
Modified Multiple Shooting Combined with Collocation Method
in JModelica.org with Symbolic Calculations

Evgeny Lazutkin, Abebe Geletu, Siegbert Hopfgarten, Pu Li
Simulation and Optimal Processes Group, Institute for Automation and Systems Engineering,

Technische Universität Ilmenau, P.O.Box 10 05 65, 98684 Ilmenau, Germany.
(evgeny.lazutkin, abebe.geletu, siegbert.hopfgarten, pu.li)@tu-ilmenau.de

Abstract

This paper presents an efficient and a novel implemen-
tation of a combined multiple shooting and collocation
(CMSC) algorithm for the solution of nonlinear opti-
mal control problems. The implemented algorithm is a
modification of the approach proposed in [17, 18]. The
new implementation is done under the JModelica.org
framework along with CasADi and Ipopt. The frame-
work uses a symbolic pre-calculation of functions and
derivatives. Besides the integration of various com-
ponents of JModelica.org, Ipopt, and CasADi, the im-
plementation facilitates simpler modeling of optimal
control problems along with a choice of options for
various linear algebra algorithms. The paper gives a
description of the algorithm and elaborates the compo-
nents of the framework. Numerical experimentations
show that the new implementation is efficient in com-
parison with the published results of other authors.

Keywords: Nonlinear Optimal Control; Symbolic
Automatic Differentiation; Nonlinear Programming;
Multiple Shooting; Collocation

1 Introduction

Optimization methods nowadays play pivotal roles in
engineering and industrial applications. Most engi-
neering applications are dynamic by nature. Fre-
quently, such dynamic processes have model equa-
tions involving large-scale nonlinear differential equa-
tions. Hence, the solution of large-scale optimal con-
trol problems is difficult to achieve by solving the
equations of the optimality conditions. Therefore, the
modern approach follows the "first discretize, then op-
timize" strategy. In this way, the optimal control prob-
lem will be transformed into a nonlinear programming
problem (NLP). This facilitates the implementation of
efficient and state-of-the-art NLP solvers to determine
highly accurate approximate optimal solutions to the

continuous optimal control problem.
The direct discretization of optimal control prob-

lems through the multiple shooting method was first
proposed in [9]. On the other hand, the direct dis-
cretization of optimal control problems through col-
location methods has been widely used for state con-
strained optimal control problems (e.g., [7, 10, 13]).
The multiple shooting discretization results in block-
structured matrices and facilitates easy parallelization
of computations. However, the accuracy of the mul-
tiple shooting method can be highly augmented if it
is combined with the collocation method. Therefore,
recently, discretization of optimal control problems
through a CMSC method is found to have enormous
potentials for the solution of complex large-scale opti-
mal control problems [17, 18].

In order to facilitate the industrial application of
complex optimization algorithms, model-based op-
timization of dynamic systems is recently gaining
greater momentum [1, 12]. The aim of this work is to
implement the CMSC algorithm in the JModelica.org
framework. We first divide the time horizon [t0, t f ]
into subintervals (finite elements). Subsequently, we
use multiple shooting and collocation methods to dis-
cretize the optimal control problem and to transform
it into an NLP. In our implementation, we use pre-
calculated derivatives, i.e., Jacobian matrix in sym-
bolic form by means of CasADi [3, 4]. The non-
linear optimization problem is solved by using Ipopt
(Interior point optimization solver, [19]). The to-
tal optimization tool-chain is provided in the JMod-
elica.org framework [2].

The rest of the paper is organized as follows. Sec-
tion 2 provides a general form of the considered opti-
mal control problem. Section 3 presents the combined
multiple shooting and collocation algorithm. Section
4 describes the implementation of the algorithm under
the JModelica.org framework coupled with CasADi
and Ipopt and section 5 presents case studies. The

DOI
10.3384/ECP14096999

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

999



comparative analysis in section 6 shows the high ef-
ficiency and viability of our implementation as com-
pared to other implementations. The paper concludes
in section 7 with a summary and future research work.

2 Problem definition

We consider the following general form of a nonlinear
optimal control problem (NOCP):

min
u(t)

{
J = E (x(t f ))+

∫ t f

t0
L(x(t),u(t), t)dt

}
(1)

subject to: ẋ(t) = f (x(t),u(t), t), x(t0) = x0, (2)

g(x(t),u(t), t) = 0, (3)

xmin ≤ x(t)≤ xmax, (4)

umin ≤ u(t)≤ umax, (5)

t0 ≤ t ≤ t f , (6)

where x(t)> = (x1(t), . . . ,xn(t)) and u(t)> =
(u1(t), . . . ,um(t)) are the state and control vec-
tors, respectively. The functions f , h, and g are
conveniently defined in appropriate function spaces.
The dynamics of the process is described by (2)
and we have algebraic equality constraints (3). In
practical engineering or industrial application, state
and control variables are usually bounded. Hence, (4)
imposes lower and upper bounds on the states, while
(5) defines bounds on the controls. The optimization
variables (typically the controls) and state variables
must satisfy the model equations, the state and control
constraints and the boundary conditions. Furthermore,
the optimization task is limited to a time horizon with
an initial time t0 and a fixed final time t f . In this paper,
time-optimal control problems will not be considered.

The optimal control problem (1) - (6) is an infinite-
dimensional problem. Since real-world applications
have very complicated structure including nonlinearity
and high dimensionality, indirect methods, like meth-
ods based on the Pontryagin’s principle, are not suit-
able. Therefore, here the NOCP will be directly dis-
cretized by using a combined multiple shooting and
collocation (CMSC) method and thereby it will be
transformed to a finite-dimensional optimization prob-
lem.

3 An improved multiple shooting
with collocation framework

For the multiple shooting and collocation discretiza-
tion scheme, first the time interval [t0, t f ] is di-
vided into appropriate shooting intervals [ti, ti+1], i =

0, . . . ,N− 1. Then, on each shooting interval [ti, ti+1],
collocation nodes ti = ti0 < ti1 < .. . , tiNc = ti+1 are de-
fined, so that each state variable xk(t) is approximated
by the polynomial

x̂k(t) =
Nc

∑
j=0

x(k)
i j li j(t), (7)

where li j(t) are the Lagrange polynomials

li j(t) =
Nc

∏
s = 0
s 6= j

[
t− tis

ti j− tis

]
, j = 1, . . . ,Nc, i = 1, . . . ,N,

(8)
and the variables x(k)

i j , j = 1, . . . ,Nc, represent the state
values corresponding to the state variable xk(t),k =
1, . . . ,n, at the collocation points on [ti, ti+1] with the
property that xk(ti j) = x̂k(ti j) = x(k)

i j . Hence, the com-
bined multiple shooting and collocation scheme trans-
forms the NOCP into an NLP with the additional con-
straints

hk
i+1 = x̂k(t(i+1)0), i = 0, . . . ,N−1;k = 1, . . . ,n (9)

to be imposed along with the discretized constraints
(2)-(5). The equations (9) guarantees the continuity of
the state trajectories at the end point of each shooting
interval. In the following hx

i+1 =
(
h1

i+1, . . . ,h
n
i+1

)>

and x̂i+1 (hx
i ,vi, ti+1) =

(
x̂1(t(i+1)0), . . . , x̂n(t(i+1)0)

)>
are used for the sake of brevity. The expression
x̂i+1 (hx

i ,vi, ti+1) indicates that the state variables are
dependent on the initial state hx

i , the controls vi and
the end time point t(i+1)0 = ti+1 on the interval [ti, ti+1].
The resulting nonlinear optimization problem can be
written as

min
hx

0,...,h
x
N ,v0,...,vN−1

{
E (hx

N)+
N−1

∑
i=0

L(hx
i ,xi,vi)

}
(10)

subject to: hx
i+1− x̂i+1 (hx

i ,vi, ti+1) = 0,

i = 0, . . . ,N−1, (11)

G(hx
i ,xi,vi) = 0, i = 0, . . . ,N−1, (12)

hx
0− x0 = 0, (13)

xmin ≤ hx
i ≤ xmax, (14)

umin ≤ vi ≤ umax, (15)

In problem (10) - (15) on the i-th shooting subinterval,
hx

i represents parameterized initial conditions for the
vector of state variables, x̂i is the state on the colloca-
tion point at the end of interval i, the vector xi consists
of all coefficients of the collocation polynomials cor-
responding to the states on the i-th interval and vi are

Modified Multiple Shooting Combined with Collocation Method in JModelica.org with Symbolic Calculations

1000 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096999



parameterized control variables. The discretization of
the states uses the Radau collocation method. Using
the function G, equation (12) represents the discretized
form of the equations (2, 3). The control variables are
usually parameterized as piecewise constant functions.
E.g., in each subinterval [ti, ti+1], i = 0, . . . ,N− 1, the
control variables are assumed to take constant values
and the state trajectories will be approximated by the
collocation method. The unique feature of CMSC lies
in the fact that it utilizes the advantages of both mul-
tiple shooting and collocation methods. Detailed dis-
cussions on multiple shooting and collocation methods
are found in [8, 9, 16].

In the objective (10) the variable x does not appear
exclusively as an optimization variable. Hence, af-
ter appropriate aggregation of variables, at each step
of the optimization algorithm, we can solve for x in
terms of (h,v), so that we have x(h,v). In this way the
equality constraints (12) can be eliminated by reducing
the number of optimization variables. However, in this
work, constraints on the coefficients of the collocation
polynomials are not considered inside the collocation
intervals, but only at the end-points of the intervals.

Therefore, the problem (10) - (15) can be equiva-
lently written as

min
h,v

F(h,x(h,v),v) (16)

subject to : H(h,v) = 0 (17)

xmin ≤ h≤ xmax (18)

umin ≤ v≤ umax, (19)

where H in equation (17) provides a compact repre-
sentation of the equations (11) - (13). Consequently,
to solve the nonlinear optimization problem (16) - (19)
we use the state-of-the-art optimization solver Ipopt
[19]. At each iteration of Ipopt, the nonlinear model
equations are solved by using a local Newton algo-
rithm along with a linear algebra solver for the deter-
mination of the Newton-steps to determine state vari-
ables for given values of h and v. Future investigations
will consider the implementation of a globalized New-
ton method with appropriate linear algebra solvers.

All function values and gradients, required in the
optimization framework, are pre-calculated and made
available in symbolic form. Symbolic derivatives are
calculated by using CasADi and stored in matrices or
vectors to facilitate faster accessability. For this, it is
needed to compute the sensitivities ∂F

∂v ,
∂F
∂h ,

∂H
∂v , and

∂H
∂h in symbolic representations. Further details are
found in [17, 18].

The computational framework is summarized

graphically in Fig. 1 and Algorithm 1 provides a de-
scription in general terms. More detailed discussions
on the CMSC method are found in [17, 18].

Algorithm 1 : A general CMSC
1: Input: Time horizon, number of subintervals,

number of state and control variables, lower
and upper bounds for the control and state vari-
ables, model equations, objective function, initial
guesses, optimizer options.

2: Initialization of the NOCP
3: Define continuity and path constraints
4: Initialize the n-point collocation for each subinter-

val
5: Compute states at collocation points and sensitiv-

ities
6: Compute objective function and gradient
7: Compute constraint function values and Jacobian
8: Solve the equations of the Karush-Kuhn-Tucker

(KKT) optimality conditions
9: if KKT condition not satisfied then

10: GOTO 3
11: else
12: STOP.
13: end if
14: Output: optimal state and control trajectories, op-

timal objective function value, number of itera-
tions and CPU time.

Figure 1: : Combined multiple shooting and colloca-
tion (CMSC) framework

Algorithm 1 is general for CMSC from the work of
[17, 18]. This work implements a modified and im-
proved version of Algorithm 1. Hence, Algorithm 2
provides a modified CMSC.

Session 6C: Optimization Applications and Methods

DOI
10.3384/ECP14096999

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1001



Algorithm 2 : A modified CMSC
1: Input: Time horizon, number of subintervals,

number of state and control variables, lower
and upper bounds for the control and state vari-
ables, model equations, objective function, initial
guesses, optimizer options, number of collocation
points in subintervals, user-defined options, e.g.,
choice of a linear algebra algorithms, etc.

2: Calculate in symbolic form the Jacobian of the
system and all directional derivatives.

3: Corresponding to the number of subintervals,
states/controls, and collocation points, construct
derivative matrices

4: Initialize and construct symbolic representations
of the objective function and corresponding gradi-
ent.

5: Initialize and construct symbolic representation of
the constraint functions and corresponding Jaco-
bian.

6: Give an initial guess for the optimization variables
7: Set options for Ipopt to provide Hessian approx-

imation, tolerance of the solution, and other user
specified options.

8: Call the Ipopt solver
9: Call plotting routine and save the results.

The improvements provided in Algorithm 2 are:

• the symbolic pre-calculation to obtain represen-
tations for the values of the objective function,
constraints, and corresponding sensitivities (Ja-
cobians and derivatives),

• facilitate the use of several linear algebra algo-
rithms to give the user a choice of options and
improve the efficiency of computations,

• implementation on JModelica.org platform for a
wider public accessibility.

Section 4 discusses the software implementation of
Algorithm 2.

4 Framework and software compo-
nents

In the framework shown in Fig. 2, the NOCP is mod-
eled under JModelica.org using a Python script. Then
the problem is discretized using our CMSC with
the help of CasADi to obtain an NLP. Subsequently,
CasADi is again invoked to generate symbolic ex-
pressions for the derivatives. Finally, JModelica.org

invokes Ipopt to solve the NLP by using the pre-
calculations. All problem definitions and our custom
implementations are done using the Python program-
ming language.

Figure 2: : Software framework

In the next subsections, we give a brief review on
the software components.

4.1 JModelica.org

JModelica.org [2] is a Modelica-based open source
software platform for modeling and solving opti-
mal control problems and implementation of user-
developed algorithms. JModelica.org was first devel-
oped at the Department of Automatic Control, Lund
University. Currently, it enjoys active support from the
industry (Modelon AB) as well as academic and re-
search institutions. Since JModelica.org is extensible
through user-designed algorithms, we have decided to
implement our algorithm under this framework.
Among the salient features of JModelica.org are:

• support for mixed-language programming mode,

• easy and smoother integrability of custom numer-
ical libraries,

• support for object-oriented modeling based on
Modelica,

• wider public access owing to simpler user inter-
faces.

4.2 CasADi

CasADi is an open source software library for
symbolic automatic differentiation of functions [5].
CasADi uses computer algebra techniques to imple-
ment the forward and adjoint automatic differentiation
techniques and facilitate the pre-computation of gra-
dients and Jacobian of objective functions and con-
straints, respectively.

Modified Multiple Shooting Combined with Collocation Method in JModelica.org with Symbolic Calculations

1002 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096999



One of the major features of CasADi is its high in-
tegrability to widely available open source numerical
libraries and optimization solvers. CasADi is written
using C++ programming language. However, it can
be interfaced to numerical solvers based on various
programming language implementations, e.g., C,
C++, Python, FORTRAN, etc. The recent integration
of CasADi to the JModelica.org platform [4] is one
proof for its high integrability and applicability for
the solution of complex optimal control problems.
Therefore, in our implementation, we have exploited
the potential of CasADi for symbolic pre-computation
of derivatives in order to improve the efficiency of
computations.

4.3 Ipopt

Ipopt is a software implementation of an interior point
algorithm coupled with a filter line-search algorithm
[19]. Ipopt is a state-of-the-art solver for large-scale
NLP problems. Consequently, it facilitates the effi-
cient solution of large-scale optimal control problems
using the "first discretize, then optimize" approach.

In general, Ipopt can be used to solve NLP problems
of the form

min
x∈Rn

f (x) (20)

subject to :

gmin ≤ g(x)≤ gmax, (21)

xmin ≤ x≤ xmax, (22)

where f (x) : Rn → R is the objective function, and
g(x) : Rn → Rm is the constraint function. The vec-
tors xmin and xmax are the bounds on the variables x,
and the vectors gmin and gmax denote the lower and
upper bounds on the constrained function g(x). Fur-
thermore, equality constraints can also be stated in the
above formulation by setting the corresponding com-
ponents of gmin and gmax to the same value. The func-
tions f (x) and g(x) can be nonlinear and non-convex.
Theoretically, f (x) and g(x) are required to be twice
continuously differentiable. However, Ipopt is capable
of working with first order information, so that Hes-
sian matrices can be approximated numerically.

5 Case studies

To investigate the performance of the modified
method, the following two case studies are considered.

5.1 A nonlinear batch-reactor

The system has two state variables x1(t) and x2(t) (cor-
responding to concentrations of two species) and one
control variable u(t) (reaction temperature). The ob-
jective of this benchmark problem is to achieve a max-
imum product output of x2(t f ). The NOCP is formu-
lated as follows:

max
u(t)

x2(t f ) (23)

subject to :

ẋ1(t) =−
(

u(t)+
u2(t)

2

)
· x1(t), (24)

ẋ2(t) = u(t) · x1(t), (25)

x1(t0) = 1, (26)

x2(t0) = 0, (27)

0≤
(

x1(t)
x2(t)

)
≤ 1, (28)

0≤ u(t)≤ 5, (29)

0≤ t ≤ 1. (30)

The objective function in equation (23) describes the
amount of output of the second species at the fi-
nal time. This example has been also studied in
[6, 14, 17, 18].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
x1

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

x2

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5
u

Figure 3: : Optimal solution of the NOCP (23) - (30)

The results shown in the Fig. 3 is obtained by using
Algorithm 2 with 160 subintervals. In the next sec-
tion we will present a comparative analysis of results

Session 6C: Optimization Applications and Methods

DOI
10.3384/ECP14096999

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1003



obtained from our Algorithm 2 and similar solution
methods of other authors.

5.2 A satellite control problem

A nonlinear optimal control problem of a rigid satellite
initially undergoing a tumbling motion is considered.
The problem data are given as follows [17]:

• I1 = 106, I2 = 833333, I3 = 916677 represent
principal moments of inertia, respectively

• T1s = 550,T2s = 50,T3s = 550 are time constants

• Initial states: x1(0) = 0, x2(0) = 0, x3(0) = 0,
x4(0) = 1, x5(0) = 0.01, x6(0) = 0.005,
x7(0) = 0.001

• Time horizon: [t0, t f ] = [0,100]

• Fixed terminal state:
x>t f

= (0.70106,0.0923,0.56098,0.43047,0,0,0)

The aim of the optimal control is to determine the
torques that bring the satellite to rest in the specified
time t f = 100, while minimizing the performance in-
dex. The NOCP is defined as follows [17]:

min
u(t)

{
‖x(t f )− x f ‖2 +

1
2

∫ t f

t0
‖u‖2dt

}
(31)

subject to: ẋ1 =
1
2

(x5x4− x6x3 + x7x2) (32)

ẋ2 =
1
2

(x5x3 + x6x4− x7x1) (33)

ẋ3 =
1
2

(−x5x2 + x6x1− x7x4) (34)

ẋ4 =−1
2

(x5x1 + x6x2 + x7x3) (35)

ẋ5 =
(I2− I3)x6x7 + T1su1

I1
(36)

ẋ6 =
(I3− I1)x7x5 + T2su2

I2
(37)

ẋ7 =
(I1− I2)x5x6 + T3su3

I3
. (38)

Here x>(t) = (x1(t), . . . ,x7(t)) is the state vector and
u>(t) = (u1(t),u2(t),u3(t)) is the control vector of the
torques acting for the respective body-principle axes.
The model equations (32) - (35) are the kinematic
equations associated to the orientation and (36) - (38)
are the dynamic equations associated to the motion of
the satellite. The state variables x1(t) - x4(t) are the
Euler parameters and x5(t) - x7(t) are the angular rates.

To solve this problem using Algorithm 2, we divide
the time horizon into 50 subintervals and use a 3-point

collocation on each subinterval. This leads to an NLP
with 507 variables and 357 constraints. The results of
our implementation are depicted in Figs. 4 - 6.

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5
x1

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25
x2

0 20 40 60 80 100
Time

0.00

0.02

0.04

0.06

0.08

0.10
x3

0 20 40 60 80 100
Time

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
x4

Figure 4: : Optimal states x1 - x4

0 20 40 60 80 100
0.0100

0.0101

0.0102

0.0103

0.0104

0.0105
x5

0 20 40 60 80 100
Time

0.00475

0.00480

0.00485

0.00490

0.00495

0.00500

0.00505
x6

0 20 40 60 80 100
Time

0.0010

0.0015

0.0020

0.0025

0.0030
x7

Figure 5: : Optimal states x5 - x7

It takes 291 milliseconds of CPU time for the com-
putation and the obtained optimal value of the objec-
tive function is 0.463968. In contrast, the optimal
value of the objective function in [17] is 0.468287 ob-
tained in 531 milliseconds of CPU time.

6 Comparative analysis

In this section we use the problem (23) - (30) for the
purpose of comparison. Tables 1 - 4 present results
obtained from similar, but different optimization meth-
ods. Note, that these results have been obtained using
different computational platforms. Nevertheless, some
ideas can be gained by observing the results obtained.

Modified Multiple Shooting Combined with Collocation Method in JModelica.org with Symbolic Calculations

1004 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096999



0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025
u1

0 20 40 60 80 100
0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030

u2

0 20 40 60 80 100
Time

0.000
0.005
0.010
0.015
0.020
0.025
0.030

u3

Figure 6: : Optimal controls u1(t),u2(t),u3(t)

However, our modified CMSC algorithm is compa-
rable to the collocation algorithm suggested in [15],
since the implementation in [15] and of our modified
CMSC are both done on the same type of computer
with 3.2 GHz CPU frequency.

Table 1: CPU time (in milliseconds)
Number of Modified CMSC Collocation Multiple Shooting [14]
subintervals CMSC [17] [15] Unc., Sp. Con., Co.

5 4 188 4 4 3
10 6 290 8 6 5
20 8 350 12 9 9
40 12 480 20 12 17
80 24 547 48 24 57
160 40 735 102 58 341
320 81 NaN 268 159 2717

In Tables 1 and 2
• Unc.: uncondensed SQP,
• Con.: condensed SQP,
• Sp.: Block structured QP solver using MA57,
• Co.: Matrix condensing and dense QP solver qpOASES [11].

Table 2: Number of iterations
Number of Modified CMSC Collocation Multiple Shooting [14]
subintervals CMSC [17] [15] Unc., Sp. Con., Co.

5 14 16 17 7 7
10 16 21 24 9 9
20 19 21 21 9 9
40 22 25 20 10 10
80 27 23 23 10 11
160 18 23 23 12 12
320 14 27 27 12 14

As shown in Tables 1 and 2, the modified CMSC
method performs more efficient, both in terms of CPU
time and number of iterations, as compared to pure si-
multaneous (collocation) method. This facilitates the
future use of Algorithm 2 for the model predictive con-
trol scheme on longer prediction horizons.

Considering Table 3, for the discretization using 5
subintervals, the collocation scheme of [15] provides
lower function values as compared to Algorithm 2, but
the CPU time of the modified CMSC method is better
than the one reported in [17].

Table 3: Comparative results from discretization
(5 subintervals)

Objective Number of Number of
function optimization constraints

variables
Modified CMSC 0.56817 17 12
CMSC by [17] 0.56817 18 12

Collocation algorithm 0.57302 101 86
by [15]

Multiple 0.56838 18 10
shooting by [14]

Table 4: Comparative results from discretization
(160 subintervals)

Objective Number of Number of
function optimization constraints

variables
Modified CMSC 0.57354 482 322
CMSC by [17] 0.57354 483 322

Collocation algorithm 0.57354 3046 2566
by [15]

Multiple 0.57354 483 320
shooting by [14]

As shown in Table 4, our Algorithm 2 shows a
higher performance in terms of CPU time as compared
to all presented algorithms, still obtaining the the same
objective function value as reported by other authors.

7 Conclusion and future work

This paper presents the first prototype of a modified
combined multiple shooting and collocation method.
The major difference from the original version of the
CMSC approach in [17, 18] consists in using pre-
calculated derivatives and their symbolic representa-
tion. That is, in every iteration of the optimization al-
gorithm, sensitivities are automatically available with-
out further calculations. The optimizer is provided
with symbolic derivatives which are to be evaluated
at the given iterate. This leads to accurate results with
speedup of the overall computation time.

This preliminary investigation shows that the im-
plemented algorithm has a competitive performance
compared to other similar investigations. There is also
a potential for parallel implementation of the proposed
algorithm, whereby constraints to be considered on
the coefficients of the collocation polynomials inside
the shooting intervals. Furthermore, the modified
CMSC method will be implemented to work directly
with Modelica models along with a choice of local
and global nonlinear equation solvers. Hence, the
proposed framework will be refined to make it highly
transparent, so that end-users can solve various types
of applied optimal control problems. In addition, the
algorithm will be extended to handle nonlinear model
predictive control (NMPC) problems.

Session 6C: Optimization Applications and Methods

DOI
10.3384/ECP14096999

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1005



8 Acknowledgements

This work has been supported by Model Driven Phys-
ical Systems Operation project (MODRIO) by ITEA2,
No. 11004, and by the German BMBF (BMBF
Förderkennzeichen: 01IS12022H).

s

References

[1] Åkesson, J.: Optimica—An Extension of Mod-
elica Supporting Dynamic Optimization. 6th In-
ternational Modelica Conference, March 3 - 4,
2008, Bielefeld, Germany, pp. 57-66.

[2] Åkesson, J., Årzén, K.-E., Gåfvert, M.,
Bergdahl, T., Tummescheit, H.: Modeling and
optimization with Optimica and JModelica.org-
Languages and tools for solving large-scale dy-
namic optimization problems. Computers and
Chemical Engineering, 34(2010)11, pp. 1737-
1749.

[3] Andersson, J., et. al.: Dynamic optimization with
CasADi. In Proceedings of the 51st IEEE Con-
ference on Decision and Control, Maui (USA),
2012.

[4] J. Andersson, J., Casella, F., Diehl, M.: Integra-
tion of CasADi and JModelica.org. 8th Interna-
tional Modelica Conference, Dresden, 2011.
DOI:10.3384/ecp1106321

[5] Andersson, J., Åkesson, J., Diehl, M.: CasADi:
A Symbolic Package for Automatic Differentia-
tion and Optimal Control. Lecture Notes in Com-
putational Science and Engineering, Vol. 87,
Springer, 2012, pp. 297-307.

[6] Bachmann, B., Ochel, L., Ruge, V., Gebremed-
hin, M., Fritzson, P., Nezhadali, V., Eriksson,
L., Sivertsson, M.: Parallel Multiple-Shooting
and Collocation Optimization with OpenModel-
ica. Proceedings of the 9th International Model-
ica Conference, Munich, pp. 659-668, 2012.

[7] Bartl, M., Li, P., Biegler, L. T.: Improvement
of state profile accuracy in nonlinear dynamic
optimization with the quasi-sequential approach.
AIChE Journal, 57(2011)8, pp. 2185-2197.

[8] Biegler, L. T. Nonlinear Programming: Con-
cepts, Algorithms, and Applications to Chemical
Processes. SIAM, 2010.

[9] Bock, H. G., Plitt, K. J. A Multiple Shooting Al-
gorithm for Direct Solution of Optimal Control
Problems, Prepr. 9th IFAC World Congress, Bu-
dapest, 1984, pp. 242-247.

[10] Cuthrell, J. E., Biegler, L. T.: Simultaneous opti-
mization and solution methods for batch reactor
control profiles. Comput. Chem. Eng. 13(1989),
pp. 49-62.

[11] Ferreau, H. J.: Model predictive control
algorithms for applications with millisecond
timescales. PhD Thesis, KU Leuven, 2011.

[12] Franke, R.: Formulation of dynamic optimiza-
tion problems using Modelica and their effi-
cient solution. 2nd International Modelica Con-
ference, March 18 - 19, DLR, Oberpfaffenhofen,
Germany, pp. 315 - 323.

[13] Hong, W., Wang, S., Li, P., Wozny, G., Biegler,
L. T.: A quasi-sequential approach to large-scale
dynamic optimization problems. AIChE Journal,
52(2006)1, pp. 255-268.

[14] Kirches, C., Wirsching, L., Bock, H. G.,
Schlöder, J. P.: Efficient Direct Multiple Shoot-
ing for Nonlinear Model Predictive Control on
Long Horizons. J. Process Control, 22(2012),
pp. 540-550.

[15] Magnusson, F.: Collocation Methods in JModel-
ica.org. Master Thesis, Lund University, Febru-
ary 2012.

[16] Russel, R. D., Shampine, L. F.: A Collocation
Method for Boundary Value Problems, Numeri-
cal Mathematic, 19(1971), pp. 1-28, Springer.

[17] Tamimi, J.: Development of the Efficient Algo-
rithms for Model Predictive Control of Fast Sys-
tems. PhD Thesis, Technische Universität Ilme-
nau, VDI Verlag, 2011.

[18] Tamimi, J., Li, P.: A Combined approach to non-
linear model predictive control of fast systems.
J. Process Control, 20(2010)9, pp. 1092-1102.

[19] Wächter, A., Biegler, L.T.: On the Implemen-
tation of a Primal-Dual Interior Point Filter
Line Search Algorithm for Large-Scale Nonlin-
ear Programming, Mathematical Programming,
Ser. A, 106(2006)1, pp. 25-57.

Modified Multiple Shooting Combined with Collocation Method in JModelica.org with Symbolic Calculations

1006 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096999


