
MoUnit — A Framework for Automatic Modelica Model Testing

Roland Samlaus1 Mareike Strach1 Claudio Hillmann1 Peter Fritzson2

Fraunhofer IWES, Turbine Simulation, Software Development, and Aerodynamics1

Department of Computer and Information Science Linköping University2

Abstract

A vital part in development of physical models, i.e.,
mathematical models of physical system behavior, is
testing whether the simulation results match the de-
veloper’s expectations and physical laws. Creation
and automatic execution of tests need to be easy to
be accepted by the user. Currently, testing is mostly
performed manually by regression testing and inves-
tigation of result plots. Furthermore, comparisons be-
tween different tools can be cumbersome due to differ-
ent output formats. In this paper, the test framework
MoUnit is introduced for automatic testing of Model-
ica models through unit testing. MoUnit allows com-
parison of Modelica simulation results with reference
data, where both reference data and simulation results
can originate from different simulation tools and/or
Modelica compilers. The presented test framework
MoUnit brings the widespread approach of unit test-
ing from software development into practice also for
physical modeling. The testing strategy that is used
within the Modelica IDE OneModelica from which
the requirements for MoUnit arose, is introduced using
an example of linear water wave models. The imple-
mentation and features of MoUnit are described and
its flexibility is exhibited through two test cases. It is
outlined, how MoUnit is integrated into OneModelica
and how the tests can be automated within continuous
build environments.

Keywords: MoUnit, OneModelica, Modelica, test
framework, automatic testing, verification

1 Introduction

An important part of the process of developing phys-
ical models is model testing since it greatly increases
the probability that the expected behavior is accurately
modeled. Within software development it is conve-
nient to create tests and test suites using test frame-

works like JUnit1. The use of these test frameworks
ultimately lead to a “test first” development approach,
i.e., creating tests before actually developing the soft-
ware parts that must conform to the tests. Also, engi-
neers creating physical models can benefit from a test
driven development. Immediate feedback about incor-
rect model changes can assist in keeping the models
consistent during their lifecycle in the modeling pro-
cess.

By using fine-grained tests for single components,
errors in composed models can be traced back to the
erroneous element. This also simplifies the develop-
ment in teams as one modeler’s changes may have a
negative influence on another modeler’s models. How-
ever, test-based development as known from software
engineering is hard to maintain for physical model de-
veloped with Modelica. While the algorithmic parts of
models could be checked in a similar way, the behavior
expressed by equations cannot be tested directly since
the usage of time as a parameter makes it necessary to
perform simulations.

A reasonable solution for this is the use of regres-
sion tests where reference data is used as a base for
comparison with results from subsequent simulations.
When models are altered, the result can be compared
to the reference files to check if the behaviour is still
as expected. The two commonly used Modelica sim-
ulation tools OpenModelica2 and Dymola3 use regres-
sion tests for checking if changes made in the compil-
ers still result in valid simulations as well as to allow
users to create regression tests for model development.

Although these kind of tests already aid the devel-
opment process of physical models, regression tests
may not be sufficient to find all problems that may ap-
pear during the development and the tools provide a
non-uniform way of defining test cases. With our test
framework MoUnit we aim at facilitating test case and
test suite definition for single model components as

1http://www.junit.org
2https://www.openmodelica.org/
3http://www.dymola.com

DOI
10.3384/ECP14096549

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

549

well as groups of models. Besides, the tests should be
executable with various simulation tools as well as in
different environments, e.g., directly inside the Mod-
elica IDE OneModelica4, or in continuous build en-
vironments like Hudson5, which is currently in use for
OneModelica and OpenModelica development. More-
over, we want to allow users to extend MoUnit in order
to re-use their already implemented test functionality
as well as making it possible to create more sophisti-
cated tests then regression tests.

In this paper, we demonstrate how the user can cre-
ate test cases for automatic testing. The user can use
arbitrary simulation tools, compare the results to ref-
erence data and to the results of a second experiment.
Thereby, it is possible to compare simulation tools to
each other or investigate the impact of different solvers
on the simulation results without the need to create
additional reference files. Moreover, we demonstrate
the extensibility of the test framework for example
through the implementation of a test component for
regression test of equidistant result files. As a second
tester component we implemented the calculation of
basic statistics. This allows us to validate stochastic
properties of our Modelica irregular water wave mod-
els by comparing to results from the commercial soft-
ware ASAS WAVE6. Here it is advantageous that sev-
eral input formats are supported in order to use data
from tools that are not Modelica-based. Thus, calcula-
tions from analytic formulae producing numerical re-
sults can also be used for testing in our framework.

The remainder of this paper is structured as fol-
lows: In Section 2 we describe the project structure
of Modelica projects in OneModelica. Separation into
projects allows to separate code for testing from mod-
els containing the physical behavior. The test lan-
guage is described in Section 3 along with an expla-
nation of how the test framework can be extended.
The evaluation in Section 4 demonstrates how the wa-
ter wave models developed at Fraunhofer Institute for
Wind Energy and Energy System Technology (Fraun-
hofer IWES) are tested using our framework. Finally,
Section 5 concludes our work and gives an outlook on
how we plan to further enhance the test framework in
the future.

4http://www.onewind.de/OneModelica.html
5http://hudson-ci.org/
6http://www.ansys.com/Products/Other+Products/

ANSYS+ASAS

2 Testing Modelica Models Within
OneModelica

Testing is a crucial part of model development. The
following aspects of a model should be checked:
whether it (a) can be simulated without errors, (b)
delivers the expected results, and (c) represents the
reality appropriately. Furthermore, when component
models are developed and/or modified it also has to
be checked whether the composed models deliver the
expected results. That is, the robustness of a compo-
nent model in various situations has to be ensured as
— depending on the complexity of the model — even a
small change might lead to unexpected results. Testing
a model in different situations can be a tedious process
as it involves a lot of “playing around with parame-
ters” and waiting for simulations to finish. All these
points are reasons for automated testing during model
development.

The testing strategy which is presented herein and
from which the requirements for the development of
MoUnit arose, is closely tied to the Modelica IDE
OneModelica. In OneModelica, models are organized
in model projects [2]. This approach allows to have
two model projects for each component model that has
to be implemented. The first one contains all the phys-
ical system equations and model logic. However, the
models are not yet simulatable because the parameters
do not have values yet — as they should be modified
by the user when the model is parameterized for vari-
ous application scenarios. The second one contains the
actual test models. The test models contain instances
of the models taken from the original model project.
The modifications of the original models are done with
parameter settings that correspond to defined test case
scenarios. This could also be a special set of parame-
ters that has caused problems in the past and it should
be ensured for future simulations that it will not oc-
cur again. This strategy is somewhat borrowed from
the software development: JUnit test plug-ins will be
separated from the actual Java plug-ins to divide pro-
gram logic from the test. The use of instances of the
models to be tested rather than extending it, is based
on the fact that test models can also be seen as “best
practice” examples: a look at the test models shows
how the model to be tested should be used. However,
if this aspect is not important, it is also possible to
use a test model that extends the model to be tested
within MoUnit. This would avoid possible inconsis-
tencies between the physics and test model code that
is duplicated such as parameter units. Using the ex-

MoUnit – A Framework for Automatic Modelica Model Testing

550 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096549

Figure 1: Model projects for both model logic and test
models for regular water waves

ample of Modelica models for regular water waves,
this is illustrated in Figure 1: The test model project
has the same name as the original model project, but
with an appended .test. This makes it clearly dis-
tinct as a test project for all the developers, who work
on the models. As can also be seen in Figure 1, the
test model project contains experiments that simulate
the test models. The structure of the model to be tested
and the testing model is shown in Listing 1: the model
RegularWave has the parameter instances and equa-
tions, while the model TestRegularWave has an in-
stance of type RegularWave and modifies the corre-
sponding parameters. The experiments that are used
to simulate the test models are set up manually. They
can also be simulated manually during the model de-
velopment. However, once the number of models and
functions has exceeded some threshold been created,
manual execution of all the experiments becomes too
cumbersome. This is the point where MoUnit should
be used. The necessary files for automated execution

model RegularWave
"kinematics of a regular linear wave"

import SI = Modelica.SIunits;
import NonSI =

Modelica.SIunits.Conversions.NonSIunits;

parameter SI.Height H "wave height";
parameter SI.Period T "wave period";
parameter NonSI.Angle_deg epsilon "phase";
// rest of parameters omitted

equation
// model logic is placed here

end RegularWave;

model TestRegularWave
"test model for ‘RegularWave ‘"

import SI = Modelica.SIunits;
import NonSI =

Modelica.SIunits.Conversions.NonSIunits;

constant SI.Height H = 5;
constant SI.Period T = 11;
constant NonSI.Angle_deg epsilon = 12;

RegularWave regularWave(H = H, T = T,
epsilon = epsilon
// rest of modifications omitted
) "instance to be tested";

equation
// test logic like assert statements
// is placed here

end TestRegularWave;

Listing 1: Example for model and corresponding test
model

of the experiments are stored in the test model project
as shown in Figure 1. These files enable checking that
all the models that have been implemented in the orig-
inal model project are fulfilling the three properties
mentioned above: it can be easily seen if a simulation
crashes and if the implementation of the model works
correctly by comparing it to reference data that can ei-
ther come from other simulation tools, measurements,
or analytical solutions.

3 Implementation of the Modelica
Test Framework

For the development of valid physical models with
Modelica it is vital to define test cases to check that
model changes do not negatively affect simulation re-
sults. A common way to assure this is using regres-
sion tests. This is used by the OpenModelica devel-
opment group using their framework to test compiler
changes by comparing results of simulations to refer-
ence data. In the same way Dymola’s model manage-
ment library allows performing regression tests with

Session 3E: Modelica Tools 2

DOI
10.3384/ECP14096549

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

551

Modelica models.
The goal of MoUnit is to provide test-driven physi-

cal model development with Modelica. For this pur-
pose we implemented a test framework that is inte-
grated into the Modelica IDE OneModelica and is flex-
ible to be also used in automatic build environments
like Hudson. A special test language has been de-
fined that can be parameterized with custom test com-
ponents and test result listeners which are responsible
for processing test results appropriately.

In the following, the test language is described that
has been developed with Xtext [3]. It allows defin-
ing test cases and test suites for automatic execution.
Additionally, the extension mechanism is explained
to show how custom test components can be regis-
tered allowing users to write test cases for special pur-
poses — for example, basic statistics analysis. Subse-
quently, the test runner that performs the test execution
is described and the registration of listeners is demon-
strated. The listener mechanism allows to use MoUnit
in different environments, e.g., by displaying the test
results visually inside OneModelica or by generating
text files for the integration of tests in continuous build
environments like Hudson. We have implemented an
ANT task that is executed by Hudson. The task adds
a listener to the test runner creating a XML file for the
documentation of the test results. The result file can
then be used by Hudson for error reports.

3.1 Test Definition Language

Xtext is a tool for textual language development. By
providing a grammar definition of a language, editors
and views can automatically be generated with help-
ful functionality like syntax highlighting and syntax
checking. The Modelica editor being the basis for
OneModelica has been developed with Xtext. Parsed
documents are represented as Ecore-based [4] parse
trees and can be used along with other Ecore-based
languages (e.g., cross-references between elements of
different languages are supported). Since mandatory
components for automatic test execution in our IDE
are defined as Ecore-models, those components can
easily be re-used for MoUnit.

Two components can be defined with the test lan-
guage that are comparable to concepts used by the test
framework JUnit for Java code: Test cases and test
suites. Test cases (see Listing 2) define the basic ele-
ments that are needed for a test to run while test suites
(see Listing 3) combine test cases and other test suites.
Hence, a set of test cases can be accumulated to test
the correct behavior of interacting Modelica models.

name TestCase1
experiment ToTest
file "pathToFile.mat"
compare {

qualifiedname .*
test.qn -> reference.qn

TestComponent {
attribute = 1.e-5

}
error "Error message"

}

Listing 2: Example of a Test Case Definition

suite AllTests:

TestSuite1 ,
TestCase1

Listing 3: Example of a Test Suite Definition

Test cases define names that make them reference-
able and thus usable in test suites. The experiment
keyword states that a Modelica experiment is used
in the test. Modelica experiments in OneModelica
can use several tools for simulation, including Open-
Modelica and Dymola. For regression tests a path
to a reference file is provided following the keyword
file. Several checks were implemented to display
problems to the user, e.g., when the provided file can-
not be found or the experiment is set to leave the Dy-
mola window open after simulation for post process-
ing. This would cause the test execution to pause until
the user closes the window manually. It is also possi-
ble to directly compare the test results of two experi-
ments by using a second experiment instead of the ref-
erence file. This can help to ensure that the results of
simulations with OpenModelica are the same as those
obtained from simulations with Dymola. Another pos-
sibility is to check if the results are equal for different
kinds of solvers.

It is also possible to compare two result files with
each other, e.g., when it is desired to compare results
from other modeling tools and languages. The result
files can be in .mat format as provided by OpenMod-
elica and Dymola (textual or binary format) as well
as in comma separated values format. Moreover, the
user can also create results based on some analytical
formulae, if it is not desired to implement the analyt-
ical result as a test component to register it to the test
framework, and save them in one of the supported for-
mats instead.

Simulation result files can be referenced by abso-

MoUnit – A Framework for Automatic Modelica Model Testing

552 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096549

lute or relative paths. Using relative paths, files can
be put into a project inside OneModelica’s workspace
and can be synchronized by multiple users with source
code management tools like SVN. Since simulation re-
sult files might be large, it may be necessary to use
network drives for storage. This can be done by using
absolute paths that can be prepended with the prefix
$. The prefix will be replaced by a user defined path.
This way tests are re-usable for other users, and the
prefix only has to be configured once per workspace.

Now that the data for comparison is available, the
user needs to provide the qualified names of model el-
ements that shall be compared, following the compare
keyword. If no element is defined then all time series
from the results are compared to each other. The user
can use the asterisk character * to select groups of ele-
ments.

Next, test components are referenced that perform
the comparison of results. The components are reg-
istered via an Eclipse extension point [5, 6]. The
test components must implement a predefined inter-
face and need to be modeled with Ecore. Attributes
can be defined which must be parameterized by the
user. In the provided example a tolerance for the result
comparison is defined which will allow a small differ-
ence in the result data of the compared time series.

Possible values for the parameterization are Dou-
bles, Integers and arrays of Doubles and Integers. The
attributes are looked up by introspection [9] which is
used to validate whether the user provides correct in-
put. When the validation is performed a new instance
of the test component is created and the parameters are
set. Finally the user defines an error message that will
be displayed when a test run fails.

Test suites start with the keyword suite followed
by a name. They contain a list of test cases and addi-
tional test suites. All test cases contained in a test suite
will be performed when the suite is executed.

3.2 Test Execution and Result Processing

The test definitions are processed by a Modelica test
runner. The runner is implemented without depen-
dencies to user interface components to allow usage
in build environments that do not have graphical user
interface installed (e.g., Linux operating systems on
dedicated build servers). The test runner executes the
experiments used in the test cases and compares the
results to the referenced experiments or files. Listen-
ers can be registered to the test runner to be informed
about the executed tests and test results. The duration
of each test is measured for performance analysis. The

Test1
.munit

Test2
.munit

Modelica Test
Runner

Test3
.munit

Extension Point

Extension Point

Test Component
(e.g. Regression Test)

Test Listener
(e.g. SWT Tree View)

Result
(e.g. XML Report)

Tests Defined
by Model Developer

Test Framework
Component

Components Provided
via Extension Point

Test Result
Representation

Test Component
(e.g. Basic Statistics)

Test Listener
(e.g. XML Generator)

Result
(e.g. SWT View)

Figure 2: Structure of the Modelica Test Framework

test components must return a status object that pro-
vides information about whether the test succeeded or
failed. When a test failed, a message must be provided
and an optional index (e.g., the time step) can be used
to tell the user about the erroneous location in the re-
sult file.

Besides the basic information described above, a
test component can return arbitrary objects with ad-
ditional information about an error. This can, for ex-
ample, be an SWT7 composite object for visualization
inside OneModelica or a file path to a serialized plot
which can be used for a test report. The test runner lis-
tener is responsible for checking whether it can handle
the object or not.

For the visualization of test results in OneModelica
we implemented a view (see Section 4) that is compa-
rable to JUnit’s test view. Test suites and test cases are
displayed as a tree and the nodes are marked accord-
ing to successful or erroneous execution. While JU-
nit test cases are based on assert statements that check
whether particular parts of code run correctly, we need
to compare result files to check whether the desired
behavior is matched. This results in a different kind

7http://www.eclipse.org/swt/

Session 3E: Modelica Tools 2

DOI
10.3384/ECP14096549

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

553

of test status visualization where the qualified names
of erroneous models is provided and optional graphs
can visualize deviations between expected and present
values. A JUnit like behavior could be implemented
for algorithmic code, e.g. by interpreting the algo-
rithms [1], allowing to check code very fast. However,
this is currently not yet supported by MoUnit.

For the integration with automatic build environ-
ments we developed an Eclipse ANT task8. The task is
performed on an Eclipse workspace that contains the
Modelica projects as described in Section 2 with ex-
periments and test definitions. The user provides in-
formation about which test cases and test suites shall
be executed. For test logging we implemented a test
runner listener that creates XML files according to the
format used by the JUnit ANT task. Hence, failing
Modelica tests can be handled in the same way as JU-
nit tests, e.g. by sending out notification mails to the
responsible model developers. The ANT task enables
the use of the same test definitions in continuous build
environments as well as for manually triggered testing
inside OneModelica.

4 Evaluation

In the following, the example of linear water wave
models is used for the evaluation of MoUnit. These
models were developed at Fraunhofer IWES to display
both regular and irregular waves according to Airy
wave theory with corresponding stretching methods.
The underlying theory for these models can be found
in standard offshore engineering text books like [7]
or [8].

For evaluation purposes, the variable eta corre-
sponding to the wave elevation, i.e. the instantaneous
wave height at a given position, is used. For a regu-
lar linear wave, eta is deterministic as it can be dis-
played by a cosine function. That is, it can be com-
pared to reference data through a regression test. Ac-
cordingly, this is used as a first test case denoted as
TestRegularWave.

The second test case is called TestIrregularWave
and tests the variable eta for an irregular linear wave.
In this case, eta is stochastic, i.e., a direct comparison
of time series to reference data is meaningless unless
they are generated with the exact same input. How-
ever, this is not always possible, e.g. when the simu-
lated time series are compared to reference data from
a different tool or measurements. Instead, the mean

8http://ant.apache.org/

name TestRegularWave

experiment
TestRegularWheelerWave
file
"$/WAVE_WheelerElevation.csv"
compare {

regularWaveKinematics [1]. eta
-> asas.elevation.eta

EquidistantTSValidator {
tolerance =10e-11

}
error "Wave elevation does not match."

}

Listing 4: Test Definition for Regular Waves

value and the standard deviation of the time series are
compared to those of reference data.

For the test case TestRegularWave (see List-
ing 4), we implemented the test component
EquidistantTSValidator. It can be parameterized
with a tolerance that represents the acceptable
absolute difference between the two compared time
series. The input files for the component must have
the same length as well as equidistant values. If the
input does not match the reference data, i.e., if the
absolute difference between input and reference data
exceeds the value of tolerance, an error will be
displayed. The resulting view for our example is
shown in Figure 3: the simulation time plus the time
used for validating the values is displayed as a sum
in the test case tree view. When the user selects the
erroneous test, basic information about the location of
the first assert failure is provided together with a plot
of the two compared curves.

For the test case TestIrregularWave (see List-
ing 5) a test component named BasicStatistics has
been implemented to compare mean value and stan-
dard deviation as described above. The user can pro-
vide the parameters startindex and endindex to de-
fine the range of values that shall be checked for the
provided input values.
name TestIrregularWave

file
"$/ir_periodical_elevation_dymola.csv"
file
"$/ir_elevation_asas.csv"
compare {

modelica.elevation.eta
-> asas.elevation.eta

MoUnit – A Framework for Automatic Modelica Model Testing

554 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096549

BasicStatistics {
startindex =0,
endindex =800,
meandeviation =0.01 ,
stddeviation =0.001

}
error "Basic statistics of wave

elevation do not match."
}

Listing 5: Test Definition for Irregular Waves

Additionally, the user can define the allowed variance
of the calculated mean values and standard deviations.
Figure 4 shows the resulting view displaying informa-
tion about the assertions that were violated. While the
mean value of the wave elevation matches the refer-
ence data, the standard deviation is not acceptable. As
for the test case TestRegularWave, a plot is provided
to visualize the compared values to the user.

5 Conclusion and Outlook

In this paper, we demonstrated that the test framework
MoUnit developed at Fraunhofer IWES can effectively
be used for testing Modelica models by unit testing.
We showed that the framework is flexible as it supports
multiple simulation tools as well as input files from
other tools for result comparison. This allows to check
the different behavior of models when using different
simulation tools as well as different solvers.

We also illustrated that it is possible to extend
MoUnit with custom test components that provide
functionality different from regression testing. Using
the example of simulating water waves, we compared
simulation results of our Modelica models to simula-
tion results of the reference tool ASAS WAVE. The
extensibility also allows to add test components that
use results from analytical calculations for result vali-
dation.

For error reporting, a flexible interface has been de-
fined. We implemented a plot for wave model tests
displaying the time series of the data that is being
compared together with the corresponding mean val-
ues and standard deviations. Thereby, the user can
directly investigate the cause for a problem visually.
Furthermore, an ANT task has been implemented that
executes test suites and registers a listener that serial-
izes a test report in an XML file compatible to JUnit.
Hence, the tests can be integrated into a build system
for continuous testing.

In the future, we plan to create additional test func-
tionality that allows to test single values of result files.
The implementation of test components for analytical

solutions are planned for the models of wind turbine
components — as far as they are available. For fast
testing of algorithms, it is furthermore desirable and
planned to interpret the algorithmic code, e.g. of Mod-
elica functions to allow direct calls and comparison to
expected result values.

Acknowledgements

This work is financially supported by the Federal Min-
istry for the Environment, Nature Conservation and
Nuclear Safety based on a decision of the Parliament
of the Federal Republic of Germany, by the Swedish
Government in the ELLIIT project, by the Swedish
Strategic Research Foundation in the EDOp projects,
and by Vinnova in the RTSIM and ITEA2 MODRIO
projects.

References

[1] Höger C. Modelica on the Java Virtual Machine.
In: Proceedings of the 5th International Work-
shop on Equation-Based Object-Oriented Mod-
eling Languages and Tools, April 19 2013, Uni-
versity of Nottingham, Nottingham, UK.

[2] Samlaus R, Hillmann C, Demuth B, Krebs M.
Towards a Model Driven Modelica IDE. In: Pro-
ceedings of the 8th International Modelica Con-
ference 2011, Dresden, Germany, Modelica As-
sociation, 20-22 March 2011.

[3] Köhnlein J., Efftinge S.,Xtext 2.1 Documenta-
tion, Itemis GmbH, October 31, 2011.

[4] Budinsky F, Brodsky S. A., Merks E. Eclipse
Modeling Framework, Pearson Education, 2003.

[5] Clayberg E, Rubel D. Eclipse Plug-ins, Addison
Wesley Professional, 2009.

[6] McAffer J, van der Lei P, Archer S. OSGi and
Equinox: Creating Highly Modular Java Sys-
tems, Addison-Wesley Professional, 2010.

[7] Faltinsen O M. Sea loads on ships and offshore
structures, Cambridge University Press, 1990.

[8] Chakrabarti S K. Ocean Environment. In:
Chakrabarti S K (ed.), Handbook of Offshore En-
gineering, Elsevier, 2005.

[9] Eckel B., Thinking in Java, Prentice Hall, 978-0-
13-187248-6, 2006.

Session 3E: Modelica Tools 2

DOI
10.3384/ECP14096549

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

555

Figure 3: Result for test case TestRegularWave

Figure 4: Result for test case TestIrregularWave

MoUnit – A Framework for Automatic Modelica Model Testing

556 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096549

