Client-side Modelica powered by Python or JavaScript

Ridiger Franke, ABB, Germany — Ruediger.Franke@de.abb.com

Abstract

Modelica is primarily supported by simulation envi-
ronments for the treatment of equation based models
and model libraries. As of today Modelica is rarely
used for the exchange of engineering data, visualiza-
tion or interactive computing, even though the Mod-
elica language offers a lot of interesting features for
such applications.

This paper investigates the potential of lightweight
Modelica tools that run directly in scripting or web
clients. Two Modelica parsers have been implement-
ed in the popular client-side languages Python and
JavaScript.

The Modelica parser in Python is extended with a
backend translating algorithmic Modelica definitions
to Python. This gives access to existing Python
packages from scripted Modelica. It also enables the
interactive debugging of algorithmic Modelica code.

The Modelica parser in JavaScript offers a generic
backend interface. The paper demonstrates two ap-
plications. First a simple analysis tool for Modelica
packages running from the command line is demon-
strated. The true potential of JavaScript is the em-
bedding of engineering data as Modelica code with
HTML5 documents and their processing on the cli-
ent side, e.g. in Web browsers. The paper shows a
Modelica text editor and parameter GUI generator
running in a web browser.

Keywords: Modelica, scripting, interactive compu-
ting, data exchange, Lex, Yacc, Python, JavaScript,
jQuery, HTMLS.

1 Introduction

Today’s Modelica simulation environments act as
servers that offer proprietary client interfaces, basing
on Modelica Script, COM, or CORBA, for instance.
There has been no success in standardizing Modelica
client interfaces so far. XML has been selected for
tool coupling in the FMI standard.

Major advantages of XML are that it is both: human
and machine readable. XML parsers are readily
available. The major drawbacks of XML are its very

basic syntax, making it bulky and hard to read for
humans. The semantics still needs to be defined.

This paper investigates the use of Modelica itself as
interface language. Modelica is human and machine
readable as well. The major advantages of Modelica
are its more compact, richer syntax. The semantics is
already standardized, tailored for modeling and sim-
ulation, including:

e rich syntax for high-level definitions, like
packages, classes, records, enumerations,
doc strings, and physical units;

¢ modification syntax for predefined classes
that is comparable to XML documents for
XML schemata;

e convenient formulation of matrix expres-
sions, statements and functions;

e embedded graphical representation;
e embedded HTML documentation;
e embedded version management;

e enable automatic generation of graphical us-
er interfaces out of Modelica definitions.

The features are unique in their combination and
could directly be exploited without the need to define
some new XML schema first.

The drawback is that parsing Modelica by machines
is not as simple as parsing XML. But a Modelica
parser neither is a miracle since the concrete syntax
is specified and tools like Lex and Yacc exist.

2 MoiPy — Modelica in Python

MoiPy is intended to bridge the gap between the
powerful Modelica language and convenient script-
ing. This is done by adding a thin syntactic layer on
top of the existing scripting language Python, trans-
lating between Modelica and Python, and by using
the NumPy package for scientific computing.

MoiPy is not an alternative to other Modelica tools;
it is an optional addition. MoiPy allows staying in
the Modelica world even if the simulation environ-
ment at hand has only limited support for model-
based applications or scripting.

DOI
10.3384/ECP140961105

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

1105

Client-side Modelica powered by Python or JavaScript

2.1 Implementation overview

MoiPy implements the Modelica syntax (Modelica
3.3 specification, Appendix B; see [1]) using Python
Lex-Yacc. PLY provides Lex and Yacc entirely in
Python, including extensive error checking and log-
ging. The syntax specification can directly be exe-
cuted. A parser table is generated on demand and
cached in the background.

Of course the execution speed is slower, compared to
a parser explicitly generated and readily compiled.
This is why MoiPy only reads Modelica files as
needed.

The parser produces an abstract syntax tree (AST).
Each node of the tree is a Python object. The AST
reduces the concrete syntax for simpler further pro-
cessing. For instance, a class_definition is represent-
ed as object of ClassDefinition. The attributes of
class_prefixes, class_specifier and composition ap-
pear directly in the ClassDefinition. The elements
and sections of the composition are further reduced
into one elementList, one initialEquationList / ini-
tialStatementList and one equationList / statement-
List.

An exemplary rule reads:

def p_annotation(p):
""" annotation : ANNOTATION \
class_modification """
p[0] = Annotation(
classModification = p[2],
track = Track(p, 1))

The syntax rule is specified in the documentation
string of a Python function that implements the re-
spective production. A new object of the class Anno-
tation is created in the example. The second argu-
ment tracks the location in the Modelica code.

The class definition objects have the common meth-
od toPython that generates Python code from the
Modelica definitions. The toPython method of Pri-
maryUnsignedNumber, for instance, constructs a
predefined Real or Integer object that adds attributes
like min, max and unit to the value itself. Note that
the Python code generation only covers the algo-
rithmic part of the Modelica language, i.e. a subset of
all possible class definitions:

e Modelica packages are treated as Python
modules

e Modelica functions are translated to Python
functions

e Modelica records are translated to Python
classes

¢ Modelica enumerations are translated to Py-
thon objects

Moreover expressions and statements are covered:

e Modelica expressions are evaluated as Py-
thon expressions

e Modelica arrays are treated as NumPy arrays

e Modelica builtin functions are forwarded to
Python functions

¢ Modelica statements are executed as Python
statements
2.2 Extended Modelica syntax for scripting
MoiPy attempts to stay as close as possible to Mod-
elica, using the same rules as specified in the Model-
ica concrete syntax and without introducing any new
keywords. Two extensions are needed for scripting

though: support for commands and use of variables
without declaration on the top-level scope.

The Modelica concrete syntax covers stored defini-
tions in the form of class definitions. MoiPy addi-
tionally accepts commands on the top-level scope
that are Modelica expressions, statements or import
clauses.

In Modelica each variable must be declared before
use. MoiPy follows this rule inside class definitions.
Also on the top-level scope assignments like:

v := {1,2,3}
are declaration errors if v has not been declared be-
fore. On the top-level scope, outside class defini-
tions, it is allowed though to implicitly declare a var-

iable by defining it equal to an existing object. For
instance:

v = {1,2,3}

defines v to be the vector {1, 2,3%}. Afterwards
v := {4,5,6}

assigns a new value to the existing vector v,

v = "a string"

is an error, whereas

v = "a string"

(re)defines v to be a string.

MoiPy uses the file extension .moi to distinguish
interpreted script files from regular Modelica defini-
tions.

1106

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961105

Session 6E: Web-related Modelica Tools

2.3 Basic uses

Start MoiPy with
python moi .py

A parser table for Modelica is generated when called
the first time. Afterwards the moi>> command

prompt appears.
Do some matrix calculations, e.g.:
moi>> A = [1,2;3,4]

moi>> b = {1,1}
moi>> A*b

or matrix concatenations:

moi>> [A,b]
moi>> [A; transpose([b])]

Call a Modelica function from Python:

moi>> t = 0:0.01:1
moi>> y = Modelica.Math.sin(
2*Modelica.Constants.pi*t)

This will look for the Modelica definitions under
MOIPYPATH, load the files Model i-
ca/Math/package.mo and Modeli-
ca/Constants.mo, translate the function sin
and the constant pi to Python, call the function, and
assign the result to the vector y. Note that the func-
tion call is vectorized automatically.

2.4 Enhance Modelica with Python

Python offers many interesting modules, such as
NymPy, SciPy and matplotlib. MoiPy enables to ac-
cess them from Modelica. Type:

moi>> import PIt = matplotlib.pyplot

MoiPy attempts to find a Modelica definition first.
As matplotlib is not found in Modelica, the im-
port gets forwarded to Python and found there, pro-
vided you have matplotlib installed. Type:

moi>> Plt.plot(t, y, "ro");
moi>> Plt.title(
"pyplot for Modelica');

moi>> Plt.show();

A plot window pops up; see Figure 1.

pyplot for Modelica

1.0

0.5[

-0.5F

0.2 0.4 10

143

Figure 1: pyplot generated from Modelica

2.5 Access Modelica from Python

MoiPy translates Modelica definitions to Python.
This means that the translated definitions may also
be called from Python directly. When started in in-

teractive mode:
python —i moi.py

and done some Modelica scripting, e.qg.:

moi>> import

- Modelica.Slunits.Conversions.*
moi>> from_degF(70)

one may leave MoiPy with Ctrl-D (Ctrl-C under
Windows). A Python command prompt appears.
Type:

>>> from_degF(70)

to directly call the translated Python function. One
may switch back to Modelica with:

>>> moipy()

2.6 Advanced Modelica functions

Modelica.Media defines more advanced functions.
They serve as example for 3D plotting and for de-
bugging in the subsequent section. Take the exam-

ple:
moi>> Modelica.Media.Water.
IF97_Utilities.h_pT(1le5, 300);

In order to evaluate the function for the specific en-
thalpy, MoiPy needs to load 7 Modelica files and
translate 19 functions as well as 7 data records out of
13 packages in MSL 3.2.1. The parsing of the files
takes a few seconds. Once loaded and translated,

subsequent calls go fluently.

DOI
10.3384/ECP140961105

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

1107

Client-side Modelica powered by Python or JavaScript

moi>> p = linspace(l1, 300, 30)
moi>> T = linspace(0, 600, 30);
moi>> (pp, TT) =

A numpy -meshgrid(p, T);
moi>> hh = Modelica.Media.Water.

IF97_Utilities.h_pT(
pp * 1le5,
TT .+ 273.15);

This evaluates the function h_pT at 30x30=900 grid
points. See also examples/mplot3dDemo.moi
resp. call it:

moi>> import examples.mplot3dDemo

A wireframe plot should pop up; see Figure 2.

pyplot with 3d projection called through Modelica

2.7 Debugging of Modelica functions

Python offers the extensible debugger pdb. This is
exploited by MoiPy to transform the debugger out-
puts to the originating Modelica code. It uses the
prompt (modb). This gives features like entering the
debugger in case of errors, treating break points,
stepping through Modelica code, walking up and
down on the call stack and inspecting variables.

See also below for an example — the debugger
shows an error in the IF97_Ultilities.h_pT function
that was present prior to r6066 around 290 bar and
350 °C — it has been fixed in MSL 3.2.1.

2.8 Integration with an IDE

An Integrated Development Environment (IDE) typ-

Figure 2: Wireframe plot for IF97_Utilities.h_pT

ically integrates several command line tools and can
be extended to support new ones. shows Emacs run-
ning modb as example.

t,':,',":
"" "I'" Several Emacs extensions have been loaded, such as
Emacs Code Browser for the directory tree, SVN
status and revision, besides Modelica mode for syn-
tax highlighting and annotation folding. The Emacs
debugger framework parses the output of modb and
add a graphical user interface. Moreover it opens and

shows the respective source file at the right position.
Figure 3: MoiPy in the GNU Emacs IDE

W-2

File Edit Options Buffers Tools ECB Gud Complete In/Out Signals Help
@ < 0D G
EModelica [~]
B | Fluid function h_props_pT
- Magnetic "specific enthalpy as function or pressure and temperature"
L gmmaLh extends Modelica.Icons.Function;
+ input SI.Pressure p "pressure”;
| DHec[r_:anlcs input SI.Temperature T "temperature";
g B Media input Common.IF97BaseTwoPhase aux "auxiliary record";
E IdealGases output SI.SpecificEnthalpy h "specific enthalpy”;
Ciliater] algorithm
B Resources h := aux.h;
88 Thermal annotation (...);
o mutilities e b props.pT;
6| TR T
W dla,.-'wate!' | function h_pT "specific enthalpy as function or pressure and temperature”

[package.mo
® package.order

il T

emacs@debian?

extends Hodelica.Icons.Function;

input SI.Pressure p pressure H

input SI.Temperature T "Temperature"”;

rput Integer reglon *

"if @, region is unkowr\ and this input"”

output SI. Spec1f1cEnth enthalpy”;
algorithm

h = h props_pT{(p, T, waterBaseProp_pT(p, T, region));
end h_pl;

i

.nk/Modelica/Media/Water | []

IF97_Utilities.mo 89% L6921 SVN-5459 (Modelica)----------------------~-~-~-~-~-~—~-~-
[~] -= assert(error == 1, "error in inverse function dofpt3: iteration failed");
> /home/ruediger/svn.Modelica.org/trunk/Modelica/Media/Water/IF97_Utilities.mo(6853) 2
|SwaterBaseProp_pT()
-> {aux.rhu,error)
(modb) up
| | = /home/ruediger/svn.Modelica.org/trunk/Modelica/Media/Water/IF97 Utilities.mo(6921) @
|Sh_pT()
-;ph 1=

BaseIF97.Inverses.dolpl3(p=p,T= T,delp= 1.0e-7);

IF97 Utilities.mo
.uediger/moipy-0.3/examp

h_props_pT{(p, T, waterBaseProp_pT(p, T, region));
{modb) locals()

(] @ mpLot3dDemo moi
= = trunkaodeLlcafHedla;Wa-) {'p’: 28968965.517241377, ‘reyiuvn’: @, 'T': 624.8741379310345, 'h': 0.3}
L] 7 (modb)
© 37 | &
_W-3 History -U:**- #*gud-mplot3dDemo.moi* Bot L38 (Debugger:run)----------------~—~—~—~-~—~—~~—~~—~~—~—-
=
1108 Proceedings of the 10" International ModelicaConference DOI

March 10-12, 2014, Lund, Sweden 10.3384/ECP140961105

Session 6E: Web-related Modelica Tools

3 MoiJS - Modelica in JavaScript

Besides its convenient syntax for scientific compu-
ting, Modelica is strong in supporting graphical user
interfaces. A Modelica model may contain annota-
tions with flowsheet graphics and parameter dialogs,
besides documentation — this is important for the
specification and exchange of engineering data.

Graphical user interfaces are currently undergoing
fundamental changes. Powerful, standardized GUI
clients are running on virtually any device, exploit-
ing HTML5 (HTML, CSS and JavaScript). What
does this mean for a Modelica client?

Instead of dealing with proprietary server interfaces,
events and callbacks, the client could receive a Mod-
elica definition, parse it, build the user dialog, man-
age user interactions autonomously, and post back
user inputs as Modelica definition or modification.

A Modelica parser in JavaScript is needed. Initially
developed at Netscape almost 20 years ago, JavaS-
cript grew to a multi-paradigm language covering
functional, imperative and object-oriented program-
ming. It gained a lot of momentum since the stand-
ardization of HTMLY5; see [3], the appearance of fast
just-in-time compilers, development tools, powerful
libraries, such as jQuery [4], and the adoption for
server side programming as well, e.g. by Node.js [5].

3.1 Implementation overview

MoiJS implements the Modelica syntax (Modelica
3.3 specification, Appendix B; see [1]) using Jison.
Jison provides Flex and Bison (Lex and Yacc) in
JavaScript; see [6]. The exemplary rule given in sec-
tion 2.1 reads:

annotation:
ANNOTATION class_modification

$$ = new Annotation(track(@%));
$$.classModification = $2;

}

MoiJS generates a reduced AST as well. A signifi-
cant difference to MoiPy is that JavaScript objects
forming the nodes of the AST are based on proto-
types. The prototypes can be extended later on. This
means that arbitrary backends can be added without
having to touch the original parser code (or requiring
the parser to offer a specific plug-in architecture).

3.2 Adding a backend

Assume all executable models of a Modelica library
shall be identified, in order to automate testing. Fig-
ure 4 shows a MoiJS backend for this.

Figure 4: Exemplary MoiJS backend

if (argument.name == name)

DE
}

var definition = this;

ifT (definition.annotation) {

console.log(within + "_\n
+ "(StopTime="'
b:

DE
}

// treat subclasses recursively

D:
}

// load Modelica parser as CommonJS module
var moparser = require('./moparser'’).parser;

// add method forModifier to each modification and annotation

moparser _Modification.prototype.forModifier =

moparser .Annotation.prototype.forModifier =
(this.classModification || [])-forEach(function(argument) {

function (name, callback) {

callback(argument.modification);

// add method logStopTime to each class_definition, calling forModifier
moparser .ClassDefinition.prototype.logStopTime =

function(within) {

// check for experiment StopTime annotation

definition.annotation.forModifier(experiment", function(experiment) {
experiment.forModifier("'StopTime", Function(modification) {
' + definition.ident

+ modification.expression.value + ");'");

(definition.classDefinitionList || [])-forEach(function(classDefinition) {
classDefinition.logStopTime(within + "_"

+ definition.ident);

DOI
10.3384/ECP140961105

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

1109

Client-side Modelica powered by Python or JavaScript

It may appear confusing how to dive into the syntax
tree. MoiJS closely follows the rules and names of
the Modelica concrete syntax specification, in order
to simplify the understanding. The capitalization is
changed to camel style. If for instance the concrete
syntax defines a class_modification, then a class-
Modification instance of ClassModification appears
in the AST. The suffix List is used if curly braces
find in the Modelica concrete syntax.

The syntax tree may also be explored in the JavaS-
cript Object Notation (JSON) — see below.

The backend (and the parser) can be executed in
Node.js that provides, besides a JavaScript runtime, a
portable operating system interface through POSIX
wrappers. An exemplary Modelica file is processed
with:

var fs = require("'fs');
fs.readFile("'Modelica/StateGraph.mo",
function(err, data) {
if (err) throw err;
// parse the file
var ast =
moparser .parse(data.toString());
// call the new backend
for (i in ast.classDefinitionList)
ast.classDefinitionList[i]
-logStopTime(ast.name || "");

DE

This produces the output:

Modelica.StateGraph.Examples.
FirsteExample(StopTime=5);
Modelica.StateGraph.Examples.
FirsteExample_Variant2(StopTime=5);
Modelica.StateGraph.Examples.
FirsteExample_Variant3(StopTime=5);
Modelica.StateGraph.Examples.
ExecutionPaths(StopTime=15);
Modelica.StateGraph.Examples.
ShowCompositeStep(StopTime=15);
Modelica.StateGraph.Examples.
ShowExceptions(StopTime=20);
Modelica.StateGraph.Examples.
ControlledTanks(StopTime=100);

3.3 Modelica in a Web browser

Having a Modelica parser in JavaScript, it is a small
step to run it in a Web browser, using solely HTML5
standards. Figure 5 shows first results. The MoiJS
lexer provides information for code coloring and an-
notation folding in an HTML textarea. The button
“Show Syntax” invokes the MoiJS parser and shows
the JSON representation of the resulting syntax tree
in a popup window. The button “Show Dialog” in-
vokes a backend to generate a parameter dialog out
of the syntax tree. The GUI has been implemented
using the jQuery Ul library [4].

Figure 5: Modelica in the Google Chrome browser

parameter
parameter F

Real Tact =
equation
(p-v — n.v}) = p.i*{(R + RT* (Tact — Tref}):

end TempResistor;

TempResistor — Temperature dependent elactrical resistor x

“] o[¥ S
| Modelica in JavaScript — I % -
&= C [127.0.0.1:58868/parser.html Ll =
MoiJS — Modelica in JavaScript Syntax tree ®
e e T % { =l
model SimpleCircuit "Composed circuit model” B v N I aE Gt 3
TempResistor R1(R=100), R2(R=200), R3(R=300): -pREgeTClaga’t: Saloreche fun Eron:,

"clazsDi nitionList™: [{
ey 1 lDefinition”,
CIEE™
"stri T : "\"Composed circuit model\"",
: i f
": "ComponentClause™,
"typeSpecifier™: |
"identList™: [
"TempResistor™
} Ei
"componentList™: [{
" _parser(lass™: "ComponentDeclaration”,
™ id "Rl",

| Show Syntax] [Show Dialog J R Oohm Resistance for ref. Temp.
RT 0 Ohm/K Temp. dep. Resistance
Tref 20| degC Reference temperature Wralue": "100"]] } Ul
»
oK
QK
1110 Proceedings of the 10" International ModelicaConference DOI

March 10-12, 2014, Lund, Sweden

10.3384/ECP140961105

Session 6E: Web-related Modelica Tools

4 Caveats on the Modelica syntax

It is a pleasure to experience that the Modelica con-
crete syntax can be passed to a general-purpose par-
ser generator, such as PLY or Jison, and something
useful comes out. Nevertheless there find some
things that might be improved.

4.1 Syntax of primary numbers

The Modelica syntax does generally not rely on the
use of whitespaces. With one exception: a primary
unsigned number may end with a dot and an arithme-
tic operator might begin with a dot; see also [1], sec-
tion 10.6.6. The expression

2.+[1,2;3,4]

is wrong, because the dimensions of the scalar “2.”
and the array [1,2;3,4] do not match. The expression

2 .+[1,2;3,4]

is fine. The additional space makes clear that the dot
shall belong to the element-wise addition operator.

The Modelica syntax should be changed to not allow
primary numbers ending with a dot. Generally a “2”
without dot is fine, in particular because the Modeli-
ca division operator “/” is non-truncating, e.g. “1/2”
gives 0.5 and not 0. If nevertheless a primary number
shall be forced to be a Real, then one can add a 0
behind the dot, e.g. write “2.0”.

4.2 Expression syntax

The Modelica expression syntax defines operator
precedence and associativity with grammar rules.
This leads to very long productions. When a primary
number is passed as function argument, for instance,
then this primary goes through factor, term, arithme-
tic_expression, relation, logical_factor, logical_term,
logical_expression, and simple_expression, to finally
become an expression.

This is not only hard to read, but also slows down
parsers. The expression syntax can alternatively be
specified with all operators in one rule, i.e.

expr primary

expr or expr

expr and expr

not expr

expr rel_op expr

expr add_op expr
add_op expr

expr mul_op expr

expr ("M ML) expr

The operator precedence and associativity can be
defined in a separate table.

Prec | Operators Associativity
7 or left
6 and left
5 not right
4 < <= == <> >= > | |eft
3 + -+ - left
2 * | ox left
1 NN right

MoiJS, for instance, parses the Modelica Standard
Library, version 3.2.1, more than 20% faster with
this handy expression syntax.

4.3 Syntax of embedded HTML documentation
Working with HTML5 one gets used to documents
that contain multiple special-purpose syntaxes, like
HTML for content, CSS for styling and JavaScript
for behavior — and maybe Modelica for engineering
physics. Looking ugly initially, the richer syntax fi-
nally helps to faster grasp the different facets of the

document. Modern text editors support such docu-
ments with mixed modes.

Modelica models may contain embedded HTML
documentation. Unfortunately the HTML code needs
to be encoded into Modelica strings, meaning that all
double quotes used inside the HTML documentation
need to be escaped. A general purpose text editor
cannot detect and highlight the HTML code.

It should be considered to switch the syntax of em-
bedded HTML documentation from Modelica strings
to regular HTML, i.e. allow double quotes up to the
ending </html> tag. In the simplest case a new Mod-
elica string delimiter could be introduced, like ™" for
multi-line strings in Python. This way the readability
improves and the mixed mode support of modern
text editors could be exploited.

5 Conclusions and Outlook

Today’s Modelica simulation environments offer
proprietary client interfaces, basing on Modelica
Script, COM or CORBA, besides more. Only XML
has been considered as standardized interface format
for tool coupling so far. The major drawbacks of
XML are its clumsy syntax and that the semantics
still needs to be defined.

DOI
10.3384/ECP140961105

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

1111

Client-side Modelica powered by Python or JavaScript

This paper investigates the use of the Modelica lan-
guage itself as interface format for client/server ar-
chitectures and for model exchange, instead of XML.
This offers the advantage of having the semantics
already standardized. The price to pay is a Modelica
parser on the client side. This price turns out to be
affordable in modern scripting or Web environments.

Two Modelica parsers have been implemented:
MoiPy in Python and MoiJS in JavaScript. Both use
the same grammar rules, exploiting parser generators
with Lex and Yacc functionality.

It is not the aim of client-side Modelica to compete
with simulation environments. The focus is on addi-
tional tasks in model-based applications, like script-
ing, testing, documentation, visualization and graph-
ical user interfaces.

Python is strong in scientific computing. Due to its
rich syntax, including e.g. operator overloading, and
available packages, such as NumPy, it was straight-
forward to add a Python backend to the MoiPy par-
ser, resulting in a Modelica interpreter and debugger
for algorithmic models.

JavaScript is strong in dynamic user interfaces and in
connecting them to servers. This is the main motiva-
tion for MoiJS. This paper shows how Modelica
code is processed either in a console application or in
an HTMLS5 user interface running the same parser.

The availability of compatible JavaScript implemen-
tations by multiple vendors and fast just-in-time
compilers being preinstalled on virtually any device
make JavaScript attractive for more applications.
Examples are HTML5 pages containing verbatim
Modelica code that is evaluated on the client side,
e.g. in a Web browser or in a modern mobile device.

MoiJS is extensible with new backends, exploiting
the prototype based inheritance of JavaScript. MoiJS
is available under the MIT license at
http://omuses.github.io/moijs.

References

[1] Modelica — A Unified Language for Sys-
tems Modeling, Language Specification, ver-
sion 3.3, May 9, 2012,

https://www.modelica.org/documents/ModelicaSpec33.pdf

[2] David Beazley: PLY (Python Lex Yacc),
version 3.4, 2011.
http://www.dabeaz.com/ply/

[3] Steve Jobs: Thoughts on Flash, April 2010.
http://www.apple.com/hotnews/thoughts-on-flash/

[4] jQuery — write less, do more; and jQuery UI.
http://jquery.com, http://jqueryui.com

[5] Node.js — a platform for easily building fast,
scalable network applications.
http://nodejs.org

[6] Zachary Carter: Jison — your friendly JavaS-
cript parser generator, version 0.4.13, 2013.
http://zaach.github.io/jison/

Acknowledgements

This work was supported in parts by the Federal
Ministry of Education and Research (BMBF) within
the ITEA2 project MODRIO (Model Driven Physi-
cal Systems Operation) — BMBF funding code:
011S12022A.

1112

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961105

