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Abstract

Adding random disturbances to Modelica models is nec-
essary to represent stochastic fluctuations like sensor
noise, air gusts and road irregularities. In this paper, we
present a library to specify a pseudo random noise for
continuous-time simulations. The random number gen-
erator, a probability density function and a frequency
spectrum can be defined independently. A new random
number generator is proposed to generate a continuous
random signal, which is proven to be highly suitable
for continuous models. The performance of the noise
models is tested in two benchmarks using an academic
as well as a realistic model both showing a remarkable
increase in simulation speed.

Keywords: Noise, Stochastic Models, Random Num-
ber Generator

1 Motivation

When simulating real-world systems, the problem of
introducing disturbances to the nominal system even-
tually becomes an issue. Especially, when dealing
with controlled systems, important tasks are to check
whether the controller is able to reject realistic distur-
bances, and to assess the performance of the system
including noise. The problem is not limited to the field
of control design, but is also of interest in e.g. specifica-
tion of aircraft airworthiness requirements with respect
to turbulence, estimation of the power outcome of wind
energy farms or when interpreting contaminated sensor
readings of experiments.

These kinds of distortions are typically taken into
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Figure 1: Noise is typically introduced additively into
a controlled system.

system

account by additive injection of a noise signal into
the system as shown in Fig. 1. The noise signal can
have a strong impact on the system’s performance and
must thus be specified carefully. However, there are
no convenient means of specifying noise properties
in Modelica, such that typical approaches implement
ad-hoc modifications of a simple random signal.

Additionally, injecting noise into a continuous sys-
tem typically decreases the simulation speed drastically,
because standard noise generators are sampled systems,
which generate time events by definition. These time
events lead in most cases to integrator restarts, impos-
ing a big penalty on simulation performance.

In this work, we present ways to solve the two issues
outlined above in an integrated library:

1. We describe a general procedure to specify a suit-
able noise signal by means of selecting a high-
quality random number generator, a probability
distribution and a power spectrum (see Sec. 3).

2. By providing a continuous noise signal formula-
tion using the sample-free generators introduced
in Sec. 3.1 and a smooth interpolation (Sec. 3.3),
we provide means for continuous noise genera-
tion. Avoiding events and using a smoothly fil-
tered signal speeds up the simulation as compared
to standard methods (see Sec. 5).

3. The methods and processes are integrated in a
library with convenient user interfaces (see Sec. 4).
This enables a user to easily specify a desired
noise signal and to use it in complex simulation
models (see Sec. 6).

2 Theoretical Background of Noise

Noise is omnipresent in technical systems. However,
it is not usually a physical process per se. The term
noise is rather used to describe influences in a system,
which are not covered by the model of the system itself.
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These influences can e.g. include rough road conditions
in vehicle dynamics, wind in aerodynamics or electrical
radiation compromising sensor readings. In any case,
a suitable model for such influences must be found in
order to account for them in simulation, control and
signal processing applications.

A common model for noise is white noise (see e.g. [1,
p. 19]). It is described by a stream of random variables
w(r) dependent on the time z. The main property of
such white noise is that it has a flat power spectrum, i.e.
that all frequencies contribute equally to the noise sig-
nal. In a statistical sense, this means that all instances
of the random signal w(#;) and w(t,) are uncorrelated:

Cov(w(t),w(t2)) =0 V11 £ 5. (1)

The second property of white noise is that the proba-
bility distribution W of the signal’s values is equal for
all time instants:

W(l‘l) NW(tz) Vl‘l,tz. (2)

However, the actual distribution W is not specified by
the term white noise and must be specified additionally.
Gaussian white noise e.g. refers to the case that the
signal is normally distributed.

In actual applications, noise is very rarely white but
can be specified with a given power spectrum. In aero-
dynamics e.g. the von Kdrmén spectrum is used to
model turbulence and in signal processing the noise is
usually low-pass filtered and sampled. Such signals are
referred to as colored noise.

Especially for numerical simulations, this band-
limitation of natural noise is very convenient, because
signals with infinite frequency contributions cannot
be simulated. Using the above observation, we can
correctly reflect the influence of natural noise on a
simulated system by specifying a distribution of the
random process and a suitable filter. The sampling rate
of the raw noise can then be chosen just high enough
to generate all contributions to the desired spectrum.

Figure 2 illustrates the properties of natural noise
from a mechanical test-rig entering a continuous sys-
tem. The noise is sampled with 6 kHz and passed on as
a continuous-time sample-and-hold signal. The power
spectral density (PSD) is estimated by oversampling
the signal at 50 kHz and using Welch’s method as im-
plemented in the Matlab signal processing toolbox.

The noise appears approximately normally dis-
tributed. We can see that the noise does not have the flat
power spectrum specified for white noise. The power
spectrum shows a strong influence of the initial sam-
pling with 6 kHz. In the following sections, we will

discuss how to numerically generate a representative
signal of such nature.
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Figure 2: A noise sample from a static mechanical ac-
celeration sensor is approximately normally distributed
and has a characteristic power spectrum.

3 Noise Generation

In order to conveniently generate a realistic noise for
use in continuous system simulations, a couple of crite-
ria must be met:

a. The noise should be realistic with respect to the
specifications given in Section 2: The signal should
be uncorrelated, match a specified distribution and
also match the specified frequency content.

b. A clear and modular approach should provide sup-
port in independently specifying these properties of
the desired noise signal.

c. It should be possible to evaluate the noise signal con-
tinuously without the need to incrementally increase
the internal states as is the case with conventional
noise generators.
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To comply to the specifications of above, the process is
split in three steps:

1. A random number generator (RNG) implements an
algorithm to generate a sequence of uncorrelated,
uniformly distributed random numbers U;.

2. These are transformed according to the same proba-
bility density function (PDF) for each discrete time
instance separately to yield random numbers X; with
a specified distribution.

3. The random numbers are filtered to match a power
spectral density (PSD) specified in the frequency
domain. This results in a continuous-time noise
signal r(¢) with the desired characteristics.

3.1 Uniform Random Number Generators

Truly random numbers are difficult to generate in nu-
merical simulations. Fortunately, they are typically not
desired to be truly random, because simulations should
be repeatable and thus deterministic. Pseudo-random
numbers are thus usually used, which are deterministic
but appear random to the simulated system.

Pseudo-random numbers are usually generated com-
putationally using recursive arithmetic generators. The-
se generate random numbers Y; recursively based in
the last random number Y;_;. The initial value Yy is
known as the seed of the recursive generator. This dis-
crete state Y; of the random number generator must be
advanced incrementally, which limits the time steps
taken by an integrator to be smaller than the generator’s
update period.

One of the simplest recursive arithmetic generators
is the linear congruential generator (LCG). It uses the
parameters a, b and m to generate random integers
Y; in the interval [0, m—1] and uniformly distributed
numbers U; according to the following formulas:

Y, = (a-Y; 1 +b)

3)
“4)

Better implementations of recursive arithmetic genera-
tors are e.g. the algorithms of the WELL family (Well
Equidistributed Long-period Linear) [2], which feature
much larger repetition periods.

In order to avoid the performance limitation intro-
duced by the discrete state of recursive generators, we
propose to use non-recursive arithmetic generators for
generating random numbers. These implement a pure
function ¥, (), which is solely dependent on the simu-
lation time ¢. This allows to evaluate random numbers
deterministically in continuous time without using dis-
crete states.

mod m,

In this work, we introduce the new random number
generator DIRCS Immediate Random with Continuous
Seed. It relies on the quick recovery of LCGs from a
poor (i.e. small, non-random) seed Yy, a property called
diffusion capacity. If a poor seed Yy is chosen, an LCG
will irrespectively generate high quality random num-
bers after a few iterations. This property allows to
continuously seed an LCG with a very simple func-
tion of the time ¢, apply a few iterations and treat the
resulting number as random, i.e.

Y;(r) = LCG(...(LCG( seed () ))). )

The quality of the generated random numbers U;
can be investigated using a number of different mea-
sures. All these measures quantify the fulfillment of
the requirements that the random number must be (a)
uniformly distributed and (b) uncorrelated for different
time lags as requested by Eqs. 1 and 2. Fig. 3 confirms
the LCG’s diffusion capacity for small seeds between 1
and 200.

The uniformity of the distribution is checked here
with the Kolmogorow-Smirnow test. The correlation is
tested with a two-sided Z-test of the correlation. The
given p-values indicate the confidence in the assump-
tions on a scale from 0 to 1. p-values larger than 0.10
indicate that the property under test is confirmed.
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Figure 3: After ten iterations, the random numbers from
an LCG can be assumed to be uniformly distributed
and uncorrelated with the seed.

Table 1 gives an overview of the quality of the most
important random number generators used in this work.
They are compared to two standard solutions from
the Modelica_LinearSystems2 library [3] and the
Design.Experimentation library [4]. It can be seen
that all generators produce uncorrelated uniform ran-
dom numbers.

DOI
10.3384/ECP14096837

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

839



Noise Generation for Continuous System Simulation

Table 1: All RNGs produce uniform and uncorrelated
random numbers.

Generator Uniform  Uncorrelated
WELL1024a p=039% p=0.405
LCG p=0456 p=0.253
DIRCS p=0432 p=0.523
LinearSystems2 p=0.508 p=0.373
Design p=0305 p=0.899

3.2 Probability Density Functions

Each uniform random number U; generated with the
methods presented in the previous section must be trans-
formed to match the desired noise characteristics. The
first step is to apply a mapping
Ui — X; (6)
according to a probability density function (PDF) f(x).
This yields random numbers X; with a specified dis-
tribution. Informally, the function f(x) describes the
probability that a random variable X; equals x.
There are several methods to achieve this step (see
g. [5]). If an analytic PDF is given, then often its
primitive F(x) = [*_ f(X)d% can be derived. This cu-
mulative density function (CDF) describes the proba-
bility that the random variable X; is smaller or equal to
x. Using the inverse of the CDF, a random number with
the given distribution can be analytically calculated
by X; = F~!(U;). This method is illustrated below for
the heavy-tailed Cauchy-Lorentz distribution with the
location parameter y and the scale parameter 7.

1
fCauchy Lorentz (x) = - <(‘LL})/> (7)
1 x— 1
F Cauchy-Lorentz ()C) E arctan ( ) + E (8)
FC_duchy Lorentz( ) Y tan (7'C < ) ) (9)
i,Cauchy-Lorentz ( 1 0)

If an analytical inverse of the CDF cannot be derived,
different methods have to be employed. A prominent
example is the normal distribution, which does not have
an analytical CDF. To generate a normally distributed
random variable, we employ the Box-Muller transform
[6]. It uses two uniform random numbers U;; and Uy;
to calculate X; according to

Finally, if no direct transformation is given in the
literature, some common distributions can also be cal-
culated directly according to their definition. The Bates
distribution e.g. describes the distribution of an average
over n uniform random numbers and can be calculated
directly from

ZUkl

(12)

l ,Bates =

3.3 Power Spectral Densities

In the previous sections, we have shown how to gen-
erate a discontinuous sequence of random variables X;
at an arbitrary sampling rate Ar. This sequence has to
be processed further, in order to shape a continuous
signal r(¢) with a specified frequency content. A com-
mon method is to apply a simple low-pass filter to the
noise sequence. Although being common practice, this
method has two main disadvantages:

1. The simulation speed is limited by the high sam-
pling frequency of the noise signal, the small time-
constant of the low-pass filter or both.

2. It is often unclear which statistical properties the
filtered signal has. It often differs widely from the
PDF of the discrete signal.

For many applications it is thus favorable to com-
pute the continuous signal directly out of the discrete
sequence without using dynamic states as in usual im-
plementations of low-pass filters. In this work, we
continuously interpolate the discrete sequence using
kernel functions.

If a kernel function K(z) is given, then the interpo-
lation can be expressed as a linear combination of the
kernel function with different weights X; and offset iAs:

1) =Y X;-K(t—iAr). (13)

In order for this sum to be a proper interpolation, the
kernel must equal 1 at the origin and O at all multiples

of At:
!
K(iAt) =
(i) {0

A prominent kernel function, which fulfills these
constraints, is the hat function used to create a linear
interpolation.

fori =0 and

14
fori# 0. (19

1—| 4| ifre[—Ar+Ar]
Khat() = Al ’ 15)
Xi normal = 1 + 61/ —2InUy;cos 2nUy). (1) har(1) {o else (
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Figure 4: Different interpolations can be applied to the
random sequence. The sinc interpolation achieves a
very smooth signal r(z).

The resulting signal r(¢) is a linear combination of
the kernel functions. Its frequency content is thus fully
determined by the frequency content of the kernel func-
tion. If the sum is truncated by limiting the number
of involved sampling points X;, additional content is
introduced by the discontinuous support. In practice,
however, the truncated contributions are often negligi-
ble, leading to acceptable approximations. This espe-
cially holds true for the hat function, which can be well
truncated to only include two random samples.

Another important kernel function is the normalized
sinc function:

sin(2Bmr)
o

Kiine(t) = 2Bsinc(2Bt) = (16)

It only contains frequencies up to its bandwidth B. If
B = 1/(2Ar) is chosen to match half the sampling rate,
the normalized sinc function also fulfills the constraints
of an interpolation kernel. Interpolation with the sinc
function can thus be used to apply an optimal low-pass
filter to the random sequence.

Figure 4 shows the different interpolation methods
described above. The interpolation is applied to a
random sequence X; generated with 100 S/s. The fre-
quency contents of the signals are compared in Fig. 5.
The raw sample-and-hold signal of X; contains frequen-
cies higher than the sampling frequency. Using the
interpolation with the sinc function, the frequency char-
acteristic can be nicely limited to the desired cut-off
frequency of half the sampling frequency. It is im-
portant to understand how the interpolation affects the
statistical properties of the random signal r(z). Since

raw
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frequency /Hz

Figure 5: The frequency characteristic are shaped by
the interpolation function. The sinc function achieves a
very good low-pass characteristic.

determine the change of variance for any valid filter:

Var(X; - ¢) = Var(X;) - ¢2,
Var(X; + X;) = Var(X;) + Var(X;).

(17)
(18)

Here, X; and X; denote the statistically independent
random variables generated by the RNG and ¢ denotes
a constant weight. The variance of the random vari-
ables is fixed by the selected PDF and the constant c is
given by the interpolation kernel. The time-dependent
variance of r(¢) from Eq. 13 can thus be expressed as

Var(r(1)) = Var(X;) - (K (1 - iAr))? .

1

(19)

Due to the constraints for interpolation kernels Eq.
(14), the variance of r(¢) at the sampling points is equal
to the variance of the random variable X;. In between
the sampling points, the variance of the random signal
is a function of the time. We can compute the expec-
tation value of the variance for the entire signal by
formulating the integral over the interval At:

1 At

E [Var(r(1))] = | Var(r()d
_ Var;txf) | /I_A; i_in+1 (K(t —iAr))? di
_ Var;txf) i_in+1 /I_A; (K(t — i) dt
= VarA(f") /:A_[nA[K(t)zdt. (20)

Doing this computation for the linear interpolation
using the hat function leads to

. . . . . _ 2
r(t)isa Welghted sum of statistically 1pdependent ran E [Var(r(1))] = =Var(X;). @1)
dom variables, we can use the following two laws to 3
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Thus, any linear interpolation reduces the variance
of the input signal by one third, independently of the
PDF used to generate X;. In a similar manner, the result
can be computed for the optimal bandwith limitation.
Fortunately,

) 1 nAt 5
r}grolo Y /t o Kiinc(1)"dt = 1 (22)
and hence the variance is only minorly affected for n
chosen large enough. In fact, with n = 3, the expected
variance is only changed by less than 5 %.

Not only the variance may be affected but also the
shape of the PDF. It is possible to compute this effect
for specific PDFs but the most general statement can
be drawn from the central limit theorem. It states that a
sum of many independent random variables (with finite
variance) is approximately normally distributed. Hence
we can state that the application of a filter transforms
all PDFs with finite variance gradually to look like the
normal distribution and that this effect is expected to
be stronger the wider the domain of K(z) is.

Our analysis suggests a very suitable combination
for generating a continuous random noise signal: if the
discrete noise is generated by a normal distribution and
if it is interpolated by an ideal bandwith limitation, the
resulting signal is also of a normal distribution with
the same variance and a frequency characteristic below
the cut-off frequency that represents white noise. The
cut-off frequency will be half the sampling frequency.

4 Implementation in Modelica

The concepts laid out in Sec. 3 are implemented in the
Modelica Noise library. An overview of the library’s
components is shown in Fig. 6. The library provides a
single block PRNG as the interface to all of its facilities.
This block is described here.

In order to provide the user with a convenient inter-
face, the PRNG block combines all parts of the noise
generation process described in Sec. 3. The block’s
parameter pane is shown in Fig. 8.

All three parts of the noise generation can be (al-
most) independently parametrized. The Random Num-
ber Generator (RNG) parameters allow the user to se-
lect whether a sampling-based or a sampling-free gen-
erator shall be used. Two selectors allow to maintain
parametrized instances of both variants in the PRNG
block. The parameters of the generators can all be set
via the PRNG’s parameter interface. The criteria listed
in Table 1 may assist in choosing a suitable RNG.

The Probability Density Function (PDF) can also be
selected in the PRNG’s parameter pane along with its pa-
rameters. Some of the available distributions are shown

in Fig. 7. Cauchy-Lorentz, Irwin-Hall, Bates and Dis-
crete distributions are also available. The distribution
should be selected according to the specification of the
desired noise. Additional distributions can be imple-
mented according to the literature by filling a common
function interface.

Finally, a kernel function for the desired Power Spec-
tral Density (PSD) can be selected and parametrized.
The kernels are set up with standard parameters to
match the update rate of the block. For example, the
ideal low-pass filter is set up with a cut-off frequency
of half the update rate. The implemented filters are
shown in Fig. 9. A typical choice of the PSD would be
to use the raw random sequence or the ideal low-pass
interpolation with n > 5. Additional kernels can be
added easily by the user.

The (Pseudo-) Sampling parameters of the PRNG
block are the same as for most sampling Modelica
blocks. A startTime determines the first sample to
be generated. A samplePeriod determines the step-
size of the sampler. For sample-free generators, the
sampling is relaxed to a pseudo-sampling of the ran-
dom number, i.e. imposing an upper limit to the update
rate. An additional infiniteFreq switch can be used
to completely disable (pseudo-)sampling and let the
simulation tool handle the step-size of the generator
based on the desired integration accuracy. This also
disables the PSD filtering, because the interpolation
needs discrete noise samples.

The Enable/Disable parameters finally are used to
enable noise generation or to output a simple dummy
variable y_off. It can be used to parametrically restore
the ideal system without noise.

- [ Moise
s @User's Guide
- [MIPRNG
. -l SampleBasedRNG
¥ SampleFreeRNG
I PDF
. +1_PSD
+ ] Examples
< [JRNG
+ [JPDF
+[JPSD
+[JUtilities

Figure 6: The Noise library provides a ready-to-use
noise block as well as a collection of RNG, PDF and PSD
implementations.
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prng in Noise.Examples.PRNG

General ‘ Add modifiers

Component
Name prng
Comment A Pseudo-Random Number Generator instance

Model

Path Noise.PRNG
Comment The pseudo-random number generator block

Random Number Generator (RNG)

useSampleBasedMethods
SampleBasedRNG
SampleFreeRNG

Probability Density Function (PDF)
PDF

Power Spectral Density (P5D) function
infiniteFreq

|| PSD

(Pseudo-) Sampling

startTime
samplePeriod

Enable/Disable

enable

[ The Well Equidistributed Long-period Linear generat - £2 »

i Better arithmetic random number generator based o ~ EZ »

4. A random number with approximate normal distribution using the BoxMuller ~ E= »

[ An ideal low-pass filter based on the convolution v ~ EZ »

0025+ s

false - Use a random number generator with sampling
Choice of sample based methods for RNG

Choice of sample free methods for RNG

Choice of various PDFs

false -+ Use unfiltered white noise with infinite frequency

Choice of various filters for the frequency domain

vs Start time of the sampling
Period for (pseudo-)sampling the raw random numbers

v Whether or not to enable this block

y_off
Initialization

seed

Value to output, when disabled

12+ The seed to the RNG initialization

[ OK H Info H CHI'IEB|J

Figure 8: The PRNG block can be used to collectively set up custom noise by modularly combining all available
RNG, PDF and PSD implementations. Additional switches are provided to set the samplePeriod, enable sample-

free RNGs and enable infinite frequency emulation.

>
>

(a) Uniform (b) BoxMuller (c) Weibull

Figure 7: Some of the provided PDFs are a uniform, a
normal and a Weibull distribution.

5 Evaluation of Filtered Noise

Relevant noise in realistic applications is in most cases
sampled and filtered (see e.g. Fig. 2). The process of
sampling and filtering changes the probability density
as well as the frequency content of the signal. In the
following sections, we will show how these character-
istics can be modeled using the Noise library. First, a
synthetic example is used.

In this section, the probability distribution and fre-
quency content of noise generated with a standard ap-
proach and with the Noise library are compared. A
digital sensor is used as an example. The sensor has
a uniform noise distribution with amplitudes between
—0.05rad and 0.05rad. The signal is sampled with

/

(c) LinearInterp

>
>

(b) IdealLLowPass

(a) Raw

Figure 9: The provided PSDs include an unfiltered white
noise, an ideal low-pass filter and a linear interpolation.

6kS/s. The signal is subsequently smoothed with a
running mean filter using 20 samples and then down-
sampled by a factor of 20. This procedure is repre-
sentative for a typical angular resolver signal used for
control purposes. In order to introduce a model of a
simple system, a CriticalDamping block from the
Modelica standard library is used. It has a fixed cut-off
frequency of 10 Hz and a variable number of states.

5.1 Model using the LinearSystems library

In Fig. 10a, the reference implementation using the
Modelica_LinearSystems library is shown. Uni-
form noise is generated with at a rate of 6 kS/s, filtered
with a running mean FIR filter and then down-sampled.
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Sampled noisy signal averaged using Model
a 20 point average filter

sampleClock noise filter sampler

T, g

[-0.05 .. 0.05] =10

criticalDamping

1/6000 s

Equivalent model of a sampled noisy signal
averaged using a 20 point average filter

Model

pmg criticalDamping

(a) LinearSystems

(b) Noise

Figure 10: Generation of realistic filtered noise using the LinearSystems and the new Noise library.
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Figure 11: Histograms of the different noise signals

5.2 Model using the Noise library

Using the Noise library, it is possible to generate the
filtered and down-sampled noise signal without sam-
pling at a high frequency. In order to achieve an equiv-
alent signal, the PDF must be adjusted to match the
distribution of the filtered signal. This is done select-
ing the Bates distribution described in Sec. 3.2 with
n = 20. The noise signal can then be generated at the
down-sampled update rate of 300 S/s. Additionally, the
DIRCS generator is used to suppress all time-events in
the simulation. The Modelica block diagram is shown
in Fig. 10b.

5.3 Probability density distribution

The empirical probability density functions of the gen-
erated noise signals are shown in Fig. 11. To show
that down-sampling the signal has no influence on the
PDF, the down-sampled, as well as the original sig-
nals are shown. The probability density function of the
generated noise signal is obtained experimentally by
simulating both noise models for 200 s and by using
250 bins between the minimal and maximal values (-
0.05 to 0.05). The results of the analysis show a good
match between the different signals.

5.4 Frequency content

The frequency content of the signal is an important
property of a noisy signal. To show that also the

< —60
= Filtered
m —70}
) DownSampled
> —80¢ Noise 1
5
5 —90¢
=
S -100|
2
£ —110 : :
0 1 2 3

Frequency / kHz

Figure 12: Frequency analysis of the noise signals.

frequency content of the PRNG block mimics the
frequency content of the sampled and filtered signal
Welch’s power spectral density analysis is applied to
the signals (see Sec. 2). The results are shown in Fig-
ure 12. The plot shows that the frequency contents of
all signals correspond very well. Especially the low
frequency content up till 300 Hz is a very good match.

5.5 Simulation times

In order to compare the simulation times of the pre-
sented models, the models are simulated again for
200s. As a reference, a standard noise block from the
LinearSystems library without downsampling is in-
cluded using 300 Samples/s, the same update rate as the
PRNG block updates internally. Only 10 output points
are generated in order to make sure the output routine
does not influence the simulation times. The simula-
tions are performed using Dymola 2014 FDO1 Beta 3
on an Intel® Xeon® E5-1620 processor. The results of
the simulations are summarized in Table 2. Addition-
ally to the model structure, the number of states in the
CriticalDamping system is varied.

The results clearly show the advantage of using the
Noise library for modeling noise in a system. The sim-
ulation time for the Noise model with a system of sec-
ond order is six times faster than the standard approach.
If the complexity of the system is increased by using a
number of 50 states, the Noise model is 26 times faster
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Table 2: Simulation times and number of steps of the
models with noise for 200 seconds simulation. LS
6kS/s filtered marks the Noise from Figure 10a,
LS 300S/s raw marks the simulation results of the
noise generation using the LinearSystems library us-
ing a direct noise output of the signal and LS 300S/s
Bates using a Bates distribution using an averaging of
20 random samples at each timestep.

Model States Time Events
LS 6kS/s filtered 2 45s 12e6
LS 300S/s raw 2 6s 60e3
LS 300S/s Bates 2 8.7s 60e3
Noise 2 7.5s 0
LinearSystems 50 2565 12e6
LS 300S/s raw 50 23s 60e3
LS 300S/s Bates 50 24.5s 60e3
Noise 50 9.7s 0

than the model using LinearSystems noise. The ap-
proaches without downsampling (LS 300S/s methods)
have a better performance. The Bates distribution at
300S/s has a similar calculation time as the method
using the Noise library. However, at higher model lev-
els, for a system with 50 states, the speedup ratio is a
little over 2. This result show that integrator restarting
due to the event generation becomes more expensive at
increasing system complexity.

6 Industrial Application Example

In order to test the performance of the presented noise
models in an application of industrial complexity, the
example of an electro mechanical actuator is chosen.
This actuator is generated using the Actuator toolbox

positionDemand

actuatorBus

PositionDemand
o

duration=1

GCVoltage

heatCapacitor

s
8

§

H

7

g

g

&

g

o

’ 1}—%D—D‘—K

i fixedTemperature

Figure 13: Actuator model overview. The motor posi-
tion sensor is used to include the noise effects.

[7]. In Figure 13, an overview of the model is given.

The position sensor of the motor can be chosen from
an ideal sensor or two sensor versions with noise. The
sensor readings are used for controlling the motor cur-
rent as well as the speed and position of the actuator. To
obtain the motor speed, position is differentiated. For
these reasons, adding noise to the system is expected
to strongly influence the system’s behavior.

To test the presented noise generation and com-
pare it with a traditional approach, two sen-
sors with noise were derived. The first sensor
uses a traditional sampled noise using the blocks
from Modelica_LinearSystems.Sampled, the sec-
ond uses the Noise library presented in this work. The
two noise models are the same as presented in Sec. 5.
The noise is assumed to be additive as shown in Fig. 1.

6.1 Simulation results

The actuator model is simulated with each of the three
sensor versions. The actuator is commanded to follow
a change in position of 43 mm at t = 1s. Figure 14
shows the responses with the three sensor versions. The
results match very well. The simulations were carried
out using the Dassl integrator with a tolerance of 1074,
For the following comparison, only 10 output intervals
are requested in order not to influence the simulation
times by the output intervals. The simulation times and
generated events are summarized in Table 3.

6.2 Time and state events

One of the main benefits of the presented noise model
is that no time events are generated. As expected, the
sampled noise using the LinearSystems library gen-
erates 15000 time events, which is the product of the
sample rate and the simulation time. The model built
with the Noise library, however, does not generate any
time events. The amount of state events generated by

g 300 | No Noise
g PRNG
3 200 Sampled
2, ‘
2 100 |
@]
3
= 9 : ; —
095 1 1.1 1.2 1.3
Time/ s

Figure 14: Resulting trajectory of the actuator using
the three sensor versions. The actuator follows a com-
manded position change of 43 mm.
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Table 3: Simulation results of the actuator models over
2.5 seconds.

Events
Model Time Time State
No Noise 0.037s 1 12
LinearSystems 27.5s 15000 1642
Noise 10.5s 1 1791

both models is roughly the same. These events are
generated by the nonlinearities in the model. Mainly
the inverter reacts to the high-frequency changes of
the demanded current, which is generated by the noisy
sensor readings.

6.3 Simulation speed

Especially in more complex models the penalty of an
event becomes large. Restarting the integrator can use
as much time as an integrator step itself. In Table 3, the
simulation time of the models is shown. The noise itself
has a big penalty on the simulation performance. This
is expected, as the position sensor is used in all con-
trol algorithms. The simulation time using the Noise
library, however, is decreased with respect to the stan-
dard implementation due to the reduced number of time
events.

7 Conclusions and Outlook

We have shown how to properly implement a noise
signal in Modelica by selecting a high-quality random
number generator (RNG) and by specifying a probabil-
ity density function (PDF) as well as a power spectral
density (PSD) of the desired signal. In order to aid the
user in this process, we have proposed a library with
modular implementations of the three parts of the noise
generation. The library provides a convenient interface
to set all parameters. It is further possible for the user
to freely implement new modules.

The proposed combination of sample-free RNGs and
continuous PSDs provides for a satisfactory increase
in simulation speed by a factor between 2.5 in a real
world actuator example and up to 26 using an academic
model.

Time events due to the noise model can be com-
pletely eliminated from the simulation by using the
proposed continuous DIRCS random number genera-
tor, which relies on continuously seeding a standard
RNG with a function of the time.

Further extensions of the library can be seen in tak-
ing advantage of the Modelica 3.3 function arguments.

The library could additionally be improved in modular-
ity by introducing separate seeding functions. In this
way, also the continuously seeded generator could be
modularized. Some convenient features such as global
seeding or seeding based on the machine time may also
be addressed in future versions. Additionally, the cur-
rent interpolation filter may be extended to allow for
arbitrary filter functions implemented by the user.
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