
Vehicle Thermal Management – A Case Study in Web-Based
Engineering Analysis

Michael Tiller
Xogeny Inc., USA

michael.tiller@xogeny.com

Abstract

Modelica has proven to be a compelling technol-
ogy for creating sophisticated multi-domain mod-
els. It provides modern language features to pro-
mote model reuse and maximize developer produc-
tivity. These capabilities are backed up by proven
simulation performance. More recently, the Func-
tional Mockup Interface standard (FMI) has created
an avenue for these models to be exported outside
the model development environment as Functional
Mockup Units (FMUs).

In this paper, we explore one possible way to
utilize models that have been exported as FMUs.
Specifically, we discuss how to incorporate these
models into a web-based engineering analysis appli-
cation that is designed to be accessible to non-expert
users. Our goal is to show the important role that
web and cloud based approaches can have in mag-
nifying the impact of modeling activities across the
enterprise.

We consider a specific engineering model and dis-
cuss exactly how we have transformed the model to
make it accessible as a web-based application. This
includes a discussion of the input and output data as-
sociated with the model as well as how a web based
deployment (backed by cloud based services) can
provide unique features compared to more conven-
tional methods of model deployment.

Keywords: FMI, cloud, web, HTML5, JavaScript

1 Background

1.1 “Start the Revolution Without Me”

At the dawn of the world wide web, web servers
served up static content (ordinary files) and web
browsers rendered that content. What was remark-
able about the web at this point was the ability to mix
graphics and text using HTML and to hyperlink be-
tween pages. As the web matured, servers started to
switch from serving static files to assembling content
on a per request basis.

Up until 1998, the role of the web browser was
simply to render this content produced by web
servers. But in 1998, the “Web 2.0” revolution be-
gan. A big part of this revolution was the idea that
the browser should become an application platform.
Although at this point it wasn’t clear what technolo-
gies would ultimate win out for “executing” content
through the web (Flash, Javascript or a variety of pro-
prietary plugins), it was clear that a browser was no
longer just for rendering hypertext.

Since 1998, the changes in the web browser plat-
form have been nothing short of astounding. In
fact, most users of these web browsers are probably
not even aware of all the capabilities that have not
only been added to web browsers but also standard-
ized across browsers. Modern web browsers don’t
just render hypertext, they can render vector graph-
ics through SVG, detailed three dimensional scenes
through WebGL, a wide variety of open ended ren-
dering capabilities through canvas widgets and fea-
ture ever improving styling options through CSS.
Along the way, the HTML specification has im-
proved as well.

Behind the scenes, cloud based technologies are
advancing by leaps and bounds. Every day new tools

DOI
10.3384/ECP140961073

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1073



and technologies emerge for supporting web-based
applications. For example, there are now so many
high-quality free options for databases that it is al-
most impossible to keep track of them. But this is
true in nearly every area of web and cloud based
technologies from Javascript frameworks to virtual-
ization technologies.

The ubiquity of distributed computing resources is
fundamentally changing the way we think about pro-
gramming these large scale systems to make them
more scalable and fault tolerant. This, in turn,
has changed the way we think about programming.
New languages and programming metaphors (e.g.,
channels in Go[1][2], the core.async library in
Clojure[3], actors in Akka[4] and promises[5]) are
emerging to help us abstract away the behind the
scenes complexity associated with these new dis-
tributed computing paradigms.

1.2 Engineering 2.0

But what does this mean for engineering? Almost
nothing. While most engineers personal lives have
been impacted somewhat by web based applications
like Facebook, Twitter, Evernote, etc. their profes-
sional lives are still largely centered around applica-
tions, computing resources and storage tied to their
local desktop. Simply put, the tools and capabili-
ties in engineering are far from keeping pace with the
proven technologies in other areas that have emerged
over the last two decades.

Part of this effect is driven by the fact that engi-
neering tools tend to be large and monolithic. This
has resulted, in part, from industrial customers who
approach adoption of engineering tools with a long
list of requirements. This tends to foster a monolithic
approach which, in an ironic twist, probably ends up
hurting these customers in the long run.

One of the reasons that the technology industry
seems to be better served by recent advances is that
they are a more aggregated market. Engineering
companies often attempt to differentiate themselves
through what they feel are unique or innovative pro-
cesses. The result is that their requirements are all
slightly different from each other. This, in turn,
means that vendors can rarely make a product that
has broad market appeal in engineering. This leads
to the situation that vendors often cannot justify sig-

nificant development resources or reinvestment be-
cause they are, ultimately, addressing a niche market.
Moving forward, engineering and industrial compa-
nies need to collaborate more to drive standards and
common best practices. In this way, more resources
can be brought to bear on the problems that they all
share.

While the web has evolved well beyond “web 2.0”,
engineering is still waiting for the impact of those
technologies to create an “engineering 2.0” revolu-
tion. Until then, engineering applications will re-
main largely centered around the desktop and sub-
ject to the same computing and storage limitations
they always have and collaboration will be limited to
“SharePoint” sites or network shared drives.

1.3 Xogeny

Xogeny was started to attack this problem head on.
Xogeny is a new company with no legacy software
to support. Everything we do starts with modern,
proven technologies. There are countless technolo-
gies out there developed by technology giants like
Google and Amazon that are simply there for the tak-
ing. Xogeny’s mission is to help build the bridges
necessary to make these technologies accessible for
engineering applications.

The first step in this process was to develop a plat-
form to easily distribute simulation of FMUs to the
cloud. We call this platform FMQ.

2 Representative Model

2.1 Vehicle Thermal Management

For the remainder of this paper, we will be dis-
cussing a Modelica model used to study vehicle
thermal management. This model was developed
by Modelon[6]1 without any prior consideration
given to using it with the FMQ platform.

The model itself is very sophisticated and includes
detailed models of several different aspects of the ve-
hicle. This model is used to simulate the thermal

1The author wish to thank Modelon for their participation
in this case study and express his sincere appreciation for their
support.

Vehicle Thermal Management – A Case Study in Web-Based Engineering Analysis

1074 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961073



response of many individual components and sub-
system during a prescribed drive cycle. Such anal-
yses are important when optimizing system level ef-
ficiency to ensure that components are not oversized
for their purpose and that control strategies are ef-
fective in managing thermal loads without reaching
unacceptably high temperatures in components.

2.2 Model Compilation

The model itself was written in Modelica. As
part of the normal modeling process (unrelated to
any specific application involving FMQ), a consid-
erable amount of engineering information was cap-
tured. For example, most parameters in this model
include a description, physical units as well as min-
imum and maximum parameter values. Modelica
makes associating such information with the model
quite easy.

This Modelica code is then compiled into an Func-
tional Mockup Unit (FMU) that conforms to the
Functional Mockup Interface (FMI) specification[7].
One important thing to understand about this process
of converting Modelica into an FMU is that much of
the engineering information discussed previously is
propagated into the FMU. So the descriptions, phys-
ical types and limits of parameters are available via
the modelDescription.xml file in the FMU.

The FMI specification translates Modelica param-
eter values and solution variables into “flattened”
names. This means that while the original Modelica
model was hierarchical, the parameters and variables
contained in the FMU are essentially just a simple list
(not a tree structure) with fully qualified names that
effectively indicate their location within the model
instance hierarchy. The consequence of this is that
organizational information from the Modelica model
is only partially preserved (via the names).

2.3 Input and Output Data

As mentioned previously, variable names convey
information about the relative positions of variables
within the model hierarchy, but their organization
within the FMU is flat. The parameters (input data)
we are interested in characterize several different
subsystems in the vehicle. These can be organized
roughly into parameters related to the heat exchang-

ers, the powertrain and the chassis. Each of these dif-
ferent categories contains information about both the
physical characteristics of components but also var-
ious control strategy calibration parameters as well.
Also, some of these categories may have so many pa-
rameters associated with them that they necessitate
further hierarchical organization. So, for example,
the data associated with the heat exchangers is fur-
ther broken down into information about stack ge-
ometry, fan control and scale factors.

Figure 1: Input data panel

In addition to input data, there is also the question
of what kinds of results can be generated from the
FMU. In the case of this model, there are an enor-
mous number of variables that are evaluated when
the FMU is simulated. We won’t attempt to list
them all here, but the set of output variables consists
of nearly any kind of information you might be in-
terested in when exploring vehicle thermal manage-
ment. As we will discuss shortly, we will only use a
handful of these results. But it is worth noting that
the FMQ platform itself is capable of computing and
extracting whatever signals we need.

Figure 2: Output Report

Session 6E: Web-related Modelica Tools

DOI
10.3384/ECP140961073

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1075



3 Supporting Non-Experts

Before jumping into a discussion about web-based
engineering analysis, it is worth taking some time
to discuss why a web-based analysis tool is useful.
The first thing to clarify is that this paper is not about
web-based development tools. In other words, these
tools are not designed for the creating Modelica mod-
els. The process of model development is a complex
process and requires a sophisticated user interface.
While creating a web-based development platform is
a very interesting topic, it is not the topic of this pa-
per. As such, for the purposes of this paper we as-
sume that models are developed in an existing model
development environment. The question we are fo-
cusing on is how to make these models accessible
to non-developers or non-experts in general. So let
us spend a little time considering a workflow that in-
volves non-expert users.

Consider the following scenario. You are a soft-
ware developer. You are writing software that you
want lots of people to use. You work very hard devel-
oping the software and now you are ready to let other
people use it. Imagine if circumstances required that
instead of simply installing a compiled version of
your code, users of your software had to buy all of
your development tools (e.g., Visual Studio), find a
way to get the source code to your application, and
then build your software for themselves.

If your “user” was an ordinary consumer (and not
an open source hacker), this approach would be a
complete disaster. Until recently if you were a Mod-
elica developer, this would have been the only way
to distribute your models and the compiler that your
users would require could potentially be rather ex-
pensive. Fortunately, with the emergence of the FMI
standard, we have an open and widely format for dis-
tributing models.

As a result, potential model “consumers” no longer
have to compile the models themselves using expen-
sive model development tools and their associated
traps and pitfalls. However, simply having an FMU
is not a complete solution for deploying models to
non-expert users. There is still the issue of adding
an appropriate graphical user interface. It is also im-
portant to recognize that non-expert users require an
interface that is relatively straight-forward to use and
warn users about potential mistakes. Such an appli-
cation will typically expose a limited set of input and

output data. This data should be organized in a way
that is intuitive to the user. Finally, an application de-
veloped for non-expert users must focus on address-
ing the specific questions of that user. If this means
masking some or even most of the underlying models
general capabilities, then so be it.

There is an (often uncaptured) return on invest-
ment for such efforts. Many model developers are
forced to spend at least some of their time justifying
the resources they consume for model development
(in the form of time, expensive tools, etc). This con-
cept of model deployment (i.e., having an easy path
for getting analyses leveraging your models into the
hands of non-experts) is one potential way to demon-
strate the need for model development resources. If
model developers have an easy means to deploy mod-
els to end users and, as a result, turn those non-expert
users into enthusiastic customers, then they have an
opportunity to create a “pull” effect for their models.
This can potentially lead to greater demand from the
organizations that use those models. In such cases,
this can lead to a virtuous cycle where the model
developers can more easily justify their resource de-
mands and, ideally, this increased demand will allow
them to focus more resource on model development.

It is worth noting that non-expert users are gen-
erally interested in performing some kind of anal-
ysis. A model may be central to this analysis, but
the analysis often involves more than just a single
simulation of a single model. In a sense, a model
is simply a complex function (i.e., you give it data
and it returns data). Creating and application and
an high quality user experience involves much more
than providing people with a function. We have de-
liberately used the term web-based engineering anal-
ysis applications because we think it is important to
explicitly recognize that these applications must be
prepared to support the complete analysis, not just
part of it. Leveraging one or more models, a typi-
cal analysis will involve an optimization, a sensitivity
study, a Monte-Carlo analysis or some other numeri-
cal procedure.

4 Web-Based Deployment

Given the requirements for non-expert users
and the representative vehicle thermal management
model previously discussed, the remaining question

Vehicle Thermal Management – A Case Study in Web-Based Engineering Analysis

1076 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961073



is what should be the medium for model deployment.

4.1 Desktop Limitations

Given the case previously made for deploying
models to non-expert users, one approach could be
to develop desktop based analysis tools that are dis-
tributed to end users with the necessary models em-
bedded in them. Indeed, one could argue that this is
the conventional choice. But this approach has sev-
eral important drawbacks.

The first issue to consider is data management. A
tool that runs on a desktop has many inherent lim-
itations. Typically, results files are simply written
to a user’s desktop and managing the results is left
up to them. In some cases, running an analysis sim-
ply overwrites any previous analyses (making it very
easy to lose data). A desktop environment makes it
hard to collaborate with others because sharing re-
sults means sharing results files which are not easily
shared when they are locked up in a desktop environ-
ment. Email and shared network drives are one way
to address these issues, but they still involve a lot of
manual work and discipline by users.

Another issue with the desktop is limited comput-
ing power. What if your analysis deals with uncer-
tainty and requires a Monte-Carlo approach to sim-
ulating models. Or, what if you want to perform a
large scale DOE or sensitivity study. There many
types of analyses that could require hundreds, thou-
sands or even more individual simulations. For even
a high-end desktop environment, this could mean
long wait times for analysts and this only aggravates
the data management problem previously discussed.

In most organizations, a desktop application also
means involvement with IT. The application has to
be installed on the user’s desktop and then updated
when new releases come out. Getting the necessary
IT resources to support installation across desktops is
logistical aspect that must be dealt with and another
drain on corporate resources.

4.2 Web-Based Client

To address many of these limitations, Xogeny has
developed a set of tools for building web-based en-
gineering analysis applications. These tools extract

information from FMUs and build a high-quality, in-
tuitive user interface using this information.

As mentioned before, these FMUs frequently
come from Modelica tools. As such, they include
lots of useful information that can be automatically
incorporated into the user interface. So, for example,
such a web application can automatically incorpo-
rate logic to warn users about parameter values that
are outside the excepted limits. The nice thing about
how these applications are built is that if the FMUs
are updated, the information captured in them (pa-
rameters descriptions, default values, physical units,
upper and lower limits) can be automatically incor-
porated into the application.

One might assume that a web browser is not an
appropriate context for engineering applications be-
cause engineering applications require rich user in-
terfaces with support for plotting, complex diagrams,
detailed human machine interfaces or 3D animation.
However, modern browsers have all this in the form
of HTML5 support. Widely used web browsers like
Firefox and Chrome can do all of these things seam-
lessly and without the need for any plugins.

A web-based application is easy to deploy and up-
date because all that work can be done centrally once
for all users. This reduces the impact on both the
end user and the IT infrastructure to support installa-
tion and maintenance at the desktop. In fact, “instal-
lation” is typically as simple as circulating a URL
to potential users. Furthermore, it is much easier to
track usage and restrict access using a web-based ap-
proach.

In the case of the vehicle thermal management ap-
plication, the web application can be found at the fol-
lowing URL2:

http://vtm.demos.xogeny.com

This user interface demonstrates that a high qual-
ity HTML5 user interface can be synthesized from
information contained in an FMU. Such an interface
can incorporate the necessary business logic to sup-
port non-expert users and operate in a way that is in-
tuitive for most users.

But in order for this application to function, it must

2The “simulation” capabilities of the public web application
have been removed. The results presented are actual simulate
results, but they are simply injected rather than simulated. As a
result, they are not affected by the parameter values in the UI.

Session 6E: Web-related Modelica Tools

DOI
10.3384/ECP140961073

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1077



be able to perform simulations. A web-browser gen-
erally has very limited access to the user’s desktop
(certainly not enough to execute a simulation). So
how does this interface perform the simulations re-
quired for the analysis? When the web application
is compiled, support for simulation is compiled in
through the fmq.js Javascript library. This library
provides a native Javascript interface to the FMQ
platforms cloud-based simulation capability. We’ll
return to the simulation side shortly.

One last thing to note about the web-based user
interface is the presence of a “History” view. This
functionality is enabled by the data management
features provided by FMQ. This view presents the
user with a graphical history of their interactions and
includes a tree structure of the different data sets that
the user has either saved, simulated or is currently
working with. It visualizes the relationships between
each data set (which ones were derived from which).
Hovering over a given version provides a summary
of differences between that dataset and its parent
dataset. All of this data is collected automatically
and passively (i.e., the user doesn’t have to do any-
thing explicit or manually). Because this information
is stored centrally, it would be easy to generate hyper-
links associated with each dataset visualized in the
“History” view to share with colleagues. This kind
of hyperlinking is the essence of the web but, unfor-
tunately, it is not widely supported in the context of
engineering tools.

Figure 3: Visualization of data history

4.3 Cloud-Based Services

The central component of the FMQ platform (cur-
rently) is the ability to simulate an FMU. In this pro-
cess, the FMU is registered in advance with the sys-
tem and a RESTful web services API is used to re-
quest simulations involving specific parameter sets.
This RESTful service can be accessed directly (to
support large scale batch processing of FMU simula-
tions) my making programmatic web requests or via
a web-browser. For the web-based use case discussed
in this paper, a special high-level Javascript library
was developed that leverages the low-level RESTful
API behind the scenes.

In addition to batch processing, the FMQ plat-
form is capable of supporting interactive simulations.
There are two sides to this interactivity. The first is
the ability to stream simulations results interactively
as the simulation is running. This means that clients
can be asynchronously updated when new simulation
results are generated. But it also means that the client
can interactively feed input signals to the simulation
while it is running as well. The result is the ability to
create web-applications where the user manipulates
the model and the model responds interactively.

Simulation results can be handled in several ways.
We already discussed the ability to stream simula-
tion results to the client as they are generated. In
many cases, it may be preferable to simply wait until
the simulation is complete and then provide the tra-
jectory for key variables to the application. There are
other cases where the web-based application may not
have an immediate need for simulation results but it
might wish to access them later. Finally, some types
of analyses may generate large binary files as a by-
product of the analysis (e.g., a “meld” file from a sim-
ulation[8]). In those cases, the application may wish
to access such artifacts. The FMQ platform supports
all of these different use cases.

The FMQ services provide complete accountabil-
ity for all data being processed. What this means is
that for every analysis request being made, there is a
record of the input data to the analysis and of all data
generated from the analysis. Furthermore, the rela-
tionships between the job requests, job data, results
and binary artifacts are all represented through FMQs
Hypermedia API[9]. This provides a comprehensive
approach to data management.

One final topic worth discussing is security. One of

Vehicle Thermal Management – A Case Study in Web-Based Engineering Analysis

1078 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961073



the main concerns with any cloud-based solution is
the security of the data. An important aspect of secu-
rity is understanding exactly what “threat” is at issue
and what techniques can be used to mitigate or elim-
inate those threats. A full discussion of such threats
is beyond the scope of this paper but we are happy
to discuss this topic. But it should be noted that the
FMQ software is not tied to any particular platform
or provider. As such, many of these security concerns
can be addressed by running the FMQ software on
a computing cluster within the customer’s own in-
ternal network.

5 Conclusion

This paper presents a representative engineering
model and shows how that model can be shaped into
an intuitive user interface with sufficient business
logic and guidance to be used by a non-expert user.
Such an application can directly leverage information
already available from the FMU. The application can
utilize an array of technologies already available in
HTML5 to provide plotting, 3D rendering, sophisti-
cated reports and human machine interfaces.

But more importantly, by leverage the capabili-
ties already being actively developed and supported
around web and cloud-based technologies, we can
improve the engineering process providing better
data management, greater opportunities for collabo-
ration and data sharing as well as richer views of the
engineering data and process by aggregating infor-
mation that be automatically and passively collected
through simple use of the application.

Ultimately, the goal of this work is to underscore
the importance of model development. By providing
an avenue for model developers to deploy their mod-
els to more users, we hope to create a positive feed-
back loop that will emphasize the value of model de-
velopment and model-based system engineering that
will, in turn, provide greater resources to model de-
velopers for creating high-quality, high-fidelity and
high-impact engineering models.

This effort is really just the beginning. The FMI
initiative helped to unify previously fragmented po-
tential markets. The adoption of FMI has just started
the process of building an eco-system around the
FMI standard. FMQ is simply one example of how
we can leverage the power of web and cloud based

resources and standardization to help drive improve-
ments in the engineering world.

References

[1] Go Development Team. Effective Go. 2014.
URL: http : / / golang . org / doc /
effective_go.html.

[2] Caleb Doxsey. An Introduction to Program-
ming in Go. Caleb Doxsey, 2012. URL: http:
//www.golang-book.com/10#section2.

[3] Rich Hickey. Clojure core.async Channels.
2013. URL: http://clojure. com/blog/
2013 / 06 / 28 / clojure - core - async -
channels.html.

[4] Jamie Allen. EffectiveAkka. O’Reilly Media,
2013.

[5] PromisesA+ Organization. PromisesA+
Specification. 2013. URL: http : / /
promisesaplus.com/.

[6] John Batteh, Jesse Gohl, and Sureshkumar
Chandrasekar. “Integrated Vehicle Thermal
Management in Modelica: Overview and Ap-
plications”. In: Proceedings of the 10th Inter-
national Modelica Conference (2014).

[7] MODELISAR Consortium. Functional
Mockup Interface, Version 1.0. 2010. URL:
https : / / svn . modelica . org / fmi /
branches/public/specifications/FMI_
for_ModelExchange_v1.0.pdf.

[8] Michael M. Tiller and Peter Harman. “recon –
Web and network friendly simulation data for-
mats”. In: Proceedings of the 10th International
Modelica Conference (2014).

[9] Roy T. Fielding. REST APIs must be hypertext-
driven. 2008. URL: http://roy.gbiv.com/
untangled/2008/rest- apis- must- be-
hypertext-driven.

Session 6E: Web-related Modelica Tools

DOI
10.3384/ECP140961073

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1079


