error between the current and the optimal solution must be small enough to produce believable motion.

During the simulation, if the particles configuration p' in
a state \(k \) does not satisfy the set of constraints, then the iterative solver projects the particle positions in a valid state by finding a displacement \(\Delta \mathbf{p} \) such that \(C(\mathbf{p}^k + \Delta \mathbf{p}) = 0 \). All the constraints in our method are functions \(C_\ell(\mathbf{p}) = 0 \). In this context, the constraints express a relationship (usually geometrical) between the particles. Projecting a set of particles according to a constraint means moving the particles such that their positions satisfy the constraint. The motion of the particles is computed inside a simulation loop. The particles are initially at rest state. This state can be perturbed by external conditions such as a force, like the gravity. The objective of the solver is to update the positions of the particles in order to keep the system of constraints satisfied.

Given \(\mathbf{p} \), we want to find a correction \(\Delta \mathbf{p} \) such that \(C(\mathbf{p} + \Delta \mathbf{p}) = 0 \). This system of non linear equations is linearized:

\[
C(\mathbf{p} + \Delta \mathbf{p}) \approx C(\mathbf{p}) + \nabla C(\mathbf{p}) \cdot \Delta \mathbf{p} = 0
\]

and then iteratively solved. If \(\Delta \mathbf{p} \) is chosen to be parallel to \(\nabla C(\mathbf{p}) \) (which is perpendicular to rigid body modes), then both linear and angular momenta are conserved. For a full mathematical description on how to solve this system, the interested reader can refer to [MHHR06, BMOT13]. For consistency, we briefly report the equations for solving distance and volume constraints in the following section.

3.1. Geometric Constraints

Starting from an input mesh like the one depicted in Fig. 2, we create one particle \(\mathbf{p}_i \) for each vertex, one stretch constraint for each edge (including the internal ones), and one volume constraint for each tetrahedron. These constraints are described in the following subsections.

3.1.1. Stretch Constraint

We define one stretch constraint for the particles \((\mathbf{p}_1, \mathbf{p}_2) \) at the end points of each edge of the mesh, including the edges of the internal tetrahedrons:

\[
C(\mathbf{p}_1, \mathbf{p}_2) = |\mathbf{p}_1 - \mathbf{p}_2| - d = 0
\]

where \(d \) is the rest length of the edge.

Given the configuration \((\mathbf{p}_1^k, \mathbf{p}_2^k) \) of two particles in the state \(k \) connected by a distance constraint, the corrections to the positions (Eq. 1) in order to satisfy a single constraint are:

\[
\begin{align*}
\mathbf{p}_1^{k+1} &= \mathbf{p}_1^k - \left(|\mathbf{p}_1^k - \mathbf{p}_2^k| - d \right) \frac{\mathbf{p}_1^k - \mathbf{p}_2^k}{|\mathbf{p}_1^k - \mathbf{p}_2^k|} \\
\mathbf{p}_2^{k+1} &= \mathbf{p}_2^k + \left(|\mathbf{p}_1^k - \mathbf{p}_2^k| - d \right) \frac{\mathbf{p}_1^k - \mathbf{p}_2^k}{|\mathbf{p}_1^k - \mathbf{p}_2^k|}
\end{align*}
\]

3.1.2. Tetrahedral Volume Constraint

We define one volume constraint for the particles \((\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4) \) at the corners of each tetrahedral of the mesh:

\[
C(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4) = \frac{1}{6} (\mathbf{p}_{2,1} \times \mathbf{p}_{3,1}) \cdot (\mathbf{p}_{4,1} - \mathbf{V}_0)
\]

where \(\mathbf{p}_{ij} \) is the short notation for \(\mathbf{p}_i - \mathbf{p}_j \) and \(\mathbf{V}_0 \) is the rest volume of the tetrahedral. The projection of each particle belonging to a tetrahedron is:

\[
\Delta \mathbf{p}_1^{k+1} = -\frac{\delta}{6} \left((\mathbf{p}_{2,1}^k \times \mathbf{p}_{3,1}^k) + (\mathbf{p}_{3,1}^k \times \mathbf{p}_{4,1}^k) + (\mathbf{p}_{4,1}^k \times \mathbf{p}_{1,1}^k) \right)
\]

\[
\Delta \mathbf{p}_2^{k+1} = \frac{\delta}{6} \mathbf{p}_{2,1}^k \times \mathbf{p}_{3,1}^k
\]

\[
\Delta \mathbf{p}_3^{k+1} = \frac{\delta}{6} \mathbf{p}_{3,1}^k \times \mathbf{p}_{4,1}^k
\]

\[
\Delta \mathbf{p}_4^{k+1} = \frac{\delta}{6} \mathbf{p}_{4,1}^k \times \mathbf{p}_{1,1}^k
\]
\[\Delta p^{k+1}_i = s \frac{1}{6} (p^{k}_1 \times p^{k}_{21}) \]
where \(s \) is the scaling factor:

\[s = \frac{1}{\sum_{i=1}^{4} |\nabla p \cdot C(p_i)|} (10) \]

and the gradients with respect to the particles are [MHHR06]:

\[\nabla p \cdot C(p_2) = \frac{1}{6} (p_{21} \times p_{31}) \]
(11)

\[\nabla p \cdot C(p_3) = \frac{1}{6} (p_{31} \times p_{41}) \]
(12)

\[\nabla p \cdot C(p_4) = \frac{1}{6} (p_{41} \times p_{21}) \]
(13)

\[\nabla p \cdot C(p_1) = -(\nabla p \cdot C(p_2) + \nabla p \cdot C(p_3) + \nabla p \cdot C(p_4)) \]
(14)

4. Parallel Iterative Gauss-Seidel Solver

We consider scenes where thousands of constraints must be solved in real-time at least once every 16 ms to guarantee interactivity. During the animation, these constraints may be not satisfied due to external conditions, for example the user interacts with the model and move arbitrarily a set of particles, or an external force like gravity or wind is applied.

To solve the system, PBD employs a Gauss-Seidel solver. The constraints are solved iteratively one after the other, from the first to the last one. Then, the process starts over again and it is repeated a number of times, \(n_{it} \). Increasing \(n_{it} \) leads to more precise solutions of the systems, sacrificing performance. Usually we employ a number of iterations between 2 and 24, depending on the topology of the system.

To speed-up the solving process, we implemented the Gauss-Seidel solver in a parallel fashion. We define a graph with a node for every constraint in the system. Two nodes of the graph are connected if the corresponding constraints share at least one particle. Each color corresponds to a cluster of constraints. We solve all the constraints belonging to a cluster in parallel: we instantiate a thread for each constraint within the same cluster. This way, the system is solved in less steps than the sequential approach. Fig. 3 depicts this mechanism for a simple mesh composed by stretch constraints (Fig. 3.Left). The corresponding colored graph is shown on the right together with the corresponding clusters, one for each color.

The graph coloring problem, in its simplest form, involves the assignment of colors to each node in the graph, such that two connected nodes do not share the same color. In other words, given a graph \(G(V, E) \) and a set \(S \) of colors, a proper coloring is a map \(c : V \rightarrow S \) s.t. \(\forall \langle u, v \rangle \in E, c(u) \neq c(v) \).

Finding the minimal amount of colors for coloring a generic graph \(G \) (the chromatic number) is known to be NP-hard [GJ79]. Usually, efficient greedy heuristics are employed to find an approximate solution. A widely-known approach is the following: let \(v_1, v_2, \ldots, v_n \) be an ordering of the vertices of the graph \(G = (V, E) \), for \(k = 1, 2, \ldots, n \) the sequential algorithm assign \(v_k \) to the smallest possible color.

In general, an arbitrary ordering may perform very poorly but it is possible to show that, for any \(G \), there exists at least one ordering of vertices for which the sequential algorithm produces an optimal coloring.

In our system, we used the smallest-last ordering defined in [MB83,CM83], which guarantees a coloring with at most

\[\max \{1 + \delta(G_0) : G_0 \text{ is a subgraph of } G \} \]
(15)

colors where \(\delta(G_0) \) is the smallest degree of the vertices in \(G_0 \).

5. Implementation

During the design of an algorithm for the GPU, it is critical to minimize the amount of data that travels on the main memory bus. The time spent on the bus is actually one of the primary bottlenecks that strongly penalize the performance [nvB13]. In fact, the transfer bandwidth of a standard PCI-express bus is 2-8 GB per second, while the internal bus bandwidth of a modern GPU is approximately 100-150 GB per second.

We designed our system in order to minimize the amount of data which travels on the PCI bus and keep the data on the GPU as much as possible. In the initialization phase, we load all the data required for the animation on the video memory. Then, during the animation phase, we update the data structures directly on the GPU. In this way, the CPU is not involved in the animation process (besides being responsible for calling the GPU kernels), and any data exchange using PCI bus is avoided.

In order to advance the animation step, the current state of the particle system must be stored in the video memory of the GPU. The current state is given by the following attributes:

1. the current position of each particle;
2. the previous position of each particle;
3. the external forces influencing the particles;
4. a different static array is created for each attribute during the initialization phase. Then, each array is loaded into video memory. Each array stores the attributes for all the particles. The size of each array is equal to the size of an attribute (4 floating-point values) multiplied by the number of the particles.

We employ the so-called ping-pong technique [Dro07] that is particularly useful when the input of a simulation step is the outcome of the previous one, which is the case in most
of the animations based on particle systems. The basic idea is rather simple. In the initialization phase, two buffers are loaded on the GPU for each attribute, one buffer to store the input of the computation and the other to store the output. When the computation ends and the output buffers are filled with the results, the pointers to the two buffers are swapped such that in the following step, the previous output is considered as the current input.

The current results data are then stored in a Vertex Buffer Object (VBO), which is employed to render the current state of the deformable object; in this way the data never leaves the GPU achieving maximal performance. This mechanism is illustrated in Fig. 4.

6. Results

We tested our proposed technique on three different scenes (Fig. 5). The first scene represents fixed cloth modeled using stretch and bending constraints under the influence of wind. The second scene represents a stack of clothes which falls under the gravity force and collides with a capsule. The third scene represents a volumetric character modeled using both stretch and tetrahedral volume constraints and deformed by user intervention. The tetrahedral meshes used in the experiments are obtained using [BDP*02].

To advance the animation, we used a 10 ms time step and 16 iterations per frame. We measured the time performances on the set of test scenes on a mass-market laptop equipped with an Intel i7 2.30 GHz processor (4 cores), 4GB RAM and a graphics card GeForce 610M with one multiprocessor and 2 GB VRAM.

We implemented standard Position Based Dynamics on a single core CPU, and the parallel version both on multithread CPU and GPU. The code of the kernels for solving the constraints is the same for each kind of platform. We used Intel Thread Building Blocks technology for implementing the multithreaded version on the CPU. The mean computation times are reported in Table 1. The corresponding animations are shown in the accompanying video.

7. Conclusions

In this paper, we introduced an early implementation of a massively parallel solver which can be used to speed up the computation of the popular Position Based Dynamics approach. It allows to simulate soft bodies, both cloths and volumetric ones, and it can be easily extended to involve rigid bodies, fluids and the two-way interactions among them. Table 1 shows the computational superiority of the GPU (even with a single multiprocessor!) against single and multi core CPUs.
Table 1: Quantitative results of our experiments on three different scenes depicted in Fig. 5. For each scene, it is reported the number of particles, the number of constraints, and the average computation time over 500 frames.

<table>
<thead>
<tr>
<th>scene 0</th>
<th>particles</th>
<th>constraints/colors</th>
<th>iterations</th>
<th>avg. computation time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>scene 1</td>
<td>4800</td>
<td>1376/4/13140/8</td>
<td>16</td>
<td>151.6</td>
</tr>
<tr>
<td></td>
<td>32087/142</td>
<td></td>
<td></td>
<td>102.1</td>
</tr>
<tr>
<td></td>
<td>13764/8</td>
<td></td>
<td></td>
<td>40.6</td>
</tr>
<tr>
<td>scene 2</td>
<td>14400</td>
<td>41296/8</td>
<td>16</td>
<td>104.2</td>
</tr>
<tr>
<td></td>
<td>4452</td>
<td></td>
<td></td>
<td>48.8</td>
</tr>
<tr>
<td></td>
<td>122,1</td>
<td></td>
<td></td>
<td>9.7</td>
</tr>
<tr>
<td>scene 0</td>
<td>10452</td>
<td>52387/73</td>
<td>16</td>
<td>256.4</td>
</tr>
<tr>
<td></td>
<td>32087/142</td>
<td></td>
<td></td>
<td>122.1</td>
</tr>
<tr>
<td></td>
<td>13140/8</td>
<td></td>
<td></td>
<td>82.0</td>
</tr>
</tbody>
</table>

The performance of the GPU solver is bounded by the number of times the kernels are run, rather than the number of particles involved into the animation. This is depicted in the case of scene 1 in Table 1, where the performance speed-up of the GPU is higher than in the other cases because, despite the big number of particles, the number of clusters is smaller than in the other cases.

A kernel call is required for solving each cluster. Each kernel is run a number of times equal to the number of clusters multiplied by the number of iterations. The number of clusters is equal to the number of colors required to color the graph constraint. The problem of maximizing the performance can be thus expressed as finding the minimal number of colors required to cover the graph, which is known to be NP-hard [GJ79].

We noted that the minimal number of colors is lower bounded by the size of the biggest clique in the constraint graph. In the future, we would like to explore the possibility to color the constraint graph with an arbitrarily low number of colors, allowing minimal changes in the topology, in order to maximize the performance on the GPU.

References

Figure 6: volumetric deformation of the Stanford Bunny model, composed by 80K stretch constraints and 50K tetrahedral constraints.

[KW03] Krüger J., Westermann R.: Linear algebra operators for gpu implementation of numerical algorithms. ACM Trans. Graph. 22, 3 (July 2003), 908–916. 2

