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Abstract  

A model predictive control framework for optimal 
heating of a residential building is proposed. The 
control inputs are applied to a virtual building emula-
tor model using a limited amount of measurements. 
State estimation is implemented using moving hori-
zon estimation to reinitialize the states of the control-
ler model in every time step. To implement the mov-
ing horizon estimation, the Modelica equations had 
to be modified. A stochastic input is declared at the 
controller model state equations to represent the pro-
cess noise (model error). The state estimation signif-
icantly improves the output matching between emu-
lator and controller model. The JModelica optimiza-
tion framework proves to be satisfactory for this 
first, limited case investigated here. Future work will 
focus on the extension to different models and pre-
diction errors within the framework developed here. 

Keywords: Model Predictive Control; Moving Hori-
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1 Introduction 

Building heating systems are usually controlled us-
ing a heating curve that determines the supply water 
temperature based on the outside temperature. An 
increased interest in optimal control is encouraged 
by the widespread adoption of optimal control in 
other engineering domains. Model predictive control 
(MPC) is a general purpose control scheme that in-
volves repeatedly solving a constrained optimization 
problem. Optimal control inputs are computed using 
a reduced order controller model and are applied to 
an emulator model or a real case. Measurements of 
(one or more) states in the emulator model or real 
case are used to reinitialize all states of the controller 
model. 

This paper proposes a general framework for 
MPC with state estimation using Modelica models 

and JModelica. The main focus lies on the imple-
mentation of moving horizon state estimation.  

In the literature, otften this step is either bypassed 
by using the controller model as an emulator model 
or by assuming all states can be measured and thus 
the controller model is updated perfectly. However, 
these assumptions do not hold when using MPC in 
real buildings where state estimation is thus needed 
to update all controller model states. 

Because deterministic models cannot explain the 
differences between the system model output and the 
real system observations, stochastic models are 
needed. Therefore, the deterministic model equations 
are extended with a noise term, to overcome the sim-
plifications in the model and the input uncertainty. 
State estimation computes this noise term based on 
statistical knowledge of this extra term and system 
observation.  

For state estimation, often a Kalman filter is con-
sidered, which updates the states, by calculating a 
deterministic estimate, based on the covariance ma-
trices of the noise. A classical Kalman filter  can up-
date the states of a linear time varying model. An 
extended Kalman filter can update the states of a 
non-linear time varying model, by linearizing the 
model equations in the working point. The frame-
work described in the current paper uses Moving 
Horizon Estimation (MHE). MHE solves a least 
squares estimation that determines the optimal state 
estimates, based on covariance matrices of the noise.  

The reason for choosing MHE over Kalman filter 
is twofold: first, the state estimation fits in a frame-
work that is being developed for MPC with Modelica 
models to be used in real buildings. The MPC 
framework starts with parameter estimation of grey-
box controller models in Modelica using the greybox 
building models in a model library (FastBuildings) 
developed by De Coninck et al. [1]. MHE uses the 
Modelica-model differential algebraic equations 
(DAE) formulation directly and thus keeps the great 
flexibility of the greybox parameter estimation 
toolbox. In contrast, Kalman filter is applied to ordi-
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nary differential equation (ODE) models. Second, 
the parameter estimation, the optimal control prob-
lem and the state estimation problem are all optimal 
control problems which are solved using JModelica 
[2]. JModelica allows solving non-linear problems 
using gradient-based optimization. The state estima-
tion and optimal control problem encountered here, 
will always be initiated with an initial guess, based 
on a nearly equal former solution. This will ensure 
that the non-linear problem will be handled robustly. 
This is in contrast with often reported failing of an 
extended Kalman filter (EKF) when handling non-
linear models [3]. 

In this study, the MPC is applied to a virtual, sin-
gle zone residential building equipped with a floor 
heating system and fed by a heat pump. It is repre-
sented by a ‘detailed’ Modelica model, later called 
the emulator model which is presented in [4][4]. On-
ly a limited number of states are measured.  The next 
part of the paper explains the optimization frame-
work step by step, after which the effects of state 
estimation are discussed.  

2 Optimization framework 

Figure 1 schematically shows one loop MPC, which 
is processed every ‘open loop’ time step. The dis-
turbance inputs are ambient temperature, global hor-
izontal solar irradiance and internal gains. The con-
trol input is the floor heating heatflux. Since a heat-
flux is not a physical decision variable, it is translat-
ed into a floor heating water supply temperature set-
point as a function of the measured return tempera-
ture. The temperature of the building zone is also 
measured, for feedback in the high level control.  
The MHE problem looks at the past time window to 
estimate every new initial state variables of the con-
troller model. The MHE optimization is initialized 
by a controller model simulation over that past peri-
od using observed control inputs. This initialization 
is an important part of solving the state estimation 
problem, especially when the model has non-
linearities. 

The optimal control problem(OCP) problem 
looks at the future time window to optimize the con-
trol inputs over the prediction horizon The OCP op-
timization. is initialized using the solution of the 
OCP from the past MPC-step. The shorter the open 
loop horizon, the closer the optimal control inputs 
will be to the initial values. Optimization using linear 
models will always find the global optimum for the 
corresponding linear system. 

 

 
Figure 1: Outline of MPC 

2.1 State estimation 

Because of model mismatch and disturbance predic-
tion errors, the controller model state values deviate 
from the emulator values. To prevent this, a moving 
horizon estimator is implemented to correct the 
states of the controller model based on measure-
ments (or emulator model values). MHE can be seen 
as the dual of the MPC as it solves an optimal con-
trol problem over the past horizon to fit some meas-
urement(s). The difference is that MHE takes the 
fixed past control inputs and optimizes the model 
error: it determines the process noise w over the op-
timization horizon for every state. To understand the 
concept of process noise, one must look at the model 
as a stochastic model. Take a look at the notation of 
a simple, explicit form of the model equations, with 
x the model states and y the output. w represents the 
model error (process disturbance/noise) and v the 
output error (measurement disturbance/noise): 

 
The explicit formulation of the model error w means 
that a stochastic model allows for a difference be-
tween the state change according to a deterministic 
model: f(x,u), and the state change in the real system: 
ẋ. Solving a state estimation problem means finding 
the difference w over the past time, such that the sto-
chastic model accurately represents the real system 
behavior. 
    To solve the state estimation as an optimization 
problem, the following least squares problem should 
be solved by determining wk. 

 
This is known as the ‘full information problem’, 

which minimizes the weighted sum of the output 
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noise v (on some measured outputs y), the model 
noise w and the initial state x0 over the past time. The 
weights can be determined using the inverse covari-
ance matrices of the model error (Q-1), the measure-
ment noise (R-1) and the initial condition (P-1). A 
larger covariance of a model state thus leads to a 
smaller weight in the objective function and a larger 
value for wk as optimal solution. A model state with 
large covariance will have larger deviations from the 
real system, which is to be expected from a larger 
covariance.  

As time progresses, this full information problem 
becomes computationally infeasible. Moving horizon 
estimation removes this difficulty by considering 
only the most recent N measurements. An arrival 
cost is formulated to represent the information about 
the initial states and the measurements prior to N. 
The arrival cost cannot be calculated exactly (full 
information problem) and therefore approximations 
are used. For stability reasons often the prior meas-
urements are disregarded. The initial value x0 is then 
set according to the solution of the last MHE update 
and the arrival cost is thus a constant value. Another 
approach is to calculate deterministic updates of the 
initial MHE states (k=T-N) using an extended Kal-
man filter (EKF). The first approach is followed here 
and prior measurements are disregarded. The MHE 
problem translates to: 

 With ||.||A the 2-norm with weights A. As explained 
before, the weights are determined by the covariance 
matrices. The covariance matrix (Q) for the is a di-
agonal matrix with covariance of each model state on 
its diagonal. The covariance matrices can be consid-
ered a tuning parameter. This is shown Figure 2 
where the R-1 values (weight_meas in the figure) 
takes three different values while keeping the Q-1 
value constant. In order to get the stochastic model 
output to agree more with the measurements: in-
crease R-1/decrease Q-1. And vice versa to agree 
more with the deterministic model state: decrease R-

1/increase Q-1). In this work, the weights are not re-
lated to the covariance matrices yet. However as we 
estimate the greybox models using a parameter esti-
mation, it is mathematically possible to estimate the 
covariance matrices along with the model parameters 
[5]. 

 
Figure 2: State estimation influence of the different 
weighting factors 

 

To implement the MHE optimization problem using 
Modelica models, the model equations need to be 
adapted. Modelica model equations are by design 
deterministic and not stochastic. The DAE system of 
equations in the general implicit form is:  

 
In this equation d represents the disturbance input 
and p the model parameters. Each equation holds and 
simulating a Modelica model generates a determinis-
tic solution for the variables. To use MHE with 
Modelica models, we decide to add a normalized, 
stochastic variable w to every state equation (here for 
a heat capacity, with C=m*c). The stochastic Model-
ica model then looks like:  

 
Figure 3: Stochastic Modelica model heat capacity  

The process noise w is modelled as an input to this 
capacity model. The inputs ‘w’ of all states are opti-
mization variables in the MHE problem. The equa-
tion shows that C*w physically represents an extra 
heat flux, not included in the original deterministic 
equation. It can also be seen that delta_T is a tem-
perature deviation, which is the model error for the 
temperature (state). Since the problem is continuous 
in Modelica, the variable w can be determined in the 
MHE over the past N steps, to find the deviation del-
ta_T of the state T. The Modelica model can be re-
converted into a deterministic model for simulation 
purposes by setting the process noise to zero.  
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2.2 Optimal control problem 

The optimal control problem is solved using a re-
duced order controller model. This controller model 
is identified based on monitoring data by use of a 
grey-box modeling approach. This approach starts 
from the Modelica library FastBuildings which de-
fines potential low-order model candidates. For each 
potential model, parameter estimation is carried out, 
and the resulting models are compared using cross-
validation, confidence intervals and other residual 
analyses. The best model is selected as controller 
model. This grey-box modeling approach is de-
scribed in more detail in [1][6]. For the case investi-
gated in this paper the time series consists of simula-
tion data of the building zone temperature obtained 
by the emulator model, but this could as well be 
measured data. A third order resistance-capacitance 
(RC) model for the building zone fed by a heat pump 
with constant COP of 3.58 gives a good fit (rmse of 
0.08 °C) to the time series generated by the emulator 
model. Figure 5 shows a visual representation of the 

selected RC model from the FastBuildings library. 
There are three heat capacitors which all have a dif-
ferent temperature (state): capEmb.T (heater), cap-
Wal.T (wall) en capZon.T (zone). The last state is an 
output as it is measured in the emulator model. 
 

 
Figure 4: multi-objective optimal control problem 
formulation. 

 

           

 
Figure 5: Visual representation of the third order greybox model in Modelica. 
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The optimal control problem is multi-objective. It 
minimizes both the energy use and the thermal dis-
comfort and is based on a PhD regarding MPC in 
buildings [7]. The problem formulation is shown in 
Figure 4. The control input u (here: u=Qhea) deter-
mines the heat from the heating system to the zone to 
control the zone temperature Tz. The first term in the 
objective function Je is the total electricity used by 
the heat pump, while the second term in the objective 
function Jd is the weighted sum of thermal discom-
fort (overheating and undercooling). 

This multi-objective approach treats the discom-
fort boundaries Tcomf,min/max as soft, asymmetric 
(for β different from 1) constraints through the slack 
variables ϵ. The external inputs (/disturbances) d are 
ambient temperature, solar irradiance, internal gains 
and the electricity price. The latter is kept constant. 
For the disturbances, perfect predictions are used. 
The optimal control input is applied to the emulator 
model and the building zone temperature is meas-
ured. 

2.3 MPC 

The MPC framework is written in Python, because 
JModelica is interfaced in Python. It is tested on an 
emulator model of a single zone residential building 
with floor heating emission system and a heat pump 
for heat production [4].  

The future horizon over which the optimal control 
problem is repeatedly solved and thus over which it 
needs future predictions is chosen to be 2 days. It is 
called the ‘prediction horizon’. The past horizon over 
which the state estimation is repeatedly solved and 
thus over which it needs past measurements is cho-
sen to be 2 days. It is called the ‘state estimation 
horizon’. 

The future horizon over which the optimally de-
termined control inputs are repeatedly applied to the 
emulator model can vary. It is called the ‘open loop 
horizon’. Choosing a shorter open loop horizon 
might improve the control, however it increases the 
number of optimization problems. In the example 
shown in Figure 6 it is chosen to be 1 day. This is a 
long period for control, but it is reasonable as we use 
perfect predictions. The figure also illustrates the 
horizons and the working principle by showing the 
zone temperature state.  

 
 
 
 
 
 
 

First the state estimation (MHE) problem is 
solved to determine the initial state for the optimal 
control problem (OCP). The optimal control input 
determined in the OCP is then fed to the emulator 
model by translating the heat into a supply water 
temperature setpoint. The emulator is simulated with 
this heat input and the temperature of the building 
zone is measured. The measurement is the input to a 
new MHE problem.  

This is shown in Figure 7, at March 2, 00:00h the 
states are updated. The temperatures in the controller 
model are discontinuously changed at every new it-
eration. The figure also illustrates the horizons and 
the working principle by showing the zone tempera-
ture state. 
 

 
Figure 6: MPC framework, result for zone tempera-
tures for 1 MPC iteration. 

 

 
Figure 7: MPC framework, result for zone tempera-
tures for 2 MPC iterations. 
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3 Results 

The MPC is tested over a period of 10 days, with 
an open loop length of 6 hours. This means there will 
be four state updates throughout a day. As explained 
using Figure 6 and Figure 7, the initial values of the 
controller model states x0 for the MPC are deter-
mined by a first solution of the MHE. The initial 
values of the controller model states x0 for the MHE 
can be estimated freely to best capability. In order to 
evaluate the performance, some variations were 
made in the MPC formulation and settings: with and 
without state estimation, larger open loop (control) 
horizon, variation of the weighting in MHE formula-
tion.  

First a case without state estimation is solved. 
From  is clear that the controller model would bene-
fit from measurement feedback. The controller mod-
el (OCP) predicts a too high temperature for the 
states. It stays near its optimal temperature profile of 
around 295 K (21°C) while the emulator model 
(EMU) remains at a lower temperature. The third 
order RC model is not capable of modelling the 
steady state heat loss from the building zone to the 
soil. This third order RC model seems not appropri-
ate for model predictive control without state estima-
tion. The situation improves with state updates as 
can be seen in Figure 9. The controller model is still 
at its 295K (21°C), but due to the feedback of the 
state estimations, there is a better coupling with the 
emulator model. The red curve, which is in the mid-
dle of the two, represents the MHE-model state of 
the zone temperature. I is very close to the the meas-
urements as the weights are chosen to be R-1= {10}, 
and Q-1= I3x3, the identity matrix. This means we as-
sume a higher covariance on the model states than on 
the measurements (R<Q). Remember that the inverse 
of the covariance determines the weighting and not 
the covariance matrix itself. If we change the values 
of these covariance matrices, we get a different re-
sult, which is visible in Figure 10. 

The corrections made by the state estimator are 
visible in the optimal control problem. At every new 
control time step, the optimal control problem is 
solved again starting from the new (in this case low-
er) initial conditions. The lower temperature is im-
mediately compensated by a control input deter-
mined heatflux  from the heat pump to the building 
to regain thermal comfort.  

 
 
 
 

 
The temperature change in the emulator does not 

quite follow the OCP. Firstly, this is because of a 
steady state heat loss to the soil and secondly be-
cause of the slow thermal response of the floor heat-
ing. A control input of 3kW does not spread as fast 
to the building zone as it would in the heater model. 

 
Figure 8: MPC over 10 days with no state updates. 

 
Figure 9: MPC over 10 days with 6 hourly state up-
dates 

 
Figure 10: MPC over 10 days with 6 hourly state up-
dates and a higher covariance for the measurements 
(less trustworthy) 
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These are two important controller model defi-
ciencies. The first one is not so much a problem, as it 
can be overcome by the use of a state estimator. The 
second one can be misinterpreted by the state estima-
tor as the heat to the emulator lags behind. It is there-
fore important to take into account the dynamics of 
the thermal system. If the controller time step is too 
small, the system might overheat as a reaction to the 
zone temperature measurements. 

A comparison is made to MPC with a larger con-
trol time step of 1 hour update. As expected, an im-
proved coupling pulls the emulator model building 
zone temperature towards the optimal values from 
the OCP.  

In Figure 11 the coupling to the emulator model 
is not as would be expected. The building zone tem-
perature of controller model is hourly updated to a 
higher value, and the emulator model does not seem 
able to catch up. One cause to this problem is found 
by examining the translation of the optimal control 
input to a physical temperature setpoint. 

 
Figure 11: MPC over 1 day with 1 hourly state updates 

 

 
Figure 12: Optimal (HH.QHea) vs real (d1.nzeb…) 
heat flux 

 

Since the floor heating system supply temperature 
setpoint and the heat pump setpoint are calculated 
using a measurement of the outlet temperature of the 
floor heating, a problem always arises at startup. As 
the outlet temperature is low when the heating starts, 
the first heatflux through the floor heating is always 
lower than the optimal control heat flux from the 
OCP. This effect can be seen in Figure 12. This 
stresses the importance of good low level control. A 
PID controller could help overcome this discrepancy. 

To conclude we study the result of the MHE op-
timization for temperature difference for the states. 
These temperature differences are the errors of the 
controller model compared to the observations. In 
parameter estimation processes, the model errors are 
studied to decide whether the estimated model is 
‘good enough’. The decision criterium identifying a 
good model is whether the model error (or process 
noise) is white noise. The process noise produced by 
state estimation represents the same error of the 
model. This means that the controller models accura-
cy could be analyzed by looking at the error. The 
noise for the last MHE optimization problem is 
shown in Figure 13 for the three states. 

The error is not white noise. This means there are 
phenomena which are not modelled. From the figure, 
it can be seen that the heater temperature has a 
steady state error with a periodic variation. This error 
might arise from a heat loss to the ground, which is 
not modelled in the controller model. The third order 
RC model cannot represent this loss through a mod-
el. A different RC model should thus be selected for 
parameter estimation. This would render a new better 
controller model, which will improved predictions 
allow better use of the optimal control horizon to 
improve energy savings.  

 
 

 
Figure 13: Process noise on states 
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It is also worth noting that the model error (tem-

perature difference) in Figure 13 changes rapidly 
near the end. This is the case for most of the state 
updates of the MPC analyses with state estimation 
that were studied in this work. The process error on 
capEmb (state) is always high, but decreases rapidly 
in the end. The zone capZon state undergoes the in-
verse transition. This can be seen on Figure 14, 
where this last part of the results of repeated MHE 
solutions are shown.  
 

 
Figure 14: Process noise of the last steps in repeated 
solutions of the MHE problem. 

 

This means that in the MHE model a high noise-
heatflux is present towards the embedded state 
(capEmb.T) and a high negative noise-heatflux is 
present to the zone state (TZon) near the end of the 
interval. This seems to mean that the temperature of 
the Zone is kept high until the end, and is then low-
ered due to a non-physical heatflux.  The question 
rises whether this behavior is to be avoided, although 
it seems to be mathematically correct. Since altering 
the weights R-1 and Q-1 changes the behavior of the 
process noise for the states (and thus the timeseries 
in Figure 13 and Figure 14), the adoption of covari-
ances for every states might mitigate this problem. 
Another solution might be to better initiate the MHE 
problem. This can be done by not disregarding the 
arrival cost, as is done now. 

 
 
 
 
 
 
 
 

4 Conclusions 

In this work, it is shown that stochastic models can 
be implemented in Modelica. This is an important 
step for optimal control framework using MPC. The 
MPC framework uses greybox models, which will 
produce an output which is different from the real 
building. Because not all the states in the controller 
model are measured states, the moving horizon esti-
mator estimates the new initial states of the control-
ler model. This feedback is shows in the fact that the 
measured state in the emulator model will be closer 
to the output state of the controller model. The feed-
back of the measurements in the emulator can be 
tuned by changing the weights in the objective func-
tion of the state estimator. These weights are mathe-
matically the covariance matrices of the model states 
and the measurements, but since they are not always 
known, they can be fine-tuned to give state estima-
tion results.  

The results from the state estimation can be used 
to detect modeling errors or deficiencies in the con-
troller model in the same way the residuals are 
checked in a parameter estimation problem. If the 
residuals are white noise, the controller model accu-
rately models the system. In case the residuals are 
not white noise the controller model does not model 
the system very accurately. The state estimator can 
prevent the controller model from diverging from the 
real situation (observations).  
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