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Abstract

Modelica’s language support includes so-called events
for describing discontinuities. Modern integrating en-
vironments, like Assimulo, provide elaborate event de-
tection and event handling methods. In addition, the
overall performance of a simulation of models with
discontinuities (hybrid models) depends strongly on
the methods for restarting the integration after an event
detection. The present paper reviews two restarting
methods for multistep methods, both based on Runge–
Kutta starters, and presents preliminary first experi-
ments with Assimulo and LSODAR as a proof of con-
cept, which motivates to apply the technique to hy-
brid systems described in Modelica and simulated by
JModelica.org/PyFMI and Assimulo [1, 3, 2].

Keywords: events, discontinuities, hybrid systems,
multistep method, Runge–Kutta method, simulation
restart

1 Introduction

When dealing with hybrid systems, i.e. dynamic sys-
tems with state or time discontinuities, much empha-
sis has been put on the modeling aspect. Attempts to
standardize the formulation of events and algorithms
for event detection were in the focus of development
and research, e.g. [4]. On the other hand, the question
of restarting complex integration methods like mul-
tistep methods, with their sophisticated internal error
and order control algorithms and internal data repre-
sentations, did not attract much attention. In this pa-
per we want to take up and review two early ideas for
restarting and to present some experiments using the
JModerlica.org - PyFMI - Assimulo toolchain.

A multistep method is classically started by step-
wise increasing the order of the method, starting with a
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first order method (implicit Euler method) and leading
to a method having the operational order of the prob-
lem at hand. Simulations are often done for a set of
parameterized models for which the operational order
and also good guesses of initial step sizes are avail-
able from other simulation runs. Thus, a goal for im-
proving the integration performance is to avoid costly
starting phases and directly start the integrator with a
method already having the operational order. To start
such a higher order method several internal values are
required. Here we consider two ideas for providing
these values. In both cases the starting values are ob-
tained from the stage values of a single Runge–Kutta
step of a specially designed method. One of them uses
state values, while the other is geared to Nordsieck
based multistep methods like LSODAR.

2 Runge–Kutta starter with state val-
ues

We demonstrate the principle by constructing a
Runge–Kutta starter for a third order multistep
method, [8].

Furthermore, we construct two error estimates for
determining the starting step of both the Runge–Kutta
starter and a class of multistep methods, i.e. Adams
methods.

Such a Runge–Kutta starter has to have an internal
stage of order 3 as soon as possible and all subsequent
stages need to be at least of order 3. In addition; the
final result should be of order 4 for the purpose of er-
ror estimation. It is well-known that to get third-order
accuracy at least three internal stages are necessary,
and to conserve this accuracy for subsequent stages we
need to aim for a Runge–Kutta method with at least six
stages, [5]. We will thus consider a 6-stage Runge–
Kutta method.

For the initial value problem

y′ = f (t,y), y(0) = y0, (1)
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Figure 1: Runge–Kutta starter after a discontinuity

an s-stage explicit Runge–Kutta method can be written
in the form,

ki := f (t0 + ciH,gi−1),

gi :=y0 + H
i

∑
j=1

ai jk j, i = 1, . . . ,s,

y1 :=y0 + H
s

∑
j=1

b jk j,

(2)

where y1 is the numerical solution at t1 = t0 + H, H is
the Runge–Kutta step size and ki are stage derivatives.

f may be discontinuous but it is assumed to be
piecewise smooth.

In the construction of an order 4, 6-stage explicit
Runge–Kutta method, order conditions up to order
four need to be satisfied. Let

b : = (b1,b2, · · · ,bs)
T ,

ai : = (ai1,ai2, · · · ,aii),

Ci : = diag(c1, · · · ,ci),

Ai : = (a jk)
i
j,k=1,

ei : = (1,1, · · · ,1)T .

(3)

When deriving the stage order conditions, we make
use of the fact that in Eq. (2), the stage values gi and
yi have structurally the same form. Therefore, we can
derive the order conditions for internal stages in the
same way.
The order conditions for a fourth-order Runge–Kutta
method are

• order 1
bT es = 1.

• order 2

bTCses =
1
2
.

• order 3
bTC2

s es =
1
3
,

bT AsCses =
1
6
.

• order 4

bTC3
s es =

1
4
,

bTCsAsCses =
1
8
,

bT AsC2
s es =

1
12
,

bT A2
sCses =

1
24
.

(4)

Additionally we require
s

∑
j=1

ai j = ci. (5)

The remaining order conditions for internal stages i =
4,5,6 are

• order 2
aT

i Ciei =
1
2

c2
i .

• order 3

aT
i C2

i ei =
1
3

c3
i ,

aT
i AiCiei =

1
6

c3
i .

(6)

We want to both obtain third-order accuracy and min-
imize the truncation error bound. Raltson [6] showed
that the third-order Runge-Kutta method which has
the minimal error bound among all third-order Runge–
Kutta methods is

k1 =h f (tn,yn),

k2 =h f (tn +
1
2

h,yn +
1
2

k1),

k3 =h f (tn +
3
4

h,yn +
3
4

k2),

yn+1 = yn +
2
9

k1 +
1
3

k2 +
4
9

k3.

(7)

This implies the Butcher tableau for the first four
stages is

0 0

1
2 c4

1
2 c4 0

3
4 c4 0 3

4 c4 0

c4
2
9 c4

1
3 c4

4
9 c4
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From condition (5) we find

a21 = c2, a31 = (1−θ)c3, a32 = θc3. (8)

We now substitute (6) and (5) in (4) to calculate the
values bi for the six stage Runge–Kutta method.

b2c3
2 + b3c3

3 + b4c3
4 + b5c3

5 + b6c3
6 =

1
4
,

b3c3θc3c2 +
1
2

b4c3
4 +

1
2

b5c3
5 +

1
2

b6c3
6 =

1
8
,

b3c3θc2
2 +

1
3

b4c3
4 +

1
3

b5c3
5 +

1
3

b6c3
6 =

1
12
,

1
6

b4c3
4 +

1
6

b5c3
5 +

1
6

b6c3
6 =

1
24
.

(9)

For the first three stages we require c2 6= 0,c3 6=
0 and θ 6= 0, otherwise a third-order Runge–Kutta
method cannot be obtained. So b2 = b3 = 0 and Equa-
tions (9) reduce to a single equation

b4c3
4 + b5c3

5 + b6c3
6 =

1
4
.

We repeat this process for order 2 and 3 conditions,
getting

b4c2
4 + b5c2

5 + b6c2
6 =

1
3
,

and

b4c4 + b5c5 + b6c6 =
1
2
.

respectively.
Here we have a system of equations for given

c4,c5,c6,




c4 c5 c6
c2

4 c2
5 c2

6
c3

4 c3
5 c3

6






b4
b5
b6


=




1
2
1
3
1
4


 .

We obtain a Vandermonde type matrix, which has, for
distinct c4,c5 and c6, a unique solution:

b1 = 1−b4−b5−b6,

b4 =
3−4c5−4c6 + 6c5c6

12c4(c4− c5)(c4− c6)
,

b5 =
3−4c4−4c6 + 6c4c6

12c5(c4− c5)(c5− c6)
,

b6 =
3−4c4−4c5 + 6c4c5

12c6(c4− c6)(c5− c6)
.

In order to obtain an equidistant grid for starting mul-
tistep methods, we can choose

c4 =
1
4
, c5 =

1
2
, c6 =

3
4
,

which gives

b1 = b2 = b3 = 0, b4 =
2
3
, b5 =−1

3
, b6 =

2
3
.

Finally, by solving the equations that guarantee the
remaining order conditions, we obtain the Butcher
tableau for the Runge–Kutta starter:

0 0

1
8

1
8 0

3
16 0 3

16 0

1
4

1
18

1
12

1
9 0

1
2

5
12 −1

3 −4
9 1 0

3
4 −1

4
3
4 1 −3

2
3
4 0

0 0 0 2
3 −1

3
2
3

We can apply the explicit Runge–Kutta starter to start
k = 3-step Adams methods. We need k data points
(ti, fi), i = n− k + 1, . . . ,n to compute the respective
polynomials for either the Adams–Moulton corrector
or the Adams–Bashforth predictor.

3 Error estimation and step size con-
trol

The error of the numerical solution depends on the
function f and on the step size H. The step size influ-
ences the size of the global error increment. Thus, for
a given tolerance the step size is chosen in such a way
that the global error increment meets a user-supplied
tolerance bound.

We use an embedded formula to obtain an error
estimate for the Runge–Kutta starter of the Adams
method. The estimation can be done by reusing the
available stages to produce a formula of different or-
der. To do so, we apply stages k4,k5,k6 of the Runge–
Kutta method in Section 2 and obtain ŷ1 by the third-
order Adams–Bashforth method. We generate the dif-
ference table

c4 = h k4
Ok5

c5 = 2h k5 O2k6
Ok6

c6 = 3h k6
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where h = H
4 and H is the Runge–Kutta step size. The

third-order Adams–Bashforth method is

ŷ1 = g6 + h
3

∑
i=1

γi−1Oi−1k6 = g6 + h
3

∑
i=1

γ?i ki+3, (10)

The latter is the Lagrange form of the Adams–
Bashforth method and

γ?1 = γ2 =
5
12
,

γ?2 =−γ1−2γ2 =−4
3
,

γ?3 = γ0 + γ1 + γ2 =
23
12
.

As we have

g6 = y0 + H
5

∑
j=1

a6 jk j, (11)

we can rewrite equation (10) as

ŷ1 = y0 + H
6

∑
j=1

b̂ jk j

Thus, the error estimate is

y1− ŷ1 =

y0 + H
6

∑
j=1

b jk j−
(

y0 + H
6

∑
j=1

b̂ jk j

)
=

h
6

∑
j=1

ê jk j, (12)

giving the following coefficients

j 1 2 3 4 5 6

b̂ j −1
4

3
4 1 −67

48
5

12
23
48

ê j
1
4 −3

4 −1 99
48 −3

4
3
16

This error estimation is the difference of a third-order
predictor and the fourth-order result of the Runge–
Kutta method that is applied to determine the step size
for the Runge–Kutta starter.

We will now develop a second error estimate, to de-
termine a step size for Adams method. We evaluate the
right-hand side function f at the solution value y1 and
call it k7. Then we generate the third-order Adams–
Moulton corrector using k5,k6,k7,

c5 = h k5
Ok6

c6 = 2h k6 O2k7
Ok7

c7 = 3h k7

The third-order approximation by the Adams–
Moulton method is

ỹ1 = g6 + h
3

∑
i=1

βi−1Oi−1k7 = g6 + h
3

∑
i=1

β ?
i ki+4, (13)

where the latter is the Lagrange form of the Adams–
Moulton corrector and

β ?
1 = β2 =− 1

12
,

β ?
2 =−β1−2β2 =

2
3
,

β ?
3 = β0 + β1 + β2 =

5
12
.

From Equation (11) we can rewrite the third-order
corrector in Runge–Kutta form

ỹ1 = y0 + H
7

∑
j=1

b̃ jk j.

resulting in the following table:

j 1 2 3 4 5 6 7

b̃ j −1
4

3
4 1 −3

2
35
48

1
6

5
48

ẽ j
1
4 −3

4 −1 13
6 −51

48
1
2 − 5

48

The error estimate is used in determining the step size
for starting the third-order Adams-Moulton method.

4 Runge–Kutta starter as an extrap-
olation method

The starting values of a multistep method can also
be stored as a differentiation array, which constitutes
the Nordsieck vector of scaled derivatives hiy(i)

i! , i =
0, . . . , p. It is possible to convert a vector of state val-
ues at consecutive grid points into a Nordsieck array
and vice versa without loss of accuracy. Classical mul-
tistep codes like LSODAR are based on Nordsieck for-
mulations.

Based on such a Nordsieck formulation an alterna-
tive way of constructing a Runge–Kutta starter was de-
veloped by Gear, [5]. Here, the asymptotic expansion
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of the global error of a base method is used to con-
struct a Runge-Kutta method with higher order stage
values.

We use the explicit Euler method as a base method
to compute ym

i (the super-script m refers to the corre-
sponding step size, hm = H

m ) for i = 1, . . . ,m, m =
p, p− 1, . . . ,1. From these values the terms in the
asymptotic expansion, [7],

ym
i = y(ihm) +

p

∑
q=1

eq(ihm)hq + O(H p+1). (14)

can successively be eliminated by an extrapolation
technique until a method of a required order is ob-
tained. The resulting method is known to be a Runge–
Kutta method.

We exemplify the approach by aiming for third-
order accurate Nordsieck values and restricting our-
selves to autonomous differential equations for sim-
plicity. The same process can be employed to obtain
higher order accuracy.

Let h = H
m , and integrate the autonomous form of

the differential equation (1) on the interval [y0,y0 +H]
with Euler’s method, using m steps of size H

m for m =
3,2,1.

For m = 3

y3
1 = y0 + h f (y0) = y0 + k1, k1 = h f (y0),

y3
2 = y3

1 + h f (y3
1) = y0 + k1 + k2, k2 = h f (y3

1),
y3

3 = y3
2 + h f (y3

2) = y0 + k1 + k2 + k3, k3 = h f (y3
2).
(15)

For m = 2

y2
1 = y0 +

3
2

h f (y0) = y0 +
3
2

k1,

y2
2 = y3

1 +
3
2

h f (y3
1) = y0 +

3
2

k1 +
3
2

k4, k4 = h f (y2
1).

(16)

For m = 1

y1
1 = y0 + 3h f (y0) = y0 + 3k1.

(17)

with h = H
3 . We use approxmation formulas for higher

derivatives

hk
my(k)(

H
2

) =
m

∑
i=0

diky(ihm)+
p

∑
s=k+1

cskhs
mys(

H
2

)

+O(H p+1), m≥ k

and (14) to obtain, after some algebraic manipulations,

D3
3 = y3

3−3y3
2 + 3y3

1− y0 = h3y(3),

D3
2 = y3

3− y3
2− y3

1 + y0 = 2h2y(2) + 2h3e(2)
1 ,

D2
2 = y2

2−2y2
1 + y0 = (

3h
2

)2y(2) +(
3h
2

)3e(2)
1 ,

D3
1 = y3

2− y3
1 = hy(1) + h2e(1)

1 + h3e(1)
2 +

h3

24
y(3),

D2
1 = y2

2− y0 = 3hy(1) +
9
2

h2e(1)
1 +

27
4

h3e(1)
2 +

9
8

h3y(3),

D1
1 = y1

1− y0 = 3hy(1) + 9h2e(1)
1 + 27h3e(1)

2 +
27
24

h3y(3).

(18)

All derivatives are evaluated at H
2 and O(h4) terms are

dropped. Estimates of the derivatives can be derived at
any point within a constant multiple of the interval H
with the same accuracy. We solve the system (18) to
remove the error terms for hky(k)(H

2 ), for k = 1, . . . ,m,
to get

h3y(3)(
H
2

) = D3
3 +O(h4),

h2y(2)(
H
2

) =
3
2

D3
2−

8
9

D2
2 +O(h4),

hy(1)(
H
2

) =
9
2

D3
1−

4
3

D2
1 +

1
6

D1
1 +

9
8

D3
3 +O(h4).

(19)

The Dm
k can be expressed as combinations of stage val-

ues ki. All O(h4) terms are neglected.

D3
3 = k1−2k2 + k3,

D3
2 =−k1 + k3,

D2
2 =−3

2
k1 +

3
2

k4,

D3
1 = k2,

D2
1 =

3
2

k1 +
3
2

k4,

D1
1 = 3k1.

(20)

From (19) and (20),

h3y(3)(
H
2

) = k1−2k2 + k3 +O(h4),

h2y(2)(
H
2

) =−1
6

k1 +
3
2

k3−
4
3

k4 +O(h4),

hy(1)(
H
2

) =−3
8

k1 +
9
4

k2 +
9
8

k3−2k4 +O(h4),

y(
H
2

) = y0 +
3
16

k1 +
18
8

k2 +
9

16
k3−

12
8

k4 +O(h4).

(21)

The first element of the Nordsieck vector, y(H
2 ), is

computed by Taylor expansion.
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It follows that

Γ H
2

=




1 0 0 0
3

16 −3
8 −1

6 1
18
8

9
4 0 −2

9
16

9
8

3
2 1

−12
8 −2 −4

3 0




. (22)

If the derivatives are instead computed at the origin,
the matrix above becomes

Γ0 =




1 0 0 0
0 1 −5

3 1

0 0 3 −2

0 0 0 1

0 0 −4
3 0




. (23)

The matrix A of coefficients αi, j in equation (2) is ob-
tained from Equations (15) and (16)

A =




0 0 0 0
1 0 0 0
1 1 0 0
3
2 0 0 0


 . (24)

For a fourth-order method we need at least six func-
tion evaluations, [5], and the relevant matrices Γ0 and
A are

Γ0 =




1 0 0 0 0
0 1 −5

6
4
9 −1

9

0 0 0 0 0

0 0 1
2 −4

9
1
9

0 0 7
3 −19

9
7
9

0 0 −3 10
3 −4

3

0 0 1 −11
9

5
9




,

A =




0 0 0 0 0 0
1 0 0 0 0 0

0 2 0 0 0 0
3
4 0 9

4 0 0 0
1
2 1 1

2 2 0 0
1

12 2 1
4

2
3 2 0




.

The cost of this process in terms of function eval-
uations is 1 + p(p−1)

2 , since the interval H is inte-
grated by Euler’s method m times with step size H

m for

m = p, p− 1, . . . ,1. For the first value of m we have
p function evaluations because the initial value of y′

has to be evaluated once, so for the next value of m we
have p−2 function evaluations, and so on.

We constructed a Nordsieck vector with third-order
accuracy. To do this we used four stages k1,k2,k3,k4
as in (15) and (16) with lower order and an extrapo-
lation technique. It can be shown that there exists no
method of the same order with less stages and thus less
function evaluations.

5 Order tests

To verify that the starter indeed achieves the expected
order we consider the harmonic oscillator

y′′ =−4y, y0 = 1, y′0 = 0.

1
3

Figure 2: Both Runge–Kutta starters achieved third-
order accuracy when solving the harmonic oscillator
problem with the 3-step Adams-Moulton method

6 The bouncing ball test example

In this section we demonstrate the method on the ex-
ample of a bouncing ball with linear damping d = 0.1:

ẏ1 = y2

ẏ2 = −dy1 + 9.81

The bounces are modeled using a coefficient of resti-
tution was chosen to be c = 0.88 to give the sys-
tem sufficiently many impacts to be able to make a
statement about the effect of restarting, see Fig. 3.
The model includes two events, one to trigger bounc-
ing and a second one which triggers the upper turn-
ing point. At the upper turning point the differen-
tial equation and its states remain unaltered, and only
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0 1 2 3 4 5 6 7 8
Time

0.5

0.0

0.5

1.0

1.5

2.0
He

ig
ht

LSODAR-RK
LSODAR

Figure 3: A simulation of a bouncing ball (damping:
d = 0.1, coefficient of restitution c = 0.88).

the switch to control the bouncing event becomes ac-
tivated. At the bouncing event the velocity ẏ(t−) is
altered to ẏ(t+) =−cẏ(t−).

In Fig. 4 the step size and order history of both
restarting techniques is compared. The classical start-
ing procedure clearly shows a drop in order and step
size. The method recovers quite quickly from the re-
duced step size as LSODAR allows exceptionally big
step size changes during the initialization phase.

0 1 2 3 4 5 6 7 83.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0 Classical restart: Step size

0 1 2 3 4 5 6 7 84.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0Runge-Kutta restart: Step size

0 1 2 3 4 5 6 7 80

1

2

3

4

5 Classical restart: Order

0 1 2 3 4 5 6 7 81.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0 Runge-Kutta restart: Order

Figure 4: Comparison of the step size and order his-
tory for the two restarting approaches. A logarithmic
scale is used for the step size plot.

The run statistics, cf. Tab. 1 show the effect of the
Runge–Kutta starter in Assimulo. The gain in the
number of function evaluations for this example is
about 58%.

7 Conclusions

The aim of this paper is to study the effect of Runge–
Kutta restarting techniques on the performance of the

Classic starter Runge–Kutta starter
# steps 455 129
# function evals 1027 428
# event function
evals

919 538

# events 38 37

Table 1: Run time statistics for the bouncing ball ex-
ample with absolute and relative tolerance set to 10−8.

simulation of hybrid systems. Tests were made on a
system with relatively small numbers of discontinu-
ities. The tests give a clear indication that investigat-
ing a more sophisticated restarting procedure like the
fourth-order Runge–Kutta starter presented here has a
potential impact on the overall performance of an sim-
ulator.

The flexibility in selecting the order of the restarter
as well as doing error control of the restarter is the
topic of future research.
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