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Abstract

The quantity of initial equations required in an object-
oriented model can only be determined at system
level. Since Modelica models are generally designed
by components, it is difficult to calculate the amount
of initial equations needed at system level, especially
when changes are applied to the model, e.g. by adding
or removing components. Therefore, it is more con-
venient to define initial equations at component level.
Due to component connections, algebraic dependen-
cies between states may be introduced, which eventu-
ally lead to the removal of states when symbolic index
reduction algorithms are applied. In this process, the
corresponding initial equations are not automatically
removed, which results in an over-determined initial
system.

This paper describes an algorithm that detects such
redundant equations and determines if they are con-
sistent or not. Consistent redundant initial equations
can thus be removed automatically, and inconsistent
ones can be reported to the modeler. A prototype of
the algorithm is implemented in OpenModelica, tested
on several representative cases, and compared to pre-
viously presented concepts.

Keywords: initialization; higher-index; simulation;
over-constrained

1 Introduction

1.1 Statement of the Problem

Initial equations in Modelica are usually defined at the
component level, and they are as many as the dynamic
variables of the component, i.e., the potential states.

When connections are made, connection equations
can induce algebraic constraints on dynamic variables.
The dummy derivatives algorithm is used by many
Modelica tools to dispose of some potential states and
obtain an index-1 problem. As a result, there will be
more initial equations than states, leading to an over-
constrained initialization problem.

It is agreed that index reduction is necessary in
object-oriented modeling to achieve full modularity
without compromises, and suitable means to handle it
have been developed over time, so it is obviously nec-
essary to extend the handling to initialization as well.
In the majority of cases the over-constrained initial-
ization problem turns out to be consistent, and should
therefore be handled automatically, without any in-
tervention by the end user; inconsistent initialization
problems should be reported in a user-friendly way.

1.2 Overview of Existing Solutions

OpenModelica has been using a numerical approach
to solve this problem for a long time, as discussed in
[1]. The initialization problem is turned into an op-
timization problem, where the sum of square of all
residuals is minimized; if the problem is consistent,
then the minimum is zero, otherwise the inconsistency
is spread among equations, which is generally not a
good idea. However, solving an optimization prob-
lem is much harder and time-consuming than solving
a system of equations, and it might easily be possi-
ble to get trapped in local minima. Also, convergence
problems quickly get worse when increasing the size
of the system, up to the point where a solution cannot
be reliably found unless guess values very close to the
solution are given to all the problem unknowns. This
gets even worse in the case of hybrid models, where
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some parts of the system contain discrete equations.
Even for determined initialization systems, the numer-
ical approach is only applicable in very special cases.
In practice, this limits the application of the method
to very simple models. So far, large-scale and hy-
brid models are reliably initialized using the symbolic
initialization method described in [2], which has been
further developed to also handle over-determined sys-
tems.

To our knowledge, there is no other Modelica tool
available that has a general approach to handle over-
determined initialization problems. The package Mod-
elicaTest, which is offered by the Modelica Asso-
ciation together with the Modelica standard library
(MSL), has been extended to provide a free-accessible
set of appropriate test models. This can be used to
compare the excellence of the initialization capabili-
ties of different tools.

1.3 Structure of the Paper

In Section 2, an simple introductory example is dis-
cussed in detail to demonstrate the problem being
tackled in this paper. In Section 3, an algorithm is
presented to locate redundant equations which arise
when symbolic index reduction is applied, and detect
whether they are consistent or not. In Section 4, it is
shown how the proposed algorithm works. A few sim-
ple test cases and the results of a more involved test
case are discussed. Section 5 concludes the work with
final remarks and suggestions for future work.

2 Introductory Example

This section describes how over-constrained initializa-
tion problems arise, by means of a simple electric cir-
cuit model, where two series-connected capacitors are
connected to a constant voltage source. A graphical
representation is shown in Figure 1 and an equation-
based model description where all alias variables have
been removed is shown in Listing 1.

Both of the capacitors introduce a potential state
u;. Due to component-based modeling, both capaci-
tors may also introduce initial equations, for example
u; = 5.

An algebraic constraint among potential states is in-
troduced by connecting the capacitors in parallel to
a voltage source, so this model has index-2. Hence,
symbolic index reduction is used (see [3], [4]) to trans-
form this system into an equivalent index-1 system of
lower order. During this process, one of the potential

capacitor1 capacitor2

 —_—

c=1 C=1

+ -

1
‘ ‘ Lt

constantvoltage1=10 —
ground1

Figure 1: Introductory example - object diagram

states becomes an ordinary algebraic variable and the
additional equation 0 = der(u;) +der(uy) gets intro-
duced to keep the dynamic system determined.

1 | model example

2 Real u = 10;

3 Real ul;

4 Real u2;

5 Real 1i;

6 parameter Real C = 1;
7 |initial equation
8 ul = 5;

9 u2 = 5;

10 | equation

11 1 = Cxder(ul);
12 i = Cxder(u2);
13 u=ul + u2;
14 |end example;

Listing 1: Introductory example - flat Modelica model

After the dynamic system is transformed to index-1,
the initial equations will be added. As a result, an over-
determined system arises that needs to get matched.
There will be at least one unmatched equation for each
redundant initial equation. Also note that there is no
unique matching (besides the matching within each
strong component) due to the over-determined sys-
tem structure; different matchings are possible, which
leave out different unmatched equations and possibly
lead to different sets of strong components. Figure 2
shows one possible matching that will be used for the
next steps; the gray equation is the unmatched one.

If all unmatched equations are consistent, then they
can be removed and the initial solution can be calcu-
lated using robust and efficient algorithms designed
for square problems. In order to check the consis-
tency, the matching digraph gets first transformed into
a directed graph by replacing each non-matching edge
with an arc going from the E-node to the V-node, then
by collapsing each V-node with its matching E-node.
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Figure 2: Introductory example - matching

Next, Tarjan’s algorithm [5] gets applied on the di-
rected graph, ignoring the unmatched equations, to
find out strong components. The result of this pro-
cedure is presented in Figure 3, with one strong com-
ponent at the top of the graph.

The symbolic consistency check will be performed
on this graph. The basic idea is to only consider the
sub-graph which involves the initial equations and the
unmatched equations, in this case the lower part of
Figure 3, and to recursively and symbolically solve the
equations starting from the sinks and going up to the
unmatched equations. In this case, once the three sink
node equations have been solved, the gray equation
becomes 10 =5+ 5, which is equivalent to 0 = 0, and
thus redundant.

u=u +u,

[u|u=10 ] [u1|u1=5 ] [u2|u2=5]

Figure 3: Introductory example - directed graph of the
unmatched equation

In general, however, it will not be possible to sym-
bolically solve all the chain of equations leading to the
unmatched equation. It is therefore essential to select

a particular matching that makes this possible. A con-
crete algorithm that does so is presented in the next
section.

3 Algorithm for Redundant Equa-
tion Detection

The goal of this algorithm is to find redundant equa-
tions and remove them if they are consistent, or is-
sue an error if they are not. A symbolic approach is
preferred, because it avoids the need of setting more
or less arbitrary numerical thresholds and using itera-
tive solvers. In general, solving the full initialization
problem symbolically is not feasible, because it often
contains large and nonlinear coupled systems of equa-
tions that cannot be solved in closed form. Therefore,
a symbolic approach should aim at finding a suitable
subset of the initialization problem that is easy to solve
symbolically, to check if there are redundant and con-
sistent equations, so as to remove them.

In a system with n equations and m variables, with
k = n—m too many equations, there are (}) possible
sub-sets of equations that may be removed to make the
problem square. However, the resulting problem need
not only be square, but also have a solution, and many
of these sets cannot be removed, because they contain
essential (and not redundant) constraints. Hence, an
algorithm is needed that efficiently finds those sets that
can be removed without losing essential information.

In addition to that, each set of removed equations
corresponds to a unique matching (ignoring the dif-
ferent matchings within strong components) of the re-
maining system. Depending on this matching, a con-
sistence check can be performed by recursively evalu-
ating the sorted subsets. The effort for this evaluation
strongly depends on the selected equation dependen-
cies, i.e., on the selected matching.

In practice, such a subset can normally be found, be-
cause initial equations are usually linear, involving one
unknown, e.g. x = xo, or der(x) = 0. State derivatives
usually show up linearly in balance equations, because
they stem from the derivative of some basic quantity
(mass, energy, momentum, charge) via differentiation.
Connection equations, which usually provide the con-
straints that make the problem high index, are also lin-
ear. In most cases, it should then be possible to sym-
bolically prove that the problem is either consistent or
inconsistent, by means of symbolic computations, be-
cause the equations to be solved symbolically will be-
long to the above-mentioned categories.
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3.1 Proposed Algorithm

—_—

. Apply index reduction and state variable change
to the dynamic problem, using the dummy deriva-
tives algorithm.

2. Add the initial equations to the set to form the
initialization problem.

3. Build the corresponding E-V graph.

4. Run the matching algorithm; some unmatched
equations will remain at the end of the process
(one for each redundant initial equation).

5. Transform the E-V digraph into a directed graph
by first replacing each non-matching edge with an
arc going from the E-node to the V-node, then by
collapsing each V-node with its matching E-node.

6. Run Tarjan’s algorithm on the directed graph,
ignoring the unmatched equations, to find the
strongly connected components, and collapse
each strong component in a single node.

7. Starting from the sink nodes and proceeding re-
cursively towards the source nodes (unmatched
equations), symbolically solve each equation (or
system of equations) for its unknown(s) and sub-
stitute the result in all the nodes that have arcs
pointing to the solved equation node and are
needed to validate the unmatched equations.

If the symbolic solution of one equation is not
possible (e.g., a sub-expression becomes 0/0),
then try to change the matching from step 4 for
the corresponding equation and go back to step 5.
If there is no other matching, then the algorithm
aborts, and it is neither possible to draw any con-
clusion on the consistency of the problem, nor to
reduce the problem to a square one.

8. If all the unmatched source nodes contain
equations equivalent to 0 = 0, then the over-
determined system is consistent, and it is possible
to turn it into a square equivalent system by just
removing all the unmatched equations. If there
are one or more source nodes containing equa-
tions equivalent to O = 1, then the system is in-
consistent. For diagnostic purposes, it is possible
to report for each node the set of connected equa-
tions which are inconsistent. This will help the
end user to identify the source of the inconsis-
tency and possibly remove it.

The calculation of the matching in step 4 is essential
for this approach. Due to the over-determined system
structure, in general various matchings are possible.
If a matching for all variables exists that contains no
algebraic loops, then it is preferred and should be tried
first. Therefore, Tarjan’s tearing algorithm described
in Cellier’s book [6] is applied to the over-determined
equation system.

A recursive evaluation of the equation system is
possible if and only if during sequential evaluation
each next equation depends on exactly one more un-
known variable. This means that within the equation
system at least one equation exists, which depends just
on one variable. Tarjan’s algorithm detects this fact,
matches the variable to the equation, and reduces the
corresponding bipartite graph by removing both nodes
and all corresponding edges. The same must hold for
the reduced set of equations and can be repeated until
all variables are matched.

If during the algorithm all remaining equations de-
pend on at least two unknown variables no matching
without algebraic loops exists.

The proposed algorithm extends the existing sym-
bolic initialization method of OpenModelica [2],
which is capable to initialize complex hybrid models.

3.2 Numeric Fall-back Case

Instead of step 7 and 8 another possible approach
would be to leave the unmatched equations out of the
problem, solve it, then numerically evaluate the resid-
uals and check if they are small enough. This might be
non-trivial in some cases when the involved quantities
are very large due to the choice of measurement units
and to the size of the system under consideration.

This kind of approach has also the disadvantage that
it is not possible to find a different matching if the sys-
tem ends up in a local singularity.

4 Discussion Based on Selected Ex-
amples

The proposed algorithm has been tested using the
package OverdeterminedInitialization from Modeli-
caTest, which has been first created for this purpose at
the 80" Modelica Design Meeting. This test package
contains a list of models from different domains (Elec-
trical, Mechanics, and Fluid) for test purpose, which
become over-constrained after index-reduction. The
different test cases can be used to cover all kinds of the
different issues, that may occur during this process.
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Figure 4: Directed graph of the unmatched equa-
tions of some simple examples from the package
OverdeterminedInitialization

Because of the low complexity of the most test
cases, they end up with a similar subsystem for the
consistence check as the introductory example. There-
fore, the consistence check can be performed by evalu-
ating the remaining subgraphs recursively towards the
unmatched equations (see Figure 4).

4.1 Fluid Model of Two Volumes

system

defaults i
\/. g

Ve

boundary

valvelinear

Figure 5:  TwoVolumesEquationsFullSteadyState-
MassAndEnergy

One of the most complex examples of the package
is the fluid model TwoVolumesEquationsFullSteady-
StateMassAndEnergy, in which equations and initial
equations refer to stored mass and energy within each
volume as differentiated variables, but pressure and

temperature are forced to be states using the Modelica
stateSelect attribute. Figure 5 shows a graphical rep-
resentation using MSL components. Note that, due to
the way the Modelica.Fluid components are designed,
it is not possible to reproduce this situation, so a tex-
tual equation-based model is used for testing the al-
gorithm. This model and the respective dependence
graph are listed in the appendix. Using transforma-
tions like alias elimination, a reduced version can be
generated that contains just 10 variables and 11 equa-
tions. Figure 6 shows the reduced dependence graph
with one possible matching.

The example contains 11 equations, and is over-
constrained due to one equation. Therefore, there are
11 sets of equations (each of cardinality one) that may
be removed. Depending on the selected set of equa-
tions several cases can occur:

1. recursively evaluable systems
2. systems containing algebraic loops
3. systems with local singularities

4. system with structural singularities

{ 0=0.01* (h0_h2) )
A M1 - V*pL/(R*T1) )
C w2 g L we-vip/RFm) )
y EL=ML*cov*TL )
E2=M2*cv*T2 ]
. J T ]
S T 1
B : { > \i dé?fTril)a]ll) ( RR TEf\zp1 * ]
e B
[ 0.0 =M1 * cv * der(T1) ]

[ 0.0 = M2 * cv * der(12) ]

Figure 6: A matching of the remaining equa-

tion system of TwoVolumesEquationsFullSteadyState-
MassAndEnergy

Four sets end up in case 1, which is the most desir-
able case. Here all equations can be solved recursively
towards the unmatched ones to check the consistency
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of the system. This happens often in simple cases as
described above. Unfortunately, there is no guarantee
that such a case will always show up in more complex
examples. But, if such a case exists, it will be always
captured.

Three sets end up in case 2, which is the most com-
mon case for real-world problems. In general, there is
no way to avoid algebraic loops. However, this case
will only need to be taken into consideration if there is
no recursively evaluable system available. In that case,
advanced symbolic solvers are needed to compute the
solution of these loops symbolically. If this is not pos-
sible a modified version of the algorithm could switch
to a numeric fall-back mode.

Two sets end up in case 3, which occurs, for in-
stance, if a subexpression is evaluated to 0/0. In this
case the selected set of unmatched equations can not
be used to determine whether the system is consistent
or not. The proposed algorithm detects this in step 7,
and, if possible, this case is avoided by rejecting the
corresponding set and trying another one, in the hope
of finding a recursively evaluable one.

Two sets end up in case 4, which gives a non-valid
matching for the system. It is not possible to use the
selected set of unmatched equations for any conclu-
sion. Because, the proposed algorithm only selects
matchable sets of equations, this case is never reached.
Furthermore, due to this fact the possible sub-sets of
equations that may be reduced is much less than (Z)

4.2 Electrical 3-Phase System

This test model was already presented in [1]:

Consider the following electrical 3-phase power
system of Figure 7, where two generating units VS1
and VS2 are connected via a transmission line modeled
by components LR1 and LR2.

o)

Vsi LR2 LR1 \E

Figure 7: An electrical power system with two gener-
ating units VS1 and VS2 connected via a transmission
line

The connectors are written in dg0-coordinates im-
plementing the potential variable u_dq0 and the flow
variable i_dq0. These quantities are constant in case
of a non-distributed steady state, which is generally
assumed during the initialization process. Introducing
the Park-Transformation P the 3-phase rotating system

(voltages u_abc and currents i_abc) can be calculated
from the dqO-representation and vice versa.

The transmission line (LR1 and LR2) is modeled by
a purely inductive and resistive component, based on
the Modelica Electrical Library. Since LR1 and LR2
are connected in series, giving a higher index system,
index reduction has to be applied for simulation pur-
poses.

L

LR2

Figure 8: LR2 component with dg0-connectors

The voltage source is described similarly using the
Modelica Standard Library combined with the dqO0-
connectors.

4.2.1 Results Using the Proposed Algorithm

This system covers some important pitfalls. After in-
dex reduction, the initial system contains three equa-
tions too many. The described approach is not able to
find a matching without algebraic loops. Therefore,
the resulting loop (with a size of 27) has to be solved
symbolically. This is currently not supported from the
OpenModelica back-end and might be in general im-
possible.

As fall-back case the system can be solved numeri-
cally during runtime as described in 3.2. For the con-
crete case of the 3-phase system, the resulting alge-
braic loop becomes singular if a wrong set of equations
is removed. A more advanced solution is described in
the following subsection.

4.2.2 Future Work

As stated above, a symbolic solution for the 3-phase
system is still needed. One possible idea is to change
the consistence check as follows:

Depending on the matching, the following three
equations might get selected as the set of removed
equations:

0.0 = 0.5773502691896258 * (der(LR2.I1.i) +
der(LR2.I2.i) + der(LR2.I3.i));
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LR2.Park[2,1] * der(LR2.I1.i) +
LR2.Park[2,2] * der(LR2.I2.i) +
LR2.Park[2,3] * der(LR2.I3.i) +

der (LR2.Park[2,1]) * LR1.i_abc[1] +
der (LR2.Park[2,2]) * LR1.i_abc[2] +
der(LR2.Park[2,3]) * LR1.i_abc[3];

LR2.Park[1,1] * der(LR2.I1.i) +
LR2.Park[1,2] * der(LR2.I2.i) +
LR2.Park[1,3] * der(LR2.I3.i) +

der (LR2.Park[1,1]) * LR1.i_abc[1] +
der (LR2.Park[1,2]) * LR1.i_abc[2] +
der (LR2.Park[1,3]) * LR1.i_abc[3];

They are quite similar to the next three equations,
that are part of the matched system and involved in the
algebraic loop:

0.0 = 0.5773502691896258 * (der(LR2.I1.i) +

der(LR2.I2.i) + der(LR2.I3.i));

LR1.Park[2,1] * der(LR2.I1.i) +
LR1.Park[2,2] * der(LR2.I2.i) +
LR1.Park[2,3] * der(LR2.I3.i) +

der (LR1.Park[2,1]) * LR1.i_abc[1] +
der (LR1.Park[2,2]) * LR1.i_abc[2] +
der(LR1.Park[2,3]) * LR1.i_abc[3];

LR1.Park[1,1] * der(LR2.I1.i) +
LR1.Park[1,2] * der(LR2.I2.i) +
LR1.Park[1,3] * der(LR2.I3.i) +

der (LR1.Park[1,1]) * LR1.i_abc[1] +
der(LR1.Park[1,2]) * LR1.i_abc[2] +
der (LR1.Park[1,3]) * LR1.i_abc[3];

Instead of solving the entire algebraic loop symbol-
ically, it might be possible to transform each of the re-
moved equations into an equation of the matched sys-
tem, and thus prove its redundancy.

The first equation of both sets are already equal,
so there is no further consistence check needed. By
applying common-sub-expression elimination tech-
niques and advanced alias elimination also the other
two equations can be transformed into the other two.
For that, it is just needed to figure out that LR1.Park
is alias of LR2.Park and der (LR1.Park) is alias of
der (LR2.Park).

5 Conclusions

This paper has discussed a symbolic algorithm that
handles the initialization problem of over-determined
systems. The presented approach has not to deal with
numerical thresholds and there is no risk of trapping
into local minima. Also hybrid models can be handled
efficiently. This is a major improvement with respect

to the existing numerical approach within OpenMod-
elica.

This paper focused on symbolic techniques to de-
termine potential redundant equations and ways to an-
alyze whether the system is consistent or not. These
work well for problems, which end up in an recur-
sively evaluable initial system. Furthermore, the de-
veloped algorithm takes care of singularities, if they
occur during the consistency check. More complex
problems end up with systems including algebraic
loops. If they are not solvable symbolically, a numer-
ical fall-back solution as well as advanced symbolic
techniques are proposed.
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A Test Model TwoVolumesEquationsFullSteadyStateMassAndEnergy

1 |model TwoVolumesEquationsFullSteadyStateMassAndEnergy

2 "Two volumes containing an ideal gas with a zero dp connection"

3 Real Ml(stateSelect=StateSelect.avoid, start=1.0),

4 M2(stateSelect=StateSelect.avoid, start=1.0),

5 El(stateSelect=StateSelect.avoid, start=1.0),

6 E2(stateSelect=StateSelect.avoid, start=1.0),

7 pl(stateSelect=StateSelect.prefer, start=1.0),

8 p2(stateSelect=StateSelect.prefer, start=1.0),

9 Tl(stateSelect=StateSelect.prefer, start=1.0),

10 T2(stateSelect=StateSelect.prefer, start=1.0),

11 w0, wl, w2, hl, h2;

12 parameter Real V = 1;

13 parameter Real R = 400;

14 parameter Real cp = 1000;

15 parameter Real cv = cp—R;

16 parameter Real hO = cpx*300;

17 parameter Real Kv = le—7;

18 | initial equation

19 der (Ml) = O0;

20 der(El) = 0;

21 der(M2) = 0;

22 der (E2) = 0;

23 | equation

24 der(Ml) = w0 — wl;

25 der (E1) = wOxhO — wlxhl;

26 der(M2) = wl — w2;

27 der(E2) = wlxhl — w2xh2;

28 Ml = Vxpl/(RxT1);

29 M2 = Vxp2/(RxT2);

30 El = MlxcvxTl1;

31 E2 = M2xcvxT2;

32 hl = cpxTl;

33 h2 = cpxT2;

34 w0 = 0.01;

35 w2 = Kvxp2;

36 pl = p2;

37 |lend TwoVolumesEquationsFullSteadyStateMassAndEnergy ;
Listing 2: Test model TwoVolumesEquationsFullSteadyStateMassAndEnergy
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der(M1) = w0 - wl ]
der(E1) = wO*h0 - wi*h1 )
der(M2) = w1l-w2 ]
der(E2) = w1*h1- w2*h2 )
M1 = V*p1/(R*T1) |
M2 = V*p2/(R*T2) |
E1=M1*cv*T1 )

E2 = M2*cv*T2 )
h1=cp*T1 )

h2 = cp*T2 )

w0 = 0.01 |

w2 = Kv*p2 ]
pl=p2 ]

der(M1) =V * (der(p1) *R*T1-p1*R*
der(T1))/(R*T1)~ 2.0

der(M2) =V * (der(p2) *R*T2-p2 *R *
der(T2)) /(R*T2) ~ 2.0

—_—

der(E1) =M1 * cv * der(T1) + der(M1) * cv * T1

der(E2) = M2 * cv * der(T2) + der(M2) * cv * T2 ]

der(p1) = der(p2) )

der(M1)=0 )

der(E1)=0 )

der(M2) =0 )

{ der(E2)=0 )

Figure 9: TwoVolumesEquationsFullSteadyStateMassAndEnergy - dependence graph
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