
SIGRAD 2014
M. Obaid, D. Sjölie, E. Sintorn and M. Fjeld (Editors)

Using Curvilinear Grids to Redistribute Cluster Cells for
Large Point Clouds

D. Schiffner1, M. Ritter 2,3, D. Steinhauser 3 and W. Benger 2

1Professur für Graphische Datenverarbeitung, Goethe Universität Frankfurt, Germany
2AirborneHydroMapping GmbH, Technikerstr 21a, Innsbruck, Austria

3Universität Innsbruck, Technikerstr 13/25, Innsbruck, Austria

Abstract
Clustering data is a standard tool to reduce large data sets enabling real-time rendering. When applying a grid
based clustering, one cell of a chosen grid becomes the representative for a cluster cell. Starting from a uniform
grid in a projective coordinate system, we investigate a redistribution of points from and to neighboring cells. By
utilizing this redistribution, the grid becomes implicitly curvilinear, adapting to the point cloud’s inhomogeneous
geometry. Additionally to pure point locations, we enabled data fields to influence the clustering behaviour. The
algorithm was implemented as a CPU and a GPU code. The GPU implementation uses GLSL compute shaders
for fast evaluation and directly manipulates the data on the graphics hardware, which reduces memory transfers.
Data sets stemming from engineering and astrophysical applications were used for benchmarking. Different pa-
rameters dependent on the geometric properties were investigated and performance was measured. The method
turned out to reach interactivity for medium sized point clouds and still good performance for large point clouds.
The grid based approach is fast, while being able to adapt to the point cloud geometry.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometry transformations

1. Introduction

Large point cloud data sets are produced by observations
and simulations. Today, laser light detection and ranging (Li-
DAR) applications easily generate several billions of points
measurements [PMOK14, OGW∗13], similar amounts of
particle based data are generated by state-of-the-art astro-
physical simulations, i.e. by smooth particle hydrodynamic
codes [SWJ∗05, Spr05]. Interactive rendering of data be-
comes important, i.e., when semi-automated algorithms are
applied. The classification of LiDAR data, e.g., requires a
quality check and ’hand-made’ corrections done by users.
Here, interactive response and rendering is important for an
efficient work-flow. Such large amounts of geometry data
do not fit into the graphic hardware’s (GPU’s) memory as
they easily reach hundreds of giga-bytes. Thus, data has to
be prepared to support out-of-core rendering, for example in
spatially sorted data fragments. But, more geometry data can
be loaded onto the GPU’s memory than the GPU can display
at interactive frame rates.

Here, our approach aims at geometry reduction on the

GPU to still achieve interactive frame rates per out-of-core
data fragment. We want to avoid any additional data pre-
processing, but can enhance the reduction when using pre-
generated information. We cluster the incoming vertices to
reduce the amount of data being displayed by creating an im-
plicit curvilinear grid originating from an affine transformed
uniform grid. The cluster process consists of two steps: a
grid cluster operation and a move operation. The cluster op-
eration is simple as it operates on an initial uniform grid. The
move operation uses accumulated information from the first
step and processes indices only. This allows a fine grained
control over individual cells and their number of contained
vertices enabling to manipulate the details of the rendered
data while not needing to preserve it for further processing.
In the context of out-of-core rendering and big data sets, this
becomes ever increasing in importance.

Our method aims to be:

fast. Utilization of the GPU and preparing the clusters via
GLSL compute shaders to reduce memory transfers and
unleash parallelism available in standard workstations.

9

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

simple. Data organization is linear and no hierarchical data
structure is required. It is directly used for rendering.

flexible. Besides the vertices, additional data fields such as
scalar, vector, or tensor fields, may be taken into account
for clustering. The method can be combined with a coarse
Level of Detail technique on out-of-core data fragments.

versatile. Since the grid is being adjusted to the point
clouds’s geometry, the method is applicable to different
kinds of data. The approach makes no assumption on how
the point cloud originated or if it represents a specific
kind of geometry. The points may or may not describe
lines, surfaces, volumes, or other geometrical distribu-
tions, available at many time steps or just at one.

We chose application motivated data sets to do bench-
marks. We study different parameters of the approach and
the influence of data set properties on the performance and
the applicability.

After having provided some background information, we
gather related and previous work in section 2. The approach
is described in-depth in section 3. Data sets stemming from
LiDAR and from astrophysical particle simulations, see sec-
tion 4, are the basis for benchmarks in section 5. Here, the
main results regarding to timing and visualization are pre-
sented and discussed. The article is concluded in section 6,
and closes with thoughts on future work in section 7.

2. Related and Previous Work

The application of vertex clustering recently has grown in in-
terest due to its fast processing capabilities. Linear methods,
such as grid based clustering methods, are especially well
suited for large data sets that may contain several million or
even billion data points. By reducing the input set, such as
presented by DeCoro [DT07] or Willmot [Wil11], the ren-
dering of large data is possible again with a little overhead at
the initial clustering phase. In the latter case, individual at-
tributes of an input data set are stored separately to increase
detail after reduction.

Promising results have also been achieved by Peng and
Cao [PC12], as they are able to provide frame-to-frame
coherence when applying their reduction method. Their
method is based on an edge collapse algorithm, which was
presented by Garland and Heckbert [GH98]. They apply the
computation of the quadric error metric in parallel and then
decide where to reduce and restructure the output triangles.

The selection of individual level of details is also a cru-
cial part and often includes offline processing methods. In
[SK12] we used a parallel approach to dynamically update
the current representation while retaining interactivity. This
could be done by computing a raw estimate of the object that
is being iteratively refined.

An comparison of two clustering algorithms has been pre-
sented by [PGK02]. In this case, a hierarchical and an in-

Figure 1: Points are transformed into a local coordinate sys-
tem of the camera view frustum. Initial cells are defined by
a uniform grid. The clustering algorithm operates in this co-
ordinate system. The grid’s geometry preserves more detail
close to the camera and reduces detail far way.

cremental clustering method are applied to reduce point-set-
surfaces [ABCO∗01], where cells were iteratively refined.
Both approaches showed good results regarding reduction
quality and run-time performance. Clustering especially in
the context of SPH data sets has been utilized by [FAW10]
with a perspective grid. They include a hierarchy (octree) in
the data organization and apply texture based volume render-
ing in front to back order of the perspective grid for drawing.

[PGK02] use a covariance technique in the point neigh-
borhood to compute a reconstructed ’surface normal’ and to
measure a distance from a cluster point to the original sur-
face. A similar method based on the same dyadic product,
called the point distribution tensor, was introduced in our
previous work [RB12]. However, the product also includes
distance weighting functions and the analysis based on the
tensor’s Eigenvalues is different. Three scalar fields are de-
rived from the second order tensor called linearity, planarity,
and sphericity. These describe the geometric point neighbor-
hood and are normalized between 0 and 1. If points are dis-
tributed on a straight line, linearity is high, and if points are
distributed on a plane planarity is high, respectively. We pre-
computed the planarity for some of the data sets used in the
benchmarks and include it in the clustering process, such
that variations in planarity are preserved and homogeneous
planar regions are clustered.

3. Our Approach

The main idea behind our approach is to re-size individual
cells based on their internal data. The less points contribute
to an individual cell, the better the quality once a reduction
is applied. This applies, as long as the representative is being
computed using the values taken from a single cell.

The most basic scenario for shrinking a cell is that it con-
tains more points than their neighbors. This can be achieved
by reducing the cell extents. Note, that this reshaping does
not alter the actual data but is only used internally to derive
a new cell. More elaborate results can be achieved, by using

10

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

P

M
d d

c

n

i
cb

Figure 2: Left: Detail of the marked cell in Figure 1 illus-
trates how a point is "moved" from one cell to its neighbor
below. A point P of the cell c is assigned to a different cell if
the largest component di of the direction vector ~d from the
cell center M to P is larger than a certain cell bound cb which
depends on parameters of cell c and the neighboring cell n.
Right: Curvilinear grid after moving the points. Note that
the curvilinear grid is not computed explicitly, but indirectly
defined by the points assigned to each cell.

geometric properties, such as curvature or tensor data, that
may have been computed in advance.

Also, this approach can be combined with classical warp-
ing techniques. In these cases, a non-uniform transformation
is applied prior to the clustering, see Figure 1.

3.1. Overview

We apply a 3 step method to create the reduced input set:
cluster, move, and reduce. The first step applies a classical
clustering, but we also accumulate information needed for
the second step. The incoming vertices are mapped to a grid
that may can be warped via an affine transformation. The
resulting position is converted to an index that is used for
further computations.

The second, i.e. the move, identifies, whether a data point
needs to be placed in a neighboring cell. It uses the accumu-
lated information from step 1 and local information of the
current data point to compute new, temporary, cell bounds.
If the point is located outside the temporary cell bound it is
moved to its neighbor. This renders the cell bounds curvilin-
ear, as the actual shape is being altered. Figure 2 illustrates
the involved geometrical objects of the method, which for-
mally is described by:

~d = P−M (1)

∆i = max
j=1..3

{|d j|} (2)

w(c,n) = min(lb,
(

density(c)
density(c)+density(n)

)γ

) (3)

cb = w(c,n) (4)

∆i > cb

{
true, move P to n
f alse, skip

, (5)

with M the center point of the current cell c, P a point in
c, i the index of the maximal component of vector ~d, n the
neighbor cell, lb a lower bound of the cell size of c assur-
ing its minimal size, cb the cell boundary in direction of the
component i, and γ a non linear scaling factor.

For a point P its direction vector from the cell’s center
is computed. Then, the maximal absolute component of this
vector is chosen and compared to the according component
of

Both, step 1 and step 2 scale with the size of the input data
O(N). Each cell, identified by the index, is processed and the
according data is accumulated to compute a representative
data point.

The last step simply reduces the input point set by emit-
ting the previously averaged cell position. More sophisti-
cated methods such as median or a quadratic error mini-
mization could be utilized to derive the representative. As
the single cells are iterated in this case, the time complexity
is bound linearly with the number of cells O(C). The final
output is a reduced point set, that can be visualized. To allow
further displaying of additional data, the accumulated data of
the cluster or move steps can be emitted as well.

3.2. Computation Details

The processing flow of our method can be described as fol-
lows. On each call, the input position from the raw data set
is being warped by a given projection matrix. This may be
identity, if no warping should be applied. The resulting po-
sition is in normalized device coordinates and is matched
to the underlying grid by multiplying it with the grid size.
Finally, a grid index is derived by performing a 3D to 1D
mapping. From this point, the individual shaders diverge and
different operations are performed.

In the cluster operation, a scalar value is read from an
additional buffer that is aligned with the input positions. This
value represents the individual weight of an input point and
is atomically added to an internal counter. We also store a
maximum value to allow visualizations regarding the overall
weight.

In case of the move operation, each cell is compared
to their immediate neighbors. The previously summarized
counter is used to extract the total weight of a cell. Weights
that are less than the derived neighbor’s weight are not taken
into account and the processing is aborted. Otherwise, the
new cell bounds for the current active cell are computed by
applying formulas (4) and (3). We use the internal counter
from the first step as the density(c) and set used a default pa-
rameter set for all tests (lb= 0.1,γ= 1.0). If the current posi-
tion exceeds the new cell bound, the current point is emitted
to that neighboring cell used in the computations.

11

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

(a) SmallRiver (b) GasTank

(c) FormingStars (d) RiverDam

Figure 3: Four point cloud data sets were used for testing. Different sizes and different geometrical distributions are bench-
marked. The points in the LiDAR data sets are mainly distributed on surfaces with small volumetric regions in vegetation and
water. The point density varies relatively little over the whole data set. The SPH simulation of forming stars is fully volumetric
and has small regions of much higher point densities.

Name Nr. of Points Scalar Field
SmallRiver 2.075.993 Planarity
GasTanks 11.133.482 Planarity
FormingStars 16.250.000 Type / Density
RiverDam 26.212.555 Planarity

Table 1: Data set sizes used for the benchmarks.

4. Data Sets

We use data sets stemming from LiDAR measurements and
an astrophysical particle simulation to test our algorithm, see
Figure 3. Table 1 lists the data sets, its sizes, and an available
scalar field on the points.

LiDAR: For the LiDAR data three airborne scans with in-
creasing complexity were chosen. The data was captured
with a green laser system by Riegl, the VQ820g, specialized
for bathymetric scanning. The laser system has an especially
high pulse rate of up to 520 kHz and a wide footprint op-
timized for capturing shallow water regions. The RiverDam
data set was enriched by additional sonar measurements and,
thus, includes ground echos of the deeper (>3m) river sec-
tions, besides the shallow water regions of the fish ladder
(<3m) [DBS∗13]. Such high density bathymetric laser scans
are used for hydraulic engineering, planing water related

building structures, and environmental engineering. Grids
for numerical hydraulic computations can be generated, e.g.,
for flooding simulations or morphological studies. To gener-
ate such grids from a point cloud several processing steps
are required. Points are filtered and geo-referenced. Then,
they are classified into, at least, the two classes: water and
non-water points. Next, the water surface is extracted and
non-water points are corrected to eliminate the effect of the
water’s refraction. Especially, the step of classification needs
control and corrections by human users to support automatic
algorithms. For all the LiDAR data sets the planarity was
pre-computed, an attribute given per point, describing a geo-
metrical property of the surrounding neighborhood [RB12].
It was computed via a the point distribution tensor and de-
scribes how closely points are distributed towards a fitting
plane in the neighborhood. The radius of the neighborhood
was set to 2 meters.

Astrophysics: The FormingStars data set represents one
time step of a combined N-Body/Hydrodynamic simulation
of a galaxy undergoing ram-pressure stripping [SHKS12].
Such simulations are performed in order to understand the
evolution of galaxies in dense environments in the universe.
In galaxy clusters, the largest gravitationally bound struc-
tures in the universe, galaxies move in their mutual grav-
itational field. Besides the galaxies and dark-matter, such
clusters consist of a very hot and thin gas, the intra-cluster

12

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

medium (ICM). The galaxies are encountering this gas and
feel its ram pressure, nonetheless it is very thin. This in-
duces enhanced star formation within the galaxy at first, and
leads to the stripping of the inter-stellar medium (ISM), the
gas within a galaxy, reservoir for forming new stars. As a
consequence, star formation in the galaxy ceases, but stars
can be formed from stripped gas in the wake of the galaxy.
The mass distribution of different components in GADGET-
2 [Spr05] (gas(type 0), dark-matter(1), old stars(2), bulge
stars(3), newly formed stars(4)) is discretized and sampled
using a Monte Carlo method. Except gas, all other types of
matter are then modeled as a collision-less fluid, interact-
ing only via gravity. To solve the resulting N-Body prob-
lem, a tree code is used (e.g. [BH86]). The hydrodynamic
equations for the gaseous component are solved via SPH
(smoothed particle hydrodynamics [Mon92]). Initially, the
density estimate of each particle is calculated using a kernel
interpolation technique. Consequently, the momentum and
thermal energy equation can be integrated in time, the conti-
nuity equation is implicitly fulfilled.

The points of the LiDAR data sets reside mostly on sur-
faces, such as measured ground or building structures. Only
a few points captured in vegetation and water regions rep-
resent volumes. However, in the star forming simulation the
points describe a volume. We want our algorithm to perform
well in all cases and want to investigate its behaviour. All
data sets still fit into 1GB of GPU memory, but only the
smaller ones can be displayed at interactive frame rates.

5. Results

To create test results, we have implemented our approach
with OpenGL using compute shader capabilities that are
available since version 4.3. We did not use an OpenCL ap-
proach, as the data is going to be rendered directly after the
processing. This way, we can directly control the outcome
of the cluster algorithm when altering the individual param-
eters.

In the core specification, no floating point atomic opera-
tions are specified but can be added by using an extension
from nVidia. When using other vendors, one could emulate
this feature, by converting the float value to an integer. For
further details, the reader may be referred to [CCSG12].

As our approach consists of two steps, we can simply omit
the second one (and the additional computations) to allow an
evaluation of the overhead generated by our additional move
operation. Thus, this algorithm applies a basic clustering to
the input data set.

A CPU implementation has been realized for sake of com-
pleteness. Obviously, the CPU variant will not be able to
compete with the GPU implementation.

As stated before, we want to avoid any pre-computations,
e.g. computation of tensors or connectivity, on the available

data sets. The algorithm is able to perform a reduction with-
out planarity information, but can produce better results with
them.

5.1. Timing

Based on our applications, several benchmarks have been
conducted. They vary in terms of input size, grid size and
used graphics card. In general, a test has been repeated 10
times and the mean time values are given. Timings are re-
ported in milliseconds. Each test was run with varying input
parameters, i.e. the object and the grid size. These bench-
marks were executed on 3 different PC’s, running on Win-
dows 7 and Linux. The results are listed in table 2. The first
machine (1) consists of an i5-3450 and a nVidia GeForce
GTX 460 with 1GB RAM. The second system (2) uses an
i5-670 and a nVidia GeForce 680 GTX. The last configura-
tion (3) contains an Intel Xeon-X5650 and a nVidia Quadro
5000. (1) and (2) operate on a MS-Windows platform while
(3) runs a Linux system.

Model Sys Our[ms] Cluster[ms] CPU[ms]
SmallRiver 1 68.9 49.7 700.0

2 14.6 10.2 831.0
3 93.9 52.0 879.0

GasTanks 1 298.1 239.5 3780.0
2 65.4 34.8 4445.4
3 480.0 256.5 4758.5

FormingStars 1 648.8 479.9 5751.0
2 129.8 88.6 6858.3
3 749.0 434.4 7146.2

RiverDam 1 950.3 671.5 8670.0
2 206.7 146.7 10292.0
3 1228.6 719.9 11062.7

Table 2: Benchmark results of our GPU algorithm, a basic
cluster approach and a CPU implementation. All shown tests
have been performed with a grid size of 75x75x15. This grid
was chosen due to the planar point distribution.

The individual timings indicate an overhead due to the ad-
ditional processing step of our approach. Yet, we only have
an increase of roughly 50% despite the additional computa-
tions performed in the move operation. Note that our com-
pute shader has not been optimized and leaves room for fur-
ther improvements. A visualization of the presented timings
using a different grid size can be seen in Figure 4.

The influence of the grid size is in all computation steps
very small. This is due to the fact that the individual steps
mostly depend on the data input size, while only the last step
scales with the size of the grid. As one can see in Figure 5,
the GeForce 680 outperforms the older graphics cards.

5.2. Visual Results

The visualization technique in the OpenGL demo simply
draws equally sized non-transparent splats. Color is con-

13

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

0

200

400

600

800

1000

1200

1400

10,000,000 20,000,000 30,000,000

T
im

e
 [

m
s
]

Number of Points

GTX 460
GTX 680

Quadro 5000

Figure 4: Timing values generated by processing each object
repeatedly. The reported values are the mean of all runs. For
all objects, a grid size of 200x200x100 has been used.

0

100

200

300

400

500

600

75x75x15 150x150x50 200x200x100 250x250x150

T
im

e
 [

m
s
]

Grid Size (X x Y x Z)

GTX 460
GTX 680

Quadro 5000

Figure 5: The influence of the grid size on the overall perfor-
mance of our algorithm. The GeForce 680 GTX outperforms
the other graphics cards. The Quadro, despite its larger mem-
ory, is not able to compete with the GeForce 460 GTX. We
used the GasTank data set for computation.

trolled by a scalar value via a red to green color map. As pre-
sented in section 5.1, the impact of the additional move-step
is acceptable, as the computation times are within interactive
response times. The following Figures show several images
that were created with both the curvilinear and a classic clus-
ter algorithm with different grid sizes. The color map either
illustrates changes based on the relative movement from the
cells or the cluster cell density.

In Figure 6 some results generated with our method are
shown. We used the prior mentioned data sets to apply a
clustering. The colors indicate the density of the represented
cell. The more red-ish the color, the more data points have
been collected in this cell.

Especially with larger grid sizes, the reduction quality is
increasing. In Figure 7, the cell density of each step is used
for the color mapping. After application of the move opera-

Figure 8: GasTank data set visualized clustered on a perspec-
tive grid. Top: move operation based on cell densities only.
Bottom: move operation including the scalar field planarity
which was computed in a pre-processing step. Smaller cells
are created in regions of low planarity (e.g. edges) and, thus,
preserving more detail. Dense cells are created in regions of
homogeneous planar regions, were less detailed information
is necessary for a good visual representation. Geometric fea-
tures of the point cloud are enhanced, when taking the pla-
narity into account.

tion, the global average is reduced, which results in the red
color, as the same maximum is used for the mapping. The
lower image visualizes the differences regarding the addi-
tional move operation. The curvilinear grid matches the un-
derlying source more closely, as can be seen via the cluttered
splats at the top right of the image.

By introducing precomputed information, our algorithm
can perform even better. As one can see in Figure 8, re-
gions where edges are present are better fitted as smaller
cells are used. This is indicated by the more distinct color
values present in the individual cells, e.g. it the lower right
of the image.

6. Conclusion

We have presented a new approach to apply a non-linear
clustering to arbitrary objects. We are able to use multi-
ple information from the current geometry and are not lim-
ited to scalar field properties. The applied reduction is made
selectively, due to a restructuring of individual cells. Cur-
rently, our data sets are point based and do not incorporate
connectivity information. However, an extension to triangles
or polygons can easily be achieved, as shown by other re-
searchers ([PC12, Wil11]).

The computation times of the move operation has been
shown to be interactive for medium sized point clouds and
has a good performance with large data sets. Our implemen-
tation has not been optimized and leaves room for further
enhancements. For example, the calculation of cluster in-
dices is performed in both the cluster and the move opera-
tion, which is not necessary.

We have shown the differences between classical cluster-

14

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

(a) SmallRiver (b) GasTank

(c) FormingStars (d) RiverDam

Figure 6: Visual results of the clustering for the different data sets. Color represents the cell density. The number of points per
cell is illustrated by a green to red color map going from many (red) to one (green) point. Grid size varies from 150×150×25
to 300× 300× 100 in (a), (b), and (d), which yield good results for reduced overview visualizations. In (c) the grid resolution
in z-direction was reduced to 5 slices allowing to see inside the volume. When inspecting the leftmost slice one can see how
the representing points are pulled toward the high point density region of the galaxy, thus emphasizing a region of interest. The
simple non-transparent splat rendering prevents better insights into the volume.

Figure 7: The differences due to the application of the proposed method. In the first picture of the top row, the green-ish regions
indicate cells with high density. These are reduced by rescaling the cell sizes, which results in a more even distribution, as
seen on the right top. The image below shows a detailed view, where and how the move operation modifies the positions of the
resulting cells. The yellow cells are created by the clustering while blue ones are the result with the additional move operation.
Note that the latter produces a splat at the tree in the top of the image.

15

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

ing and our curvilinear implementation. Due to the dynamic
cells, details in an object are more likely to be preserved.
This preservation of features during a rendering increases
the quality and topology of the basic object, while still re-
ducing the input data set. Thus, we have made another step
towards interactive rendering of large, unprocessed data sets.

7. Future Work

The high performance of the compute shader drives us to
further investigate streaming of big data. This includes a fast
discard of unnecessary data, as well as selective reloading
of individual fragments of a rendered object. Especially, the
efficiency of the move allows repetitive execution (more it-
erations) or more complex grid modifications. We intent to
use several reconstruction methods to enable the visualiza-
tion of closed surfaces as well as available geometric prop-
erties, such as the point distribution tensor or the planarity.
This will allow an identification of interesting regions within
the large scale object. Tensor analysis may also be computed
on the fly on the GPU.

The visualization can be enhanced by displaying the in-
dividual cell sizes. This way, a user could visually control,
whether the implicitly generated curvilinear grid matches
the expectations. Also, the information within a cluster cell
could be visualized showing the influence of the available
parameters to the effectively computed grid.

We also want to investigate, whether we could use the
fast approximation to create a fingerprinting of these large
data sets. To compare large data sets for equality, the accu-
mulated information could be used instead of the raw data.
However, it remains to be shown, if the generated data is
unique enough for a clear identification.

8. Acknowledgments

This work was supported by the Austrian Ministry of Sci-
ence BMWF as part of the Konjunkturpaket II of the Focal
Point Scientific Computing at the University of Innsbruck
and as part of the UniInfrastrukturprogramm of the Research
Platform Scientific Computing at the University of Inns-
bruck and funded by the Austrian Science Fund (FWF) DK+
project Computational Interdisciplinary Modeling, W1227-
N16. We like to thank Frank Steinbacher [ahm] to provide
the LiDAR data sets.

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN
S., LEVIN D., SILVA C. T.: Point Set Surfaces. In IEEE Vi-
sualization (2001), Ertl T., Joy K. I., Varshney A., (Eds.), IEEE
Computer Society.

[ahm] http://ahm.co.at.

[BH86] BARNES J., HUT P.: A hierarchical 0 (N log iV) force-
calculation algorithm. Nature (1986).

[CCSG12] CYRIL CRASSIN, SIMON GREEN: Octree-Based
Sparse Voxelization Using the GPU Hardware Rasterizer. In
OpenGL Insights, Cozzi P., Riccio C., (Eds.). CRC Press,
July 2012, pp. 303–319. http://www.openglinsights.
com/.

[DBS∗13] DOBLER W., BARAN R., STEINBACHER F., RITTER
M., NIEDERWIESER M., BENGER W., AUFLEGER M.: Die
Zukunft der Gewässervermessung: Die Verknüpfung moderner
und klassischer Ansätze: Airborne Hydromapping und Fächere-
cholotvermessung entlang der Rheins bei Rheinfelden. Wasser-
Wirtschaft 9 (2013), 18–25.

[DT07] DECORO C., TATARCHUK N.: Real-time Mesh Simpli-
fication Using the GPU. In Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games (New York, NY, USA,
2007), I3D ’07, ACM, pp. 161–166.

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient High-Quality Volume Rendering of SPH Data. IEEE Trans-
actions on Visualization and Computer Graphics (Proceedings
Visualization / Information Visualization 2010) 16, 6 (November-
December 2010), to appear.

[GH98] GARLAND M., HECKBERT P. S.: Simplifying surfaces
with color and texture using quadric error metrics. In IEEE Visu-
alization (1998), pp. 263–269.

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Annual review of astronomy and astrophys. 30 (1992), 543–574.

[OGW∗13] OTEPKA J., GHUFFAR S., WALDHAUSER C.,
HOCHREITER R., PFEIFER N.: Georeferenced Point Clouds:
A Survey of Features and Point Cloud Management. ISPRS In-
ternational Journal of Geo-Information 2, 4 (2013), 1038–1065.

[PC12] PENG C., CAO Y.: A GPU-based Approach for Mas-
sive Model Rendering with Frame-to-Frame Coherence. Comp.
Graph. Forum 31, 2pt2 (May 2012), 393–402.

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient Sim-
plification of Point-sampled Surfaces. In Proceedings of the Con-
ference on Visualization ’02 (Washington, DC, USA, 2002), VIS
’02, IEEE Computer Society, pp. 163–170.

[PMOK14] PFEIFER N., MANDLBURGER G., OTEPKA J.,
KAREL W.: OPALS - A framework for Airborne Laser Scan-
ning data analysis. Computers, Environment and Urban Systems
45, 0 (2014), 125 – 136.

[RB12] RITTER M., BENGER W.: Reconstructing Power Cables
From LIDAR Data Using Eigenvector Streamlines of the Point
Distribution Tensor Field. Journal of WSCG 20, 3 (2012), 223–
230.

[SHKS12] STEINHAUSER D., HAIDER M., KAPFERER W.,
SCHINDLER S.: Galaxies undergoing ram-pressure stripping: the
influence of the bulge on morphology and star formation rate. As-
tronomy & Astrophysics 544 (July 2012), A54.

[SK12] SCHIFFNER D., KRÖMKER D.: Parallel treecut-
manipulation for interactive level of detail selection. In 20th In-
ternational Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision (2012), vol. 20.

[Spr05] SPRINGEL V.: The cosmological simulation code gadget-
2. Monthly Notices of the Royal Astronomical Society 364, 4
(Dec. 2005), 1105–1134.

[SWJ∗05] SPRINGEL V., WHITE S. D. M., JENKINS A., FRENK
C. S., YOSHIDA N., GAO L., NAVARRO J., THACKER R., CRO-
TON D., HELLY J., PEACOCK J. A., COLE S., THOMAS P.,
COUCHMAN H., EVRARD A., COLBERG J., PEARCE F.: Sim-
ulating the Joint Evolution of Quasars, Galaxies and their Large-
scale Distribution. Nature (2005).

[Wil11] WILLMOTT A.: Rapid Simplification of Multi-Attribute
Meshes. In High-Performance Graphics 2011 (August 2011).

16

http://www.openglinsights.com/
http://www.openglinsights.com/

